首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The quest to order and classify protein structures has lead to various classification schemes, focusing mostly on hierarchical relationships between structural domains. At the coarsest classification level, such schemes typically identify hundreds of types of fundamental units called folds. As a result, we picture protein structure space as a collection of isolated fold islands. It is obvious, however, that many protein folds share structural and functional commonalities. Locating those commonalities is important for our understanding of protein structure, function, and evolution. Here, we present an alternative view of the protein fold space, based on an interfold similarity measure that is related to the frequency of fragments shared between folds. In this view, protein structures form a complicated, crossconnected network with very interesting topology. We show that interfold similarity based on sequence/structure fragments correlates well with similarities of functions between protein populations in different folds.  相似文献   

2.
The microbial communities of fish are considered an integral part of maintaining the overall health and fitness of their host. Research has shown that resident microbes reside on various mucosal surfaces, such as the gills, skin, and gastrointestinal tract, and play a key role in various host functions, including digestion, immunity, and disease resistance. A second, more transient group of microbes reside in the digesta, or feces, and are primarily influenced by environmental factors such as the host diet. The vast majority of fish microbiome research currently uses lethal sampling to analyse any one of these mucosal and/or digesta microbial communities. The present paper discusses the various opportunities that non-lethal microbiome sampling offers, as well as some inherent challenges, with the ultimate goal of creating a sound argument for future researchers to transition to non-lethal sampling of wild fish in microbiome research. Doing so will reduce animal welfare and population impacts on fish while creating novel opportunities to link host microbial communities to an individual's behavior and survival across space and time (e.g., life-stages, seasons). Current lethal sampling efforts constrain our ability to understand the mechanistic ecological consequences of variation in microbiome communities in the wild. Transitioning to non-lethal sampling will open new frontiers in ecological and microbial research.  相似文献   

3.
Certain families of plant-feeding insects in the order Hemiptera (infraorder Pentatomomorpha) have established symbiotic relationships with microbes that inhabit specific pouches (caeca) of their midgut epithelium. The placement of these caeca in a well-delineated region at the most posterior end of the midgut bordering the hindgut is conserved in these families; in situ the convoluted midgut is predictably folded so that this caecal region lies adjacent to the anterior-most region of the midgut. Depending on the hemipteran family, caeca vary in their number and configuration at a given anterior–posterior location. At the host-microbe interface, epithelial plasma membranes of midgut epithelial cells interact with nonself antigens of microbial surfaces. In the different hemipteran species examined, a continuum of interactions is observed between microbes and host membranes. Bacteria can exist as free living cells within the midgut lumen without contacting host membranes while other host cells physically interact extensively with microbial surfaces by extending numerous processes that interdigitate with microbes; and, in many instances, processes completely envelope the microbes. The host cells can embrace the foreign microbes, completely enveloping each with a single host membrane or sometimes enveloping each with the two additional host membranes of a phagosome.  相似文献   

4.
5.
1. Although dissolved nutrients and the quality of particulate organic matter (POM) influence microbial processes in aquatic systems, these factors have rarely been considered simultaneously. We manipulated dissolved nutrient concentrations and POM type in three contiguous reaches (reference, nitrogen, nitrogen + phosphorus) of a low nutrient, third‐order stream at Hubbard Brook Experimental Forest (U.S.A). In each reach we placed species of leaves (mean C : N of 68 and C : P of 2284) and wood (mean C : N of 721 and C : P of 60 654) that differed in elemental composition. We measured the respiration and biomass of microbes associated with this POM before and after nutrient addition. 2. Before nutrient addition, microbial respiration rates and biomass were higher for leaves than for wood. Respiration rates of microbes associated with wood showed a larger response to increased dissolved nutrient concentrations than respiration rates of microbes associated with leaves, suggesting that the response of microbes to increased dissolved nutrients was influenced by the quality of their substrate. 3. Overall, dissolved nutrients had strong positive effects on microbial respiration and fungal, but not bacterial, biomass, indicating that microbial respiration and fungi were nutrient limited. The concentration of nitrate in the enriched reaches was within the range of natural variation in forest streams, suggesting that natural variation in nitrate among forest streams influences carbon mineralisation and fungal biomass.  相似文献   

6.
Mark Gerstein 《Proteins》1998,33(4):518-534
Eight microbial genomes are compared in terms of protein structure. Specifically, yeast, H. influenzae, M. genitalium, M. jannaschii, Synechocystis, M. pneumoniae, H. pylori, and E. coli are compared in terms of patterns of fold usage—whether a given fold occurs in a particular organism. Of the ∼340 soluble protein folds currently in the structure databank (PDB), 240 occur in at least one of the eight genomes, and 30 are shared amongst all eight. The shared folds are depleted in all-helical structure and enriched in mixed helix-sheet structure compared to the folds in the PDB. The top-10 most common of the shared 30 are enriched in superfolds, uniting many non-homologous sequence families, and are especially similar in overall architecture—eight having helices packed onto a central sheet. They are also very different from the common folds in the PBD, highlighting databank biases. Folds can be ranked in terms of expression as well as genome duplication. In yeast the top-10 most highly expressed folds are considerably different from the most highly duplicated folds. A tree can be constructed grouping genomes in terms of their shared folds. This has a remarkably similar topology to more conventional classifications, based on very different measures of relatedness. Finally, folds of membrane proteins can be analyzed through transmembrane-helix (TM) prediction. All the genomes appear to have similar usage patterns for these folds, with the occurrence of a particular fold falling off rapidly with increasing numbers of TM-elements, according to a “Zipf-like” law. This implies there are no marked preferences for proteins with particular numbers of TM-helices (e.g. 7-TM) in microbial genomes. Further information pertinent to this analysis is available at http://bioinfo.mbb.yale.edu/genome. Proteins 33:518–534, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

7.
Previously, suggestions have been made that postjunctional folds at the vertebrate motor end plate might, in some way, serve to enhance neuromuscular transmission. This suggestion was examined quantitatively using a model junction with geometry similar to that seen in mammalian 'fast twitch' muscles. It was found that the depolarization produced at the top of an interfold by a quantum of acetylcholine is significantly greater than that produced in the absence of folds because of the series resistance of the interfold myoplasm. As a result, voltage-sensitive sodium channels in the postsynaptic membrane are activated more readily. In the model, activation of as few as four interfolds by eight quanta is sufficient for excitation to spread to the remainder of the muscle. With no folds, 19 quanta are required.  相似文献   

8.
The metabolic capabilities of many environmentally and medically important microbes can be quantitatively explored using systems biology approaches to metabolic networks. Yet, as we learn more about the complex microbe-microbe and microbe-environment interactions in microbial communities, it is important to understand whether and how system-level approaches can be extended to the ecosystem level. Here we summarize recent work that addresses these challenges at multiple scales, starting from two-species natural and synthetic ecology models, up to biosphere-level approaches. Among the many fascinating open challenges in this field is whether the integration of high throughput sequencing methods and mathematical models will help us capture emerging principles of ecosystem-level metabolic organization and evolution.  相似文献   

9.
Microbial communities represent the largest portion of the Earth’s biomass. Metagenomics projects use high-throughput sequencing to survey these communities and shed light on genetic capabilities that enable microbes to inhabit every corner of the biosphere. Metagenome studies are generally based on (i) classifying and ranking functions of identified genes; and (ii) estimating the phyletic distribution of constituent microbial species. To understand microbial communities at the systems level, it is necessary to extend these studies beyond the species’ boundaries and capture higher levels of metabolic complexity. We evaluated 11 metagenome samples and demonstrated that microbes inhabiting the same ecological niche share common preferences for synonymous codons, regardless of their phylogeny. By exploring concepts of translational optimization through codon usage adaptation, we demonstrated that community-wide bias in codon usage can be used as a prediction tool for lifestyle-specific genes across the entire microbial community, effectively considering microbial communities as meta-genomes. These findings set up a ‘functional metagenomics’ platform for the identification of genes relevant for adaptations of entire microbial communities to environments. Our results provide valuable arguments in defining the concept of microbial species through the context of their interactions within the community.  相似文献   

10.
This editorial on safety evaluation and risk assessment for the human superorganism introduces a series of papers arguing for a fundamental shift in how we approach human health risk assessment. In this series emphasis is placed on the risk of infectious disease. Our 21stst century understanding of human biology is that, as holobionts, we possess a majority of microbial cells and genes. In fact, our microbes fundamentally affect our interactions with the external environment, metabolism, physiology, and risk of both pathology and disease. As holobionts, we require our microbial partners for us to be both complete and healthy. Using the 20th century understanding of human biology, we failed to capture the effects of the microbiome in evaluating health risks. But 21st century risk assessments such as those associated with exposure to specific microbial pathogens need to include the human microbiome. Microbiome status will be central in determining the health risks for both individuals and populations.  相似文献   

11.
Numerous microbes inhabit the human intestine, many of which are uncharacterized or uncultivable. They form a complex microbial community that deeply affects human physiology. To identify the genomic features common to all human gut microbiomes as well as those variable among them, we performed a large-scale comparative metagenomic analysis of fecal samples from 13 healthy individuals of various ages, including unweaned infants. We found that, while the gut microbiota from unweaned infants were simple and showed a high inter-individual variation in taxonomic and gene composition, those from adults and weaned children were more complex but showed a high functional uniformity regardless of age or sex. In searching for the genes over-represented in gut microbiomes, we identified 237 gene families commonly enriched in adult-type and 136 families in infant-type microbiomes, with a small overlap. An analysis of their predicted functions revealed various strategies employed by each type of microbiota to adapt to its intestinal environment, suggesting that these gene sets encode the core functions of adult and infant-type gut microbiota. By analysing the orphan genes, 647 new gene families were identified to be exclusively present in human intestinal microbiomes. In addition, we discovered a conjugative transposon family explosively amplified in human gut microbiomes, which strongly suggests that the intestine is a 'hot spot' for horizontal gene transfer between microbes.  相似文献   

12.
Metabolic Fate of Cysteine and Methionine in Rumen Digesta   总被引:2,自引:2,他引:0       下载免费PDF全文
Estimates were obtained of the extent to which cysteine and methionine were incorporated into the protein of the microbes of rumen digesta without prior degradation and resynthesis. By using the amino acids labeled with both (35)S and (14)C, it was observed that a large proportion of the (35)S appeared in the sulfide pool and of the (14)C appeared in volatile fatty acids. By isolating the appropriate amino acid, obtaining the (14)C to (35)S ratio, and comparing this with the ratio in the added amino acid, the degree of direct incorporation was calculated. For cysteine it was estimated that at most 1% and for methionine, at most 11% of the amino acid in the free pool was incorporated unchanged into microbial protein. As a consequence of these findings, it is considered that the method for measuring microbial protein synthesis in rumen digesta based upon incorporation of (35)S from the free sulfide pool is not seriously affected by direct utilization of sulfur amino acids arising from dietary sources.  相似文献   

13.
Metagenomic analysis of colonic mucosa-associated microbes has been complicated by technical challenges that disrupt or alter community structure and function. In the present study, we determined the feasibility of laser capture microdissection (LCM) of intact regional human colonic mucosa-associated microbes followed by phi29 multiple displacement amplification (MDA) and massively parallel sequencing for metagenomic analysis. Samples were obtained from the healthy human subject without bowel preparation and frozen sections immediately prepared. Regional mucosa-associated microbes were successfully dissected using LCM with minimal contamination by host cells, their DNA extracted and subjected to phi29 MDA with a high fidelity, prior to shotgun sequencing using the GS-FLX DNA sequencer. Metagenomic analysis of approximately 67 million base pairs of DNA sequences from two samples revealed that the metabolic functional profiles in mucosa-associated microbes were as diverse as those reported in feces, specifically the representation of functional genes associated with carbohydrate, protein, and nucleic acid utilization. In summary, these studies demonstrate the feasibility of the approach to study the structure and metagenomic profiles of human intestinal mucosa-associated microbial communities at small spatial scales.  相似文献   

14.
Fold designability has been estimated by the number of families contained in that fold. Here, we show that among orthologous proteins, sequence divergence is higher for folds with greater numbers of families. Folds with greater numbers of families also tend to have families that appear more often in the proteome and greater promiscuity (the number of unique “partner” folds that the fold is found with within the same protein). We also find that many disease-related proteins have folds with relatively few families. In particular, a number of these proteins are associated with diseases occurring at high frequency. These results suggest that family counts reflect how certain structures are distributed in nature and is an important characteristic associated with many human diseases.  相似文献   

15.
Microbial bioremediation of oil-contaminated sites is still a challenge due to the slower rate and susceptibility of microbes to a higher concentration of oil. The poor bioavailability, hydrophobicity, and non-polar nature of oil slow down microbial biodegradation. In this study, biodegradation of crude oil is performed in fed-batch mode using an oil-degrader Pseudomonas aeruginosa to address the issue of substrate toxicity. The slower biodegradation was integrated with faster biosorption for effective oil remediation. Highly fibrous and porous sugarcane bagasse was surface modified with hydrophobic octyl groups to improve the surface-oil interactions. The microbe showed 2 folds enhanced oil degradation in the fed-batch study, which was further increased by 1·5 folds in the integrated biosorption coupled biodegradation approach. The biosorption-assisted biodegradation approach supported the microbial growth to 2 folds higher than the fed-batch study without biosorbent. The analysis of biosurfactant production indicated the 3 folds higher concentration in fed-batch modes as compared to batch study. In the integrated strategy, the concentration of contaminant (oil) reduces to quite a tolerable level to microbes, which improved effective metabolism and thus overall biodegradation. This study puts forward a promising strategy for improved degradation of hazardous hydrophobic contaminants in a sustainable, economic and eco-friendly manner.  相似文献   

16.
Measurements of membrane infoldings of vertebrate subsynaptic membranes were taken to evaluate the possible electrophysiological implications. The shapes of standard interfolds of different neuromuscular junctions were established from micrographs available in the literature. Electrical properties were estimated using published fibre membrane and myoplasm electrical values. Models of synaptic current pathways were designed taking into account the small size of the postsynaptic patch activated by a transmitter quantum. This analysis reveals a resistance "in series" between the ACh-sensitive interfold crest and the remainder of the muscle fibre. The calculated cytoplasmic resistance of an interfold is between 0.2 and 3 Mohms which is in the same range as the fibre DC input resistance. The calculated interfold resistance appears to be dependent on the fibre type, the age and the pathology. Functional roles of junctional folds and dendritic spines are discussed.  相似文献   

17.
Trace elements are required by all organisms, which are key components of many enzymes catalyzing important biological reactions. Many trace element-dependent proteins have been characterized; however, little is known about their occurrence in microbial communities in diverse environments, especially the global marine ecosystem. Moreover, the relationships between trace element utilization and different types of environmental stressors are unclear. In this study, we used metagenomic data from the Global Ocean Sampling expedition project to identify the biogeographic distribution of genes encoding trace element-dependent proteins (for copper, molybdenum, cobalt, nickel, and selenium) in a variety of marine and non-marine aquatic samples. More than 56,000 metalloprotein and selenoprotein genes corresponding to nearly 100 families were predicted, becoming the largest dataset of marine metalloprotein and selenoprotein genes reported to date. In addition, samples with enriched or depleted metalloprotein/selenoprotein genes were identified, suggesting an active or inactive usage of these micronutrients in various sites. Further analysis of interactions among the elements showed significant correlations between some of them, especially those between nickel and selenium/copper. Finally, investigation of the relationships between environmental conditions and metalloprotein/selenoprotein families revealed that many environmental factors might contribute to the evolution of different metalloprotein and/or selenoprotein genes in the marine microbial world. Our data provide new insights into the utilization and biological roles of these trace elements in extant marine microbes, and might also be helpful for the understanding of how these organisms have adapted to their local environments.  相似文献   

18.
Abnormality and disease in sponges have been widely reported, yet how sponge-associated microbes respond correspondingly remains inconclusive. Here, individuals of the sponge Carteriospongia foliascens under abnormal status were collected from the Rabigh Bay along the Red Sea coast. Microbial communities in both healthy and abnormal sponge tissues and adjacent seawater were compared to check the influences of these abnormalities on sponge-associated microbes. In healthy tissues, we revealed low microbial diversity with less than 100 operational taxonomic units (OTUs) per sample. Cyanobacteria, affiliated mainly with the sponge-specific species “Candidatus Synechococcus spongiarum,” were the dominant bacteria, followed by Bacteroidetes and Proteobacteria. Intraspecies dynamics of microbial communities in healthy tissues were observed among sponge individuals, and potential anoxygenic phototrophic bacteria were found. In comparison with healthy tissues and the adjacent seawater, abnormal tissues showed dramatic increase in microbial diversity and decrease in the abundance of sponge-specific microbial clusters. The dominated cyanobacterial species Candidatus Synechococcus spongiarum decreased and shifted to unspecific cyanobacterial clades. OTUs that showed high similarity to sequences derived from diseased corals, such as Leptolyngbya sp., were found to be abundant in abnormal tissues. Heterotrophic Planctomycetes were also specifically enriched in abnormal tissues. Overall, we revealed the microbial communities of the cyanobacteria-rich sponge, C. foliascens, and their impressive shifts under abnormality.  相似文献   

19.
Functional annotation is seldom straightforward with complexities arising due to functional divergence in protein families or functional convergence between non‐homologous protein families, leading to mis‐annotations. An enzyme may contain multiple domains and not all domains may be involved in a given function, adding to the complexity in function annotation. To address this, we use binding site information from bound cognate ligands and catalytic residues, since it can help in resolving fold‐function relationships at a finer level and with higher confidence. A comprehensive database of 2,020 fold‐function‐binding site relationships has been systematically generated. A network‐based approach is employed to capture the complexity in these relationships, from which different types of associations are deciphered, that identify versatile protein folds performing diverse functions, same function associated with multiple folds and one‐to‐one relationships. Binding site similarity networks integrated with fold, function, and ligand similarity information are generated to understand the depth of these relationships. Apart from the observed continuity in the functional site space, network properties of these revealed versatile families with topologically different or dissimilar binding sites and structural families that perform very similar functions. As a case study, subtle changes in the active site of a set of evolutionarily related superfamilies are studied using these networks. Tracing of such similarities in evolutionarily related proteins provide clues into the transition and evolution of protein functions. Insights from this study will be helpful in accurate and reliable functional annotations of uncharacterized proteins, poly‐pharmacology, and designing enzymes with new functional capabilities. Proteins 2017; 85:1319–1335. © 2017 Wiley Periodicals, Inc.  相似文献   

20.
Stone surfaces are extreme environments that support microbial life. This microbial growth occurs despite unfavourable conditions associated with stone including limited sources of nutrients and water, high pH and exposure to extreme variations in temperature, humidity and irradiation. These stone-dwelling microbes are often resistant to extreme environments including exposure to desiccation, heavy metals, UV and Gamma irradiation. Here, we report on the effects of climate and stone geochemistry on microbiomes of Roman stone ruins in North Africa. Stone microbiomes were dominated by Actinobacteria, Cyanobacteria and Proteobacteria but were heavily impacted by climate variables that influenced water availability. Stone geochemistry also influenced community diversity, particularly through biologically available P, Mn and Zn. Functions associated with photosynthesis and UV protection were enriched in the metagenomes, indicating the significance of these functions for community survival on stones. Core members of the stone microbial communities were also identified and included Geodermatophilaceae, Rubrobacter, Sphingomonas and others. Our research has helped to expand the understanding of stone microbial community structure and functional capacity within the context of varying climates, geochemical properties and stone conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号