In this review, we show that by designing the metallic nanostructures, the surface plasmon (SP) focusing has been achieved, with the focusing spot at a subwavelength scale. The central idea is based on the principle of optical interference that the constructive superposition of SPs with phase matching can result in a considerable electric-field enhancement of SPs in the near field, exhibiting a pronounced focusing spot. We first reviewed several new designs for surface plasmon focusing by controlling the metallic geometry or incident light polarization: We made an in-plane plasmonic Fresnel zone plates, a counterpart in optics, which produces an obvious SP focusing effect; We also fabricated the symmetry broken nanocorrals which can provide the spatial phase difference for SPs, and then we propose another plasmon focusing approach by using semicircular nanoslits, which gives rise to the phase difference through changing refractive index of the medium in the nanoslits. Further, we showed that the spiral metallic nanostructure can be severed as plasmonic lens to control the plasmon focusing under a linearly polarized light with different angles.
Plasmonics - Hot carrier collection assisted with surface plasmon integrated with metallic-semiconductor nanostructures directs a way for direct photoelectric conversion, which could be utilized... 相似文献
In this review article, we provide an overview of recent research activities in the study of plasmonic optical properties
of metal nanostructures with emphasis on understanding the relation between surface plasmon absorption and structure. Both
experimental results and theoretical calculations have indicated that the plasmonic absorption strongly depends on the detailed
structure of the nanomaterials. Examples discussed include spherical nanoparticles, nanorods, nanowires, hollow nanospheres,
aggregates, and nanocages. Plasmon–phonon coupling measured from dynamic studies as a function of particle size, shape, and
aggregation state is also reviewed. The fascinating optical properties of metal nanostructures find important applications
in a number of technological areas including surface plasmon resonance, surface-enhanced Raman scattering, and photothermal
imaging and therapy. Their novel optical properties and emerging applications are illustrated using specific examples from
recent literature. The case of hollow nanosphere structures is highlighted to illustrate their unique features and advantages
for some of these applications. 相似文献
This paper reports on a systematic study of the plasmonic properties of periodic arrays of gold cylindrical nanoparticles in contact with a gold thin film. Depending on the gold film thickness, it observes several plasmon bands. Using a simple analytical model, it is able to assign all these modes and determine that they are due to the coupling of the grating diffraction orders with the propagating surface plasmons travelling along the film. With finite difference time domain (FDTD) simulations, it demonstrates that large field enhancement occurs at the surface of the nanocylinders due to the resonant excitation of these modes. By tilting the sample, it also observes the evolution of the spectral position of these modes and their tuning through nearly the whole visible range is possible. Such plasmonic substrates combining both advantages of the propagative and localised surface plasmons could have large applications in enhanced spectroscopies.
Plasmonics - We derive and present systematic relationships between the analytical formulas for calculation of the localized surface plasmon resonances (LSPR) of some plasmonic nanostructures which... 相似文献
We suggest a model of an optical structure that allows to accelerate nanoparticles to velocities on the order of tens of centimeters per second using low-intensity external optical fields. The nano-accelerator system employs metallic V-grooves which concentrate the electric field in the vicinity of their bottoms and creates large optical gradient forces for the nanoparticles in that groove. The conditions are found when this optical force tends to eject particles away from the groove. 相似文献
Au nanorod (Au NR) is one of the most studied colloidal nanostructures for its tunable longitudinal surface plasmon resonance (SPRL) property in the near infrared region. And surface coating Au NRs into core-shell nanostructures is particularly important for further investigation and possible applications. In this paper, Au NRs colloids were synthesized using an improved seed method. Then as-prepared Au NRs were coated with SiO2 to form a core-shell nanostructure (Au@SiO2) with different shell thickness. And the influence of SiO2 shell on the SPRL of Au NRs was investigated based on the experimental results and FDTD simulations. Under the 808 nm laser irradiating, the stability of Au@SiO2 was studied. Compared with Au NRs, the Au@SiO2 is stable with increasing laser power (up to 8 W), whereas Au NRs undergo a shape deformation from rod to spherical nanoparticle when the laser power is 5 W. The high stability and tunable optical properties of core-shell structured Au@SiO2, along with advantages of SiO2, show that Au@SiO2 composites are promising in designing plasmonic photothermal properties or further applications in nanomedicine. 相似文献
Plasmonics - The plasmonic of BC3 nanostructure was investigated employing time-dependent density functional theory (TDDFT). What is striking is that BC3 nanostructure possesses preferable... 相似文献
Plasmonics - Photothermal therapy assisted by plasmonic nanostructure relies on the absorption of light energy by the metallic nanoparticle. The manifestation of a rational use of... 相似文献
Plasmonics - This work reports on a study regarding the plasmonic properties of the Ag@SiO2@Graphene core-shell nanostructures, in the wavelength range of 0.3–2 μ m. Spherical and... 相似文献
Surface plasmon polaritons (SPPs) have appealing features such as tighter spatial confinement and higher local field intensity. Manipulation of surface plasmon polaritons on metal/dielectric interface is an important aspect in the achievement of integrated plasmonic circuit beyond the diffraction limit. Here, we introduce a design of pin cushion structure and a holographic groove pattern structure for tunable multi-port SPPs excitation and focusing. Free space light is coupled into SPPs through momentum matching conditions. Both nanostructures are capable of tunably controlling of SPPs depending on the incident polarizations, while the holographic method provides more flexibility of wavelength-dependent excitations. Furthermore, a quantitative method is applied to calculate the efficiencies of excitation for both nanostructures under different conditions, including radially polarized incident beams. These results can work as a guidance and be helpful to further choice of the suitable design strategies for variable plasmonic applications such as beam splitter, on-chip spectroscopy, and plasmonic detectors. 相似文献
It was shown experimentally that the action of continuous electric field on nanoporous silicate glasses with interconnecting pores, containing silver nanoparticles, leads to the spatial redistribution of nanoparticles. The concentration of nanoparticles near the negative electrode increases and results in silver nano- and microdendrite structure growth. The main mechanisms of the described effects are the field emission of silver ions from silver nanoparticles near negative electrode, migration of silver ions in the external electric field to the negative electrode, reduction of silver ions by free electrons, and new silver nanoparticle formation. The experiments have shown that at the ends of microdendrites, local field enhancement appears, which results in luminescence enhancement and in SERS.
The effects of highly anisotropic dielectric on surface plasmon polaritons (SPPs) are investigated in several three-layer plasmonic nanostructures. Dispersion relations of SPPs in anisotropic-dielectric-metal (ADM), dielectric-anisotropic-metal (DAM), and metal-anisotropic-metal (MAM) structures are analytically derived. The numerical results in the visible indicate that, in ADM, the propagation length of a conductor-gap-dielectric mode is changed from 5.9 to 91 μm and its cutoff thickness from 83 to 7 nm with varying the optical axis, while in DAM, the influences of anisotropic dielectric are reversed on propagation length and cutoff thickness. In MAM, by tuning the optical axis, the light confinement of symmetry SPPs mode varies about 10 %. Further numerical calculations show that the above results induced by the anisotropy of dielectric can be extended to the telecommunication frequency. The improved mode properties may be used in plasmonic-based nanodevices and tunable single surface plasmon sources. 相似文献
This paper outlines the design of complex nanostructures with apolar behavior which pave the way to a wider range of plasmon resonance tuning and applications requiring higher enhancement. These new nanostructure families are simply defined by symmetry considerations. An irreducible decomposition of optical response tensor demonstrates that nanoparticles which belong to Cn, with n?≥?3, symmetry point group for at least one scale have an optical response insensitive on the light polarization. This is experimentally confirmed by extinction and surface-enhanced Raman-scattering measurements. 相似文献
For the first time, we report remote excitation polarization-dependent surface photochemical reaction by plasmonic waveguide.
Remote excitation polarization-dependent surface-enhanced Raman scattering (SERS) spectra indicate a surface photochemical
reaction that p-aminothiophenol is converted to p,p′-dimercaptoazobenzene (DMAB) induced by the plasmonic waveguide. Surface
plasmon polaritons generated at the end of a silver nanowire can propagate efficiently along the nanowire, and be coupled
by nanoparticles near the nanowire as a nanoantenna. Massive electromagnetic enhancement is generated in the nanogap between
the nanowire and the nanoparticles. The remote excitation polarization-dependent SERS spectra can be obtained experimentally
in the nanogaps; furthermore, the remote excitation polarization-dependent SERS spectra of DMAB reveal the occurrence of this
surface catalytic reaction. Theoretical simulations using finite-difference time-domain methods strongly support our experimental
results. 相似文献
In this study, a numerical investigation was done on the optical properties of silver nanostructures using the boundary element method (BEM) and finite element method (FEM). The BEM simulation was done using a freely available code called MNBEM in MATLAB with minor modifications. The FEM simulation was done by Comsol Multiphysics, a commercial software package. Silver nanostructures in the sphere, rod, and triangle geometries and the presence of different polarization angles were compared between these two methods. According to the obtained results, the absorption cross-sections for both BEM and FEM were consistent with their actual optical properties. For instance, both longitudinal and transverse resonance modes were observed in the case of nanorods, and all three in–plane dipole, in–plane quadrupole, and out–plane quadrupole plasmon resonances were observed successfully obtained for triangular nanostructures. Although both BEM and FEM results were similar to each other (from the number and position of the peaks in the final spectra), this similarity was decreased as the anisotropy was increased in the structure. For example, nearly 40 nm difference was observed between the BEM and FEM results in the triangular nanostructures, even though the trends and shape of the peaks were similar. It was revealed that specific points should be considered in the discretization process (especially the corner fillets) to close the gap in the obtained results from BEM and FEM. According to the obtained results, BEM significantly reduces the computational cost and time by discretizing only the boundary of the domain. A self-written software was developed to predict the optical cross-section of a plasmonic-ensemble consisting of spherical, rod-shaped, and triangular nanostructures, which can be used in different disciplines such as plasmon-enhanced solar cells, plasmon-enhanced photocatalysis, and plasmon-enhanced fluorescence.
We report fabrication of gold nanostructures on glass and indium tin oxide (ITO)-coated glass substrates using high fluence and highly energetic gold ions generated by hot, dense, and strongly non-equilibrium plasma. Nanodots and nanorods are observed in scanning electron microscopy (SEM) of nanostructures grown on glass substrate with single and double shots of gold ions which is in conformity with the transmission electron microscopy image. SEM images for single and double shots of gold ions on ITO-coated glass substrate show only nanodots. The mean diameter of nanodots obtained on both glass and ITO-coated glass is found to increase with increase in the number of gold ions shot from one to two. The gold nanostructures exhibit red shift in surface plasmon resonance with increased interaction which is in agreement with other reported work. 相似文献
A method to manipulate the position and orientation of submicron particles nondestructively would be an incredibly useful tool for basic biological research. Perhaps the most widely used physical force to achieve noninvasive manipulation of small particles has been dielectrophoresis(DEP).1 However, DEP on its own lacks the versatility and precision that are desired when manipulating cells since it is traditionally done with stationary electrodes. Optical tweezers, which utilize a three dimensional electromagnetic field gradient to exert forces on small particles, achieve this desired versatility and precision.2 However, a major drawback of this approach is the high radiation intensity required to achieve the necessary force to trap a particle which can damage biological samples.3 A solution that allows trapping and sorting with lower optical intensities are optoelectronic tweezers (OET) but OET''s have limitations with fine manipulation of small particles; being DEP-based technology also puts constraint on the property of the solution.4,5This video article will describe two methods that decrease the intensity of the radiation needed for optical manipulation of living cells and also describe a method for orientation control. The first method is plasmonic tweezers which use a random gold nanoparticle (AuNP) array as a substrate for the sample as shown in Figure 1. The AuNP array converts the incident photons into localized surface plasmons (LSP) which consist of resonant dipole moments that radiate and generate a patterned radiation field with a large gradient in the cell solution. Initial work on surface plasmon enhanced trapping by Righini et al and our own modeling have shown the fields generated by the plasmonic substrate reduce the initial intensity required by enhancing the gradient field that traps the particle.6,7,8 The plasmonic approach allows for fine orientation control of ellipsoidal particles and cells with low optical intensities because of more efficient optical energy conversion into mechanical energy and a dipole-dependent radiation field. These fields are shown in figure 2 and the low trapping intensities are detailed in figures 4 and 5. The main problems with plasmonic tweezers are that the LSP''s generate a considerable amount of heat and the trapping is only two dimensional. This heat generates convective flows and thermophoresis which can be powerful enough to expel submicron particles from the trap.9,10 The second approach that we will describe is utilizing periodic dielectric nanostructures to scatter incident light very efficiently into diffraction modes, as shown in figure 6.11 Ideally, one would make this structure out of a dielectric material to avoid the same heating problems experienced with the plasmonic tweezers but in our approach an aluminum-coated diffraction grating is used as a one-dimensional periodic dielectric nanostructure. Although it is not a semiconductor, it did not experience significant heating and effectively trapped small particles with low trapping intensities, as shown in figure 7. Alignment of particles with the grating substrate conceptually validates the proposition that a 2-D photonic crystal could allow precise rotation of non-spherical micron sized particles.10 The efficiencies of these optical traps are increased due to the enhanced fields produced by the nanostructures described in this paper.Download video file.(57M, mov)相似文献
Plasmonics - This study shows development of highly sensitive and stable localized surface plasmon resonance (LSPR)-active U-bent glass and polymeric optical fiber (GOF and POF) sensor probes by a... 相似文献
An on-chip integrated wavelength filter and router device is realized using two-dimensional metal/dielectric nanostructures. The device can filter wavelengths of light from an incident broadband beam, and further route the filtered signals to different ports on the same chip. The footprint of the entire device is only 3.4 μm × 7.3 μm. Both the number of wavelength channels and the central wavelength of each channel can be tuned by adjusting the structure parameters, or by using a pumped laser. This work demonstrates an ultracompact and robust integrated multifunctional device, and provides a novel and flexible method for the integration of nanophotonic devices. 相似文献