首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of solar irradiance and carbon dioxide molar fraction of injected CO(2)-air mixtures on the behavior of outdoor continuous cultures of the microalga Phaeodactylum tricornutum in tubular airlift photobioreactors was analyzed. Instantaneous solar irradiance, pH, dissolved oxygen, temperature, biomass concentration, and the mass flow rates of both the inlet and outlet oxygen and carbon with both the liquid and gas phases were measured. In addition, elemental analysis of the biomass and the cell-free culture medium was performed. The oxygen production rate and carbon dioxide consumption rate increased hyperbolically with the incident solar irradiance on the reactor surface. Carbon losses showed a negative correlation with the daily variation of the carbon dioxide consumption rate. The maximum CO(2) uptake efficiency was 63% of the CO(2) supplied when the CO(2) concentration in the gas supplied was 60% v/v. Carbon losses were >100% during the night, due to CO(2) production by respiration, and hyperbolically decreased to values of 10% to 20% in the midday hours. An increase in the carbon fixed in the biomass with the solar cycle was observed. A slight daily decrease of carbon content of the cell-free culture medium indicated the existence of carbon accumulation in the culture. A decrease in CO(2) molar fraction in the injected gas had a double benefit: first, the biomass productivity of the system was enhanced from 2.05 to 2.47 g L(-1) day(-1) by reduction of CO(2) inhibition and/or pH gradients; and second, the carbon losses during the daylight period were reduced by 60%. The fluid dynamics in the reactor also influenced the carbon losses: the higher the liquid flow rate the higher the carbon losses. By using a previous mass transfer model the experimental results were simulated and the usefulness of this method in the evaluation and scale-up of tubular photobioreactors was established.  相似文献   

2.
Journal of Applied Phycology - In recent years diatoms have emerged as a major algal source for the production of bioactive compounds. Marine diatoms grow quickly and can store high amount of...  相似文献   

3.
Continuous production of diatom Entomonies sp. was performed in mechanically stirred tank and flat-panel airlift photobioreactors (FPAP). The maximum specific growth rate of diatom from the batch experiment was 0.98 d?1. A series of dilution rate and macronutrient concentration adjustments were performed in a stirred tank photobioreactor and found that the dilution rate ranged from 0.7 to 0.8 d?1 and modified F/2 growth media containing nitrate at 3.09?mg N/L, phosphate at 2.24?mg P/L, and silicate at 11.91?mg Si/L yielded the maximum cell number density. Finally, the continuous cultivation of Entomonies sp. was conducted in FPAP using the optimal conditions determined earlier, resulting in the maximum cell number density of 19.69?×?104 cells/mL, which was approximately 47 and 73% increase from the result using the stirred tank photobioreactor fed with modified and standard F/2 growth media, respectively.  相似文献   

4.
Discontinuous airlift mixing was realized by injecting pressured air at time intervals with a frequency between 0.033 and 0.25 Hz (at 80 kPa; i.e., every 4–30 s; valve opening time 800 ms) into outdoor flat panel photobioreactors ( $ 200\, \times \,100\, \times \,2.1\,{\text{cm}} $ ). This caused a flow velocity between 2 and 20 cm s?1 of the culture medium within the photobioreactor and the mixing time was between 38 and 103.5 s, requiring 0.175–1.340 Lgas volume L photobioreactor volume ?1  min?1 pressured air. In order to detect the effect on growth of Scenedesmus obliquus during outdoor experiments and to be able to compare obtained results, a batch run with an airlift frequency of 0.25 Hz was simultaneously used as control. Growth at different airlift frequencies was measured by the increase of cell dry weight (CDW) during 3–5 days and biomass yield on light energy was calculated. With increasing airlift frequencies, growth increased from 52 to 91 % compared to the control. When CDW was at around 1.0–1.5 g L?1, airlift frequency had no effect on growth, indicating that mass transfer gradients of nutrients and gas were not the limiting factors of growth. Above 1.5 g CDW L?1, growth increased with increasing airlift frequency and light limitation for a single cell occurred. This effect was observed during low and high irradiance and it is concluded that a higher mean flow causes a better light distribution, resulting in an enhanced growth. Biomass productivity and demand of pressured air are correlated logarithmically, which enables to save mixing energy during cultivation.  相似文献   

5.
Microalgae concentrates, prepared by centrifuging axenic (bacteria-free) cultures of Chaetoceros calcitrans (Paulsen) Takano, were processed and stored under different experimental conditions. The content of ascorbic acid was examined in the concentrates, to assess potential changes in their nutritional properties. In algae pastes stored at 4 °C, it reduced by 29% after 4 weeks storage. As most of the ascorbic acid was retained intracellularly (92%) after resuspension, most of the cells had remained intact. In frozen and dried paste preparations, the losses of ascorbic acid ranged from minor (11% after liquid nitrogen storage for 4 weeks) to major (≥94% after drying at 100 °C for 2 h or at 60 °C overnight). However, most of the remaining ascorbic acid (>85%) in these preparations was rapidly leached from cells upon resuspension. Therefore, pastes stored at 4 °C may have the best potential as an ‘off-the-shelf’ microalgal food product for mariculture. Pastes should now be assessed in animal feeding trials, before being recommended for widespread use in the industry.  相似文献   

6.
Richmond  Amos 《Hydrobiologia》2004,512(1-3):33-37
Hydrobiologia - Efficient management of mass algal cultures requires appreciation of the most important factors governing the light regime of the average cell, i.e. the interrelationships between...  相似文献   

7.
Although production of microalgae in open ponds is conventionally practiced due to its economy, exposure of the algae to uncontrollable elements impedes achievement of quality and it is desirable to develop closed reactor cultivation methods for the production of high value products. Nevertheless, there are several constraints which affect growth of in closed reactors, some of which this study aims to address for the production of Spirulina. Periodic introduction of fresh medium resulted in increased trichome numbers and improved algal growth compared to growth in medium that was older than 4 weeks in 20 L polycarbonate bottles. Mixing of the cultures by bubbling air and use of draft tube reduced the damage to the growing cells and permitted increased growth. However, there was better growth in inclined cylindrical reactors mixed with bubbling air. The oxygen production rates were very similar irrespective differences in the maintained cultures densities. The uniformity in oxygen production rate suggested a tendency towards homeostasis in Spirulina cultures. The frequency of biomass harvest on the productivity of Spirulina showed that maintenance of moderate culture density between 0.16 and 0.32 g/L resulted in about 14% more productivity than maintaining the cell density between 0.16 and 0.53 g/L or 48% more than by daily harvest above 0.16 g/L. An artificial neural network based predictive model was developed, and the variables useful for predicting biomass output were identified. The model could predict the growth of Spirulina up to 3 days in advance with a coefficient of determination >0.94.  相似文献   

8.
We describe a methodology to investigate the potential of given microalgae species for biodiesel production by characterizing their productivity in terms of both biomass and lipids. A multi-step approach was used: determination of biological needs for macronutrients (nitrate, phosphate and sulphate), determination of maximum biomass productivity (the “light-limited” regime), scaling-up of biomass production in photobioreactors, including a theoretical framework to predict corresponding productivities, and investigation of how nitrate starvation protocol affects cell biochemical composition and triggers triacylglycerol (TAG) accumulation. The methodology was applied to two freshwater strains, Chlorella vulgaris and Neochloris oleoabundans, and one seawater diatom strain, Cylindrotheca closterium. The highest total lipid content was achieved with N. oleoabundans (25-37% of DW), while the highest TAG content was found in C. vulgaris (11-14% of DW). These two species showed similar TAG productivities.  相似文献   

9.
Relatively large (0.19 m column diameter, 2 m tall, 0.06 m3 working volume) outdoor bubble column and airlift bioreactors (a split-cylinder and a draft-tube airlift device) were compared for monoseptic fed-batch culture of the microalga Phaeodactylum tricornutum. The three photobioreactors produced similar biomass versus time profiles and final biomass concentration (4 kg m−3). The maximum specific growth rate observed within a daily illuminated period in the exponential growth phase, had a value of 0.08 h−1 on the third day of culture. Because of night-time losses of biomass, the specific growth rate averaged over the 4-days of exponential phase was 0.021 h−1 for the three reactors.

The biomass in the vertical column reactors did not experience photoinhibition under conditions (photosynthetically active daily averaged irradiance value of 1150±52 μE m−2 s−1) that are known to cause photoinhibition in conventional thin-tube horizontal loop reactors. Because of good gas-liquid mass transfer, the dissolved oxygen concentration in the reactors at peak photosynthesis remained <120% of air saturation; thus, oxygen inhibition of photosynthesis and photo-oxidation of the biomass did not occur. Carbohydrate accumulation (up to 13% w/w) by the biomass was favored during light-limited linear growth. A declining light intensity caused a more than five-fold increase in cellular carotenoids but the chlorophylls increased only by about 2.5-fold during the course of the culture. In the stationary phase, up to 2% of the biomass was chlorophylls and carotenoids constituted up to 0.5% of the biomass dry weight.  相似文献   


10.
Microalgae have previously been reported to contain β-N-methylamino-l-alanine (BMAA), and the global presence of these primary producers has been associated with the widespread occurrence of BMAA in marine organisms. It has been repeatedly shown that filter-feeding bivalves accumulate phytoplankton species and their toxins. In this study, the concentrations of total soluble BMAA and DAB as a function of growth phase were observed for four non-axenic diatom species (i.e. Phaeodactylum tricornutum, Chaetoceros sp., Chaetoceros calcitrans and Thalassiosira pseudonana). These strains had previously been shown to contain BMAA using a highly selective HILIC-MS/MS method. BMAA cell quota appeared to be species-specific, however, highest BMAA concentrations were always obtained during the stationary growth phase, for all four species, suggesting that BMAA is a secondary metabolite. While DAB was detected in a bacterial culture isolated from a culture of P. tricornutum, the presence or absence of a bacterial population did not influence production of BMAA and DAB by P. tricornutum, i.e. no significant difference was noted for BMAA and DAB production between axenic and non-axenic cultures. The presence of DAB in bacteria had previously been shown, and raised the question as to whether DAB observed in many species of microalgae may arise from the non-axenic culture conditions or from the microalgae themselves.  相似文献   

11.
Microalgae perform oxygenic photosynthesis and are capable of taking up a large amount of CO2, using an inducible CO2 concentrating mechanism (CCM), and fixing CO2 into higher compounds. These characteristics make the microalgae potentially useful for removal and utilization of CO2 emitted from industrial plants and, generally, the usage of photosynthetic microorganisms has increased and significantly improved as a solution for CO2 emissions. In this light and based on previous research using Anabaena cylindrica IAM M1 and Spirulina platensis IAM M 135, enhancement was sought for CO2 fixation and biomass production by Chlorella vulgaris Buitenzorg by increasing the photon flux density concurrent with increases in culture biomass during the cellular growth phase and was compared to cultures of Chlorella grown at optimal constant illumination, with all cultures grown using Bennick basal medium, 29°C, and a flow of 1.0 atm. 10% CO2 enriched air delivered to three in serial photobioreactors of 0.200 dm3 capacity each. The results showed that increasing illumination during culture increased biomass production of Chlorella by ∼60% as well as increased CO2 fixation ability by ∼7.0%. It was also demonstrated that the non-competitive inhibition of [HCO3 ] as a carbon source significantly affected the cultivation in both the increasing and constant photon flux density regimes.  相似文献   

12.
Pilot-scale (0.19 m column diameter, 2 m tall, and 60 L working volume) outdoor vertical bubble column (BC) and airlift photobioreactors (a split-cylinder (SC) and a draft-tube airlift device (DT)) were compared for fed-batch mixotrophic culture of the microalga Phaeodactylum tricornutum UTEX 640. The cultures were started photoautotrophically until the onset of a quasi-steady-state biomass concentration of 3.4 g L(-)(1). After this, the cultures were supplemented with organic nutrient (glycerol 0.1 M) and a reduced nitrogen source, resulting in an immediate growth rate boost, which was repeated with successive additions of nutrients in all three photobioreactors. During this period the biomass productivity was enhanced compared to photoautotrophic cultures in the three reactors, although differences were found among them. These could be attributed to the different hydrodynamic behavior influencing the transport phenomena inside the cultures. A 25.4 g L(-)(1) maximum biomass concentration was attained in the SC. Further additions of nutrients did not promote any more growth. The consumption of glycerol was quantitative in the first additions but slowed at high biomass concentration, suggesting that a minimum amount of light is needed to sustain growth. No significant effect of the supplied organic nutrient on carotenoids and chlorophylls content was observed, although it had a profound effect on the fatty acid composition. Eicosapentaenoic acid (EPA) content was increased up to 3% (DW) in mixotrophic growth, giving a productivity of 56 mg L(-)(1) d(-)(1), a significant increase compared to the photoautotrophic control, which yielded a maximum EPA content of 1.9% (DW) and a productivity of 18 mg L(-)(1) d(-)(1). The maximum biomass and EPA volumetric yields obtained in this work are comparable with those reported for commercial photoautotrophic monoculture of large quantities of P. tricornutum in closed continuous-run tubular loop bioreactors with tubes that are typically less than 0.08 m in diameter. When the comparison is established in terms of productivities based on the land area occupied, the vertical airlift and bubble-column bioreactors are extraordinarily more productive.  相似文献   

13.
14.
Global demand for seaweed resources has increased due to their emergent use as sources of biopharmaceuticals, nutraceuticals and biofuels. These high-valued products make possible the use of micropropagation techniques that may be more costly than conventional mariculture. This study reports the successful tissue culture of Kappaphycus alvarezii (Doty) Doty ex P. C. Silva and Gracilaria changii (B. Xia & Abbott) Abbott, Zhang and Xia. Callus induction of K. alvarezii was successfully developed following an explant sterilisation protocol. Callus formation and regeneration of K. alvarezii was observed in solidified Provasoli’s enriched seawater medium. Different culture conditions such as agar concentration, growth hormones, nutrients, irradiance and enrichment media were investigated to determine the suitable conditions for explant culture of G. changii. Proliferations of adventitious shoots were induced under the most suitable culture conditions. G. changii explants were successfully cultured in airlift photo-bioreactors, with no decrease in the carbohydrate content in the G. changii explants. This micropropagation technique can provide a useful alternative system for seedling production of economically important seaweeds.  相似文献   

15.
The characteristics of the flow of culture medium significantly affects the photosynthetic productivity of bioreactors incorporating microalgae. Therefore, in order to optimize the performance of a conical helical tubular photobioreactor (CHTP) designed to be useful in practical applications, we characterized the flow pattern of the culture medium through the reactor. The effects of medium flow conditions on the photosynthetic productivity of Chlorella sp. were investigated using several different CHTP units with 0.50-m2 installation areas which were designed to vary the direction and rate of flow driven by airlift. In addition, the performance of two- and four-unit systems constructed by combining individual CHTP units was evaluated. We found that when medium flowed from the bottom to the top of the photostage, it exhibited smoother flow of culture medium than when flowing from top to bottom, which led to higher photosynthetic productivity by the former. Consistent with theoretical calculations, varying the lengths of vertical flow passages caused flow rates to vary, and higher flow rates meant smoother circulation of medium and better photosynthetic performance. Flow of medium through a four-unit CHTP system was similar to that in single units, enabling a photosynthetic productivity of 31.0 g-dry biomass per m2-installation area per day to be achieved, which corresponded to a photosynthetic efficiency of 7.50% (photosynthetically active radiation (PAR; 400-700 nm)). This high photosynthetic performance was possible because smoother medium flow attained in single units was also attained in the four-unit system.  相似文献   

16.
Effect of algae movement, as a result of random mixing, between the surface and bottom zones of shallow, moderately deep and deep photobioreactors (incident light intensities per unit volume were 8125, 4062 and 2031 μmol·m−3·s−1, respectively) on the reactor productivity was investigated. The results showed that at low cell concentrations, movement of cells between the surface and bottom zones of shallow and moderately deep reactors had no significant effect on Chlorella pyrenoidosa C-212 growth and productivity. However, as the cell concentration in the reactors increased, cell movement between the two zones resulted in increased productivity of the shallow reactor but decreased productivity of the moderately deep reactor. On the other hand, in the deep reactor, random movement of cells between the two zones resulted in decreased Chlorella growth rate regardless of the cell concentration. This may be attributed to the fact that at high cell concentration or in a deep reactor, if the cells move between the surface and bottom of the reactor, they spend too long a time in the dark part of the reactor where there is no cell growth, and endogenous respiration as well as cell death may lead to a decrease in cell concentration. When Spirulina platensis M-135 cells were cultivated in the deep reactor, even at high cell concentration, movement of cells between the surface and bottom zones of the reactor led to an increase in the reactor productivity. The reasons for the difference in the results obtained with these two strains of algae could be attributed to the difference in their light requirements since it was found that the saturation light intensity and specific decrease in cell concentration when incubated in the dark were lower for Spirulina than for Chlorella cells.  相似文献   

17.
Scale-up of tubular photobioreactors   总被引:1,自引:0,他引:1  
The effect of the light/dark cycle frequency on theproductivity of algal culture at differentday-averaged irradiance conditions was evaluated forPhaeodactylum tricornutum grown in outdoortubular photobioreactors. The photobioreactor scale-upproblem was analyzed by establishing the frequency oflight–dark cycling of cells and ensuring that thecycle frequency remained unchanged on scale-up. Thehydrodynamics and geometry related factors wereidentified for assuring an unchanged light/dark cycle.The light/dark cycle time in two different tubularphotobioreactors was shown to be identical when thelinear culture velocity in the large scale device(U LL) and that in the small scale unit (>U LS)were related as follows:ULL = \frac f 9/7 \alpha8/7 ULS.Here f is the scale factor (i.e., the ratio oflarge-to-small tube diameters), is afunction of the illuminated volumes in the tworeactors, and `dark' refers to any zone of the reactorwhere the light intensity is less than the saturationvalue. The above equation was tested in continuouscultures of P. tricornutum in reactors with 0.03 mand 0.06 m diameter tubes, and over the workableculture velocity range of 0.23 to 0.50 m s-1. Thepredicted maximum realistic photobioreactor tubediameter was about 0.10 m for assuring a cultureperformance identical to that in reactors with smaller tubes.  相似文献   

18.
The production of the microalga Phaeodactylum tricornutum in an outdoor helical reactor was analyzed. First, fluid dynamics, mass-transfer capability, and mixing of the reactor was evaluated at different superficial gas velocities. Performance of the reactor was controlled by power input per culture volume. A maximum liquid velocity of 0.32 m s(-1) and mass transfer coefficient of 0.006 s(-1) were measured at 3200 W m(-3). A model of the influence of superficial gas velocity on the following reactor parameters was proposed: gas hold-up, induced liquid velocity, and mass transfer coefficient, with the accuracy of the model being demonstrated. Second, the influence of superficial gas velocity on the yield of the culture was evaluated in discontinuous and continuous cultures. Mean daily values of culture parameters, including dissolved oxygen, biomass concentration, chlorophyll fluorescence (F(v)/F(m) ratio), growth rate, biomass productivity, and photosynthetic efficiency, were determined. Different growth curves were measured when the superficial gas velocity was modified-the higher the superficial gas velocity, the higher the yield of the system. In continuous mode, biomass productivity increased by 35%, from 1.02 to 1.38 g L(-1) d(-1), when the superficial gas velocity increased from 0.27 to 0.41 m s(-1). Maximal growth rates of 0.068 h(-1), biomass productivities up to 1.4 g L(-1) d(-1), and photosynthetic efficiency of up to 15% were obtained at the higher superficial gas velocity of 0.41 m s(-1). The fluorescence parameter, F(v)/F(m), which reflects the maximal efficiency of PSII photochemistry, showed that the cultures were stressed at average irradiances within the culture higher than 280 microE m(-2) s(-1) at every superficial gas velocity. For nonstressed cultures, the yield of the system was a function of average irradiance inside the culture, with the superficial gas velocity determining this relationship. When superficial gas velocity was increased, higher growth rates, biomass productivities, and photosynthetic efficiencies were obtained for similar average irradiance values. The higher the superficial gas velocity, the higher the liquid velocity, with this increase enhancing the movement of the cells inside the culture. In this way the efficiency of the cells increased and higher biomass concentrations and productivities were reached for the same solar irradiance.  相似文献   

19.
There has been considerable interest on cultivation of green microalgae (Chlorophyta) as a source of lipid that can alternatively be converted to biodiesel. The ideal microalga characteristics are that it must grow well even under high cell density and under varying outdoor environmental conditions and be able to have a high biomass productivity and contain a high oil content (~25–30 %). The main advantage of Chlorophyta is that their fatty acid profile is suitable for biodiesel conversion. Tetraselmis suecica CS-187 and Chlorella sp. were grown semi-continuously in bag photobioreactors (120 L, W?×?L?=?40?×?380 cm) over a period of 11 months in Melbourne, Victoria, Australia. Monthly biomass productivity of T. suecica CS-187 and Chlorella sp. was strongly correlated to available solar irradiance. The total dry weight productivity of T. suecica and Chlorella sp. was 110 and 140 mg L?1 d?1, respectively, with minimum 25 % lipid content for both strains. Both strains were able to tolerate a wide range of shear produced by mixing. Operating cultures at lower cell density resulted in increasing specific growth rates of T. suecica and Chlorella sp. but did not affect their overall biomass productivity. On the other hand, self shading sets the upper limit of operational maximum cell density. Several attempts in cultivating Dunaliella tertiolecta CS-175 under the same climatic conditions were unsuccessful.  相似文献   

20.
Hairy root cultures of Artemisia annua L were cultured in a modified inner-loop airlift bioreactor for achieving maximum artemisinin production. The effects of initial pH, air flow rate, cycle of light irradiation and temperature on growth and artmisinin production in Artemisia annua L hairy root cultures were investigated. Under the optimum conditions, the maximum production of artemisinin reached to 577.5?mg/l after 20 days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号