首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Insects, like other animals, require sodium chloride (NaCl) as part of their normal diet and detect it with contact chemoreceptors on the body surface. By adjusting the responsiveness of the chemosensory neurons within these receptors insects can modify the intake of salt and other nutrients, and it has been hypothesized that the responsiveness of chemosensory neurons is regulated by nitric oxide (NO). To identify potential sources of NO in the periphery, the authors applied the NO-sensitive fluorescent probe 4,5-diaminofluorescein and the universal NO synthase antibody, and found that in locusts NO is synthesized within one particular class of cells of the epidermis, the glandular cells, from where it may diffuse to neighboring chemosensory neurons. The effects of NO on chemosensory neurons were investigated by recording from contact chemoreceptors on the leg while perfusing it with drugs that interfere with NO signaling. Results showed that both endogenous and exogenous NO decreased the frequency of action potentials in chemosensory neurons in response to stimulation with NaCl by acting via a cyclic guanosine monophosphate-independent pathway. Variation of the NaCl concentration in the perfusion solution demonstrated that the synthesis of NO in glandular cells depends on the NaCl concentration in the hemolymph. By contrast NO increased the frequency of action potentials in chemosensory neurons in response to sucrose stimulation. The authors suggest that NO released from glandular cells modulates the responsiveness of chemosensory neurons to regulate NaCl intake, and hypothesize that NO may play a key role in the signaling of salt and sugars.  相似文献   

2.
ABSTRACT

Parabens are generally used as preservatives in foods, pharmaceuticals, and various other commercial products. Among them, ethylparaben has weaker estrogenic characteristics than endogenous estrogen. However, growing evidence indicates that ethylparaben has an adverse effect on various human tissues. Here, we investigated whether ethylparaben induces cell death by affecting cell viability, cell proliferation, cell cycle, and apoptosis using the human placenta cell line BeWo. Ethylparaben significantly decreased cell viability in a dose-dependent manner. It caused cell cycle arrest at sub-G1 by reducing the expression of cyclin D1, whereas it decreased the cell proportion at the G0/G1 and S phases. Furthermore, we verified that ethylparaben induces apoptotic cell death by enhancing the activity of Caspase-3. Taken together, our results suggest that ethylparaben exerts cytotoxic effects in human placental BeWo cells via cell cycle arrest and apoptotic pathways.  相似文献   

3.
Daunorubicin (as well as other anthracyclines) is known to be toxic to heart cells and other cells in organism thus limiting its applicability in human cancer therapy. To investigate possible mechanisms of daunorubicin cytotoxicity, we used stem cell lines derived from adult rabbit skeletal muscle. Recently, we have shown that daunorubicin induces apoptotic cell death in our cell model system and distinctly influences the activity of MAP kinases. Here, we demonstrate that two widely accepted antagonistic signalling pathways namely proapoptotic JNK and prosurvival PI3K/AKT participate in apoptosis. Using the Western blot method, we observed the activation of JNK and phosphorylation of its direct target c-Jun along with inactivation of AKT and its direct target GSK in the course of programmed cell death. By means of small-molecule kinase inhibitors and transfection of cells with the genes of the components of these pathways, c-Jun and AKT, we confirm that JNK signalling pathway is proapoptotic, whereas AKT is antiapoptotic in daunorubicin-induced muscle cells. These findings could contribute to new approaches which will result in less toxicity and fewer side effects that are currently associated with the use of daunorubicin in cancer therapies.  相似文献   

4.
《Free radical research》2013,47(10):1296-1307
Abstract

In the present study we investigated the beneficial role of glycine in iron (FeSO4) induced oxidative damage in murine hepatocytes. Exposure of hepatocytes to 20 μM FeSO4 for 3 hours enhanced reactive oxygen species (ROS) generation and induced alteration in biochemical parameters related to hepatic oxidative stress. Investigating cell signalling pathway, we observed that iron (FeSO4) intoxication caused NF-κB activation as well as the phosphorylation of p38 and ERK MAPKs. Iron (FeSO4) administration also disrupted Bcl-2/Bad protein balance, reduced mitochondrial membrane potential, released cytochrome c and induced the activation of caspases and cleavage of PARP protein. Flow cytometric analysis also confirmed that iron (FeSO4) induced hepatocytes death is apoptotic in nature. Glycine (10 mM) supplementation, on the other hand, reduced all the iron (FeSO4) induced apoptotic indices. Combining, results suggest that glycine could be a beneficial agent against iron mediated toxicity in hepatocytes.  相似文献   

5.
Abstract In the present study we investigated the beneficial role of glycine in iron (FeSO(4)) induced oxidative damage in murine hepatocytes. Exposure of hepatocytes to 20 μM FeSO(4) for 3 hours enhanced reactive oxygen species (ROS) generation and induced alteration in biochemical parameters related to hepatic oxidative stress. Investigating cell signalling pathway, we observed that iron (FeSO(4)) intoxication caused NF-κB activation as well as the phosphorylation of p38 and ERK MAPKs. Iron (FeSO(4)) administration also disrupted Bcl-2/Bad protein balance, reduced mitochondrial membrane potential, released cytochrome c and induced the activation of caspases and cleavage of PARP protein. Flow cytometric analysis also confirmed that iron (FeSO(4)) induced hepatocytes death is apoptotic in nature. Glycine (10 mM) supplementation, on the other hand, reduced all the iron (FeSO(4)) induced apoptotic indices. Combining, results suggest that glycine could be a beneficial agent against iron mediated toxicity in hepatocytes.  相似文献   

6.
Growth Arrest Specific 1 (GAS1) is a protein expressed when cells are arrested and during development. When ectopically expressed, GAS1 induces cell arrest and apoptosis of different cell lines, and we have previously demonstrated that the apoptotic process set off by GAS1 is caused by its capacity inhibiting the GDNF-mediated intracellular survival signaling. In the present work, we have dissected the molecular pathway leading to cell death. We employed the SH-SY5Y human neuroblastoma cell line that expresses GAS1 when deprived of serum. We observed, as we have previously described, that the presence of GAS1 reduces RET phosphorylation and inhibits the activation of AKT. We have now determined that the presence of GAS1 also triggers the dephosphorylation of BAD, which, in turn, provokes the release of Cytochrome-c from the mitochondria to the cytosol activating caspase-9, prompting the activity of caspase-3 and resulting in apoptosis of the cells. The apoptotic process is intrinsic, because there is no activation of caspase-8, thus this is consistent with apoptosis induced by the lack of trophic support. Interestingly, in cells where GAS1 has been silenced there is a significant delay in the onset of apoptosis.  相似文献   

7.
Twotypesofcellulardemisecanoccursimultaneouslyintissuesorculturedcellbynecrosisandapoptosis.Lossofmembraneintegrity,celledemaandbreak,andthecellcomponentsre-leasedoutarethecharacteristicsofnecrosis.Whilethecellapoptosisisaprogramcelldeathcodedbygeneandactivatedseriousendogenousenzymes[1].Recentstudieshavedemonstratedthatmyocardialischemia-reperfusioninjuryresultedinapoptoticcelldeathinadditiontotissuenecrosis[2—4].Oxygenstressisoneofthereasonsthatcausedcellapoptosisandtheoxygenradicalsinthest…  相似文献   

8.
We previously showed that NO induces apoptosis in thymocytes via a p53-dependent pathway. In the present study, we investigated the role of caspases in this process. The pan-caspase inhibitor, ZVAD-fmk, and the caspase-1 inhibitor, Ac-YVAD-cho, both inhibited NO-induced thymocyte apoptosis in a dose-dependent manner, whereas the caspase-3 inhibitor, Ac-DEVD-cho, had little effect even at concentrations up to 500 microM. ZVAD-fmk and Ac-YVAD-cho were able to inhibit apoptosis when added up to 12 h, but not 16 h, after treatment with the NO donor S-nitroso-N-acetyl penicillamine (SNAP). Caspase-1 activity was up-regulated at 4 h and 8 h and returned to baseline by 24 h; caspase-3 activity was not detected. Cytosolic fractions from SNAP-treated thymocytes cleaved the inhibitor of caspase-activated deoxyribonuclease. Such cleavage was completely blocked by Ac-YVAD-cho, but not by Ac-DEVD-cho or DEVD-fmk. Poly(ADP-ribose) polymerase (PARP) was also cleaved in thymocytes 8 h and 12 h after SNAP treatment; addition of Ac-YVAD-cho to the cultures blocked PARP cleavage. Furthermore, SNAP induced apoptosis in 44% of thymocytes from wild-type mice; thymocytes from caspase-1 knockout mice were more resistant to NO-induced apoptosis. These data suggest that NO induces apoptosis in thymocytes via a caspase-1-dependent but not caspase-3-dependent pathway. Caspase-1 alone can cleave inhibitor of caspase-activated deoxyribonuclease and lead to DNA fragmentation, thus providing a novel pathway for NO-induced thymocyte apoptosis.  相似文献   

9.
Neonatal rat cardiomyocytes were subjected to 24 h of hypoxia 95%N2/5%CO2 and 24 h of hypoxia plus 4 h of reoxygenation 95%O2/5%CO2. 24 h of hypoxia increased the levels of NO, TBARS and LDH. 24 h of hypoxia plus 4 h of reoxygenation decreased the levels of NO, but further increased TBARS and LDH. The hypoxia up-regulated the expression of bcl-2, p53 and p21/waf1/cip1 but the reoxygenation down-regulated the expression of bcl-2, and further up-regulated p53 and p21/waf1/cip1. The hypoxia increased cell apoptosis and reoxygenation further increased both apoptotic and necrotic cell death. NO, TBARS, DNA fragmentation and cell apoptosis were enhanced by SNP and inhibited by L-NAME respectively. In addition, SOD/catalase down-regulated the expression of p53, p21/wafl/cipl and TBARS but up-regulated bcl-2 and increased indirectly the level of NO, and inhibited DNA fragmentation. The results suggest that hypoxia-induced cell death is associated with the activation of NO, bcl-2 and p53 pathway, while hypoxia-reoxygenation induced cell death via the generation of reactive oxygen species and activation of p53 pathway. The present study clarified that NO may be an initiative signal to apoptotic cell death and the activation of bcl-2, p53 and p21/waf1/cip1 pathway in hypoxic and hypoxia-reoxygenated cardiomyocytes.  相似文献   

10.
Despite the clinical importance of cardiomyocyte death following ischemia and reperfusion, little is known about the nature of the process. In primary rat neonatal cardiomyocyte cultures, cell death was induced by ischemia (deprivation of oxygen, serum and glucose) and reperfusion. We report here that ischemia induced primarily necrosis, whereas subsequent reperfusion induced apoptosis. Apoptosis of rat neonatal cardiomyocytes could not be prevented by protein synthesis inhibitors, suggesting that molecular components of the apoptotic pathway pre-exist in these cells. IGFs and calpain inhibitors had no effect on necrotic death during ischemia, but they significantly reduced apoptotic death during reperfusion. These results support the concept that inhibition of post-ischemic apoptotic death in the myocardium may provide a valuable new therapeutic strategy for the treatment of acute myocardial ischemia.  相似文献   

11.
Myocardial ischemia reperfusion (I/R) can induce altered expression of microRNAs (miRNAs). The miRNAs—miR-15a, miR-15b and miR-16 have been shown to play a role in apoptosis, although not in cardiac-related models. We investigated the roles of miR-15b in hypoxia/reoxygenation (H/R)-induced apoptosis of cardiomyocytes. Quantitative real time polymerase chain reaction results showed that the expression of miR-15a and miR-15b were up-regulated in Sprague–Dawley rat hearts subjected to I/R. Expression levels of miR-15b increased more than four fold above basal levels. Similar results were obtained for cardiomyocytes exposed to H/R. Recombinant adenoviral vectors were generated to explore the functional role of miR-15b in cultured cardiomyocytes exposed to H/R. Overexpression of miR-15b enhanced cell apoptosis and the loss of mitochondrial membrane potential, as determined by flow cytometric analysis. Conversely, down-regulated expression was cytoprotective. The effects of miR-15b can by mimicked by Bcl-2 short-interfering RNAs. The inhibition of miR-15b increased expression levels of the Bcl-2 protein without affecting Bcl-2 mRNA levels, suppressed the release of mitochondrial cytochrome c to the cytosol and decreased the activities of caspase-3 and 9. It is possible that miR-15b is the upstream regulator of a mitochondrial signaling pathway for H/R induced apoptosis.  相似文献   

12.
Tissue inhibitors of metalloproteinases (TIMPs) are important regulators of matrix metalloproteinase (MMP) and adamalysin metalloproteinase activity. We previously reported that overexpression of TIMP-3 inhibits MMPs and induces apoptotic cell death in a variety of cell types and demonstrated that apoptosis is mediated through the N terminus of TIMP-3, which harbors the MMP inhibitory domain. However, little is known about the mechanisms underlying TIMP-3-induced apoptosis. Here we demonstrate that overexpression of TIMP-3 induced activation of initiator caspase-8 and -9 and promoted caspase-mediated cleavage of the death substrates poly(ADP-ribose) polymerase and focal adhesion kinase. Furthermore, TIMP-3 induced mitochondrial activation as demonstrated by loss of mitochondrial membrane potential and release of cytochrome c. Intervention studies demonstrated that overexpression of Bcl-2, the anti-apoptotic mitochondrial membrane protein, or CrmA, a viral serpin inhibitor of caspase-8, completely inhibited TIMP-3-induced apoptosis. Furthermore, a dominant-negative Fas-associated death domain mutant inhibited TIMP-3-induced death substrate cleavage and apoptotic death. Taken together, these results indicate that TIMP-3 overexpression induces a type II apoptotic pathway initiated via a Fas-associated death domain-dependent mechanism.  相似文献   

13.
14.
Under physiological conditions, manganese(II) exhibits catalase-like activity. However, at elevated concentrations, it induces apoptosis via a non-mitochondria-mediated mechanism (Oubrahim, H., Stadtman, E. R., and Chock, P. B. (2001) Proc. Natl. Acad. Sci. U. S. A. 98, 9505-9510). In this study, we show that the Mn(II)-induced apoptosis, as monitored by caspase-3-like activity, in NIH3T3 cells was inhibited by calpain inhibitors I and II or the p38 MAP kinase inhibitor, SB202190. The control experiments showed that each of these inhibitors in the concentration ranges used exerted no effect on activated caspase-3-like activity. Furthermore, caspase-12 was cleaved in Mn(II)-treated cells, suggesting that the Mn(II)-induced apoptosis is mediated by caspase-12. This notion is confirmed by the observations that pretreatment of NIH3T3 cells with either caspase-12 antisense RNA or dsRNA corresponding to the full-length caspase-12 led to a dramatic decrease in caspase-3-like activity induced by Mn(II). The precise mechanism by which Mn(II) induced the apoptosis is not clear. Nevertheless, Mn(II), in part, exerts its effect via its ability to replace Ca(II) in the activation of m-calpain, which in turn activates caspase-12 and degrades Bcl-xL. In addition, the dsRNA(i) method serves as an effective technique for knocking out caspase-12 in NIH3T3 cells without causing apoptosis.  相似文献   

15.
Summary Nitric oxide (NO) is a molecule involved in several signal transduction pathways leading either to proliferation or to cell death. Induction of ornithine decarboxylase (ODC), the key enzyme of polyamine biosynthesis, represents an early event preceding DNA synthesis. In some cell types increased ODC activity seems to be involved in cytotoxic response. We investigated the role of NO and ODC induction on the events linked to cell proliferation or to cell death in cultured chick embryo cardiomyocytes. Exposure of cardiomyocytes to tumor necrosis factor (TNF) and lipopolysaccharide (LPS) caused NO synthase (NOS) and ODC induction as well as increased incorporation of [3H]-thymidine. This last effect was blocked by a NOS inhibitor and was strongly reduced by difluoromethylornithine (DFMO), an irreversible inhibitor of ODC. Sodium nitroprusside (SNP), an exogenous NO donor, inhibited the increases of NOS and ODC activities and abolished the mitogenic effect of TNF and LPS. Moreover, SNP alone caused cell death in a dose dependent manner. The cytotoxicity of SNP was not affected by DFMO while it was prevented by antioxidants. The results suggest that different pathways would mediate the response of cardiomyocytes to NO: they can lead either to ODC induction and DNA synthesis when NO is formed through NOS induction or to growth inhibition and cell death, when NO is supplied as NO donor. Increased polyamine biosynthesis would mediate the proliferative response of NO, while the cytotoxicity of exogenous NO seems to involve some oxidative reactions and to depend on the balance between NO availability and cellular redox mechanisms.  相似文献   

16.
Nitric oxide induces BNIP3 expression that causes cell death in macrophages   总被引:4,自引:0,他引:4  
Nitric oxide (NO) is involved in many physiological processes and also causes pathological effects by inducing apoptosis. It can enhance or suppress apoptosis depending on its concentration and the cell type involved. In this report, we used cDNA microarray analysis to show that SNAP, an NO donor, strongly induces Bcl-2/adenovirus E1B 19kDa-interacting protein 3 (BNIP3) in macrophages. BNIP3 is a mitochondrial pro-apoptotic protein that contains a Bcl-2 homology 3 domain and a COOH-terminal transmembrane (TM) domain. Macrophages activated by LPS/IFN-gamma produce nitric oxide synthase 2 (NOS2) and release endogenous NO. Expression of BNIP3 was also induced in macrophages by LPS/IFN-gamma, and the induction was blocked by a NOS2 inhibitor, S-methyl-isothiourea. Peritoneal macrophages from NOS2-null mice failed to produce BNIP3 in response to LPS/IFN-gamma. We conclude that BNIP3 expression in macrophages is controlled by the intracellular level of nitric oxide. Overexpression of BNIP3 but not of BNIP3 deltaTM, a BNIP3 mutant without the TM domain and C-terminal tail, led to apoptosis of the cells. Promoter analysis showed that the region between -281 and -1 of the 5'-upstream enhancer region of murine BNIP3 was sufficient for NO-dependent expression of BNIP3.  相似文献   

17.
A previous study showed that the EphA7 receptor regulates apoptotic cell death during early brain development. In this study, we provide evidence that the EphA7 receptor interacts with death receptors such as tumor necrosis factor receptor 1 (TNFR1) to decrease cell viability. We showed that ephrinA5 stimulates EphA7 to activate the TNFR1-mediated apoptotic signaling pathway. In addition, a pull-down assay using biotinylated ephrinA5-Fc revealed that ephrinA5-EphA7 complexes recruit TNFR1 to form a multi-protein complex. Immunocytochemical staining analysis showed that EphA7 was co-localized with TNFR1 on the cell surface when cells were incubated with ephrinA5 at low temperatures. Finally, both the internalization motif and death domain of TNFR1 was important for interacting with an intracytoplasmic region of EphA7; this interaction was essential for inducing the apoptotic signaling cascade. This result suggests that a distinct multi-protein complex comprising ephrinA5, EphA7, and TNFR1 may constitute a platform for inducing caspase-dependent apoptotic cell death.  相似文献   

18.
Guy C. Brown 《Nitric oxide》2010,22(3):153-165
NO and its derivatives can have multiple effects, which impact on neuronal death in different ways. High levels of NO induces energy depletion-induced necrosis, due to: (i) rapid inhibition of mitochondrial respiration, (ii) slow inhibition of glycolysis, (iii) induction of mitochondrial permeability transition, and/or (iv) activation of poly-ADP-ribose polymerase. Alternatively, if energy levels are maintained, NO can induce apoptosis, via oxidant activation of: p53, p38 MAPK pathway or endoplasmic reticulum stress. Low levels of NO can block cell death via cGMP-mediated: vasodilation, Akt activation or block of mitochondrial permeability transition. High NO may protect by killing pathogens, activating NF-κB or S-nitro(sy)lation of caspases and the NMDA receptor. GAPDH, Drp1, mitochondrial complex I, matrix metalloprotease-9, Parkin, XIAP and protein-disulphide isomerase can also be S-nitro(sy)lated, but the contribution of these reactions to neurodegeneration remains unclear. Neurons are sensitive to NO-induced excitotoxicity because NO rapidly induces both depolarization and glutamate release, which together activate the NMDA receptor. nNOS activation (as a result of NMDA receptor activation) may contribute to excitotoxicity, probably via peroxynitrite activation of poly-ADP-ribose polymerase and/or mitochondrial permeability transition. iNOS is induced in glia by inflammation, and may protect; however, if there is also hypoxia or the NADPH oxidase is active, it can induce neuronal death. Microglial phagocytosis may contribute actively to neuronal loss.  相似文献   

19.
Zhang YJ  Xu YF  Liu YH  Yin J  Wang JZ 《FEBS letters》2005,579(27):6230-6236
Nitric oxide is associated with neurofibrillary tangle, which is composed mainly of hyperphosphorylated tau in the brain of Alzheimer's disease (AD). However, the role of nitric oxide in tau hyperphosphorylation is unclear. Here we show that nitric oxide produced by sodium nitroprusside (SNP), a recognized donor of nitric oxide, induces tau hyperphosphorylation at Ser396/404 and Ser262 in HEK293/tau441 cells with a simultaneous activation of glycogen synthase kinase-3beta (GSK-3beta). Pretreatment of the cells with 10 mM lithium chloride (LiCl), an inhibitor of GSK-3, 1 h before SNP administration inhibits GSK-3beta activation and prevents tau from hyperphosphorylation. This is the first direct evidence demonstrating that nitric oxide induces AD-like tau hyperphosphorylation in vitro, and GSK-3beta activation is partially responsible for the nitric oxide-induced tau hyperphosphorylation. It is suggested that nitric oxide may be an upstream element of tau abnormal hyperphosphorylation in AD.  相似文献   

20.
Jow GM  Wu YC  Guh JH  Teng CM 《Life sciences》2004,75(5):549-557
Drug-induced cell death can occur as a result of DNA damage, which in turn may lead to the reduction of bcl-2 expression and activation of caspase-3 expression. In the present study, we investigated the effect of armepavines and atherosperminine on the cell survival rate and expression of bcl-2 and caspase-3 in CCRF-CEM cells. Our data have revealed that armepavine oxalate reduced the survival rate of CCRF-CEM cells in a dose- and time-dependent manner by MTT assay. However, no significant effects of armepavine MeI and atherosperminine N-oxide on the survival rate of the CCRF-CEM cell were observed. Armepavine oxalate-induced cell death was considered to be apoptotic on the basis of observed formation of the DNA ladder and the typical apoptotic morphological change by Hoechst 33258 staining. The expression of bcl-2 protein in CCRF-CEM cells treated with 30 microM armepavine oxalate was significantly decreased in western blotting analysis. In contrast, the expression of active caspase-3 in the cells was increased by armepavine oxalate in a dose-dependent manner. These findings indicate the involvement of bcl-2 and caspase-3 in the apoptotic process of CCRF-CEM cells induced by armepavine oxalate. The increased expression of active caspase-3 as well as decreased expression of bcl-2 support the assumption the armepavine oxalate-treated cells may be capable to complete the entire apoptotic process ending in cell fragmentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号