首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A central question of evolutionary ecology is: why do animals live in groups? Answering this question requires that the costs and benefits of group living are measured from the perspective of each individual in the group. This, in turn, requires that the group's genetic structure is elucidated, because genetic relatedness can modulate the individuals’ costs and benefits. The clown anemonefish, Amphiprion percula, lives in groups composed of a breeding pair and zero to four nonbreeders. Both breeders and nonbreeders stand to gain by associating with relatives: breeders might prefer to tolerate nonbreeders that are relatives because there is little chance that relatives will survive to breed elsewhere; nonbreeders might prefer to associate with breeders that are relatives because of the potential to accrue indirect genetic benefits by enhancing anemone and, consequently, breeder fitness. Given the potential benefits of associating with relatives, we use microsatellite loci to investigate whether or not individuals within groups of A. percula are related. We develop seven polymorphic microsatellite loci, with a number of alleles (range 2–24) and an observed level of heterozygosity (mean = 0.5936) sufficient to assess fine‐scale genetic structure. The mean coefficient of relatedness among group members is 0.00 ± 0.10 (n = 9 groups), and there are no surprising patterns in the distribution of pairwise relatedness. We conclude that A. percula live in groups of unrelated individuals. This study lays the foundation for further investigations of behavioural, population and community ecology of anemonefishes which are emerging as model systems for evolutionary ecology in the marine environment.  相似文献   

2.
The greater ani (Crotophaga major), a Neotropical cuckoo, exhibits an unusual breeding system in which several socially monogamous pairs lay eggs in a single nest and contribute care to the communal clutch. Cooperative nesting is costly-females compete for reproduction by ejecting each other's eggs-but the potential direct or indirect fitness benefits that might accrue to group members have not been identified. In this study, I used molecular genotyping to quantify patterns of genetic relatedness and individual reproductive success within social groups in a single colour-banded population. Microsatellite analysis of 122 individuals in 49 groups revealed that group members are not genetic relatives. Group size was strongly correlated with individual reproductive success: solitary pairs were extremely rare and never successful, and nests attended by two pairs were significantly more likely to be depredated than were nests attended by three pairs. Egg loss, a consequence of reproductive competition, was greater in large groups and disproportionately affected females that initiated laying. However, early-laying females compensated for egg losses by laying larger clutches, and female group members switched positions in the laying order across nesting attempts. The greater ani, therefore, appears to be one of the few species in which cooperative breeding among unrelated individuals is favoured by direct, shared benefits that outweigh the substantial costs of reproductive competition.  相似文献   

3.
The cooperatively breeding bell miner, Manorina melanophrys, differs from most other cooperative breeding species in the complexity of its social system, where discrete social organization occurs on at least three levels. Microsatellite markers were used to investigate the degree of genetic structure underlying the social organization of M. melanophrys by comparing colonies, coteries and nest contingents. The genetic data confirmed behavioural observations of M. melanophrys living in male kin-based groups between which females disperse short distances to breed. Estimates of FST revealed restricted gene flow between eight colonies located within 30 km that was significantly associated with geographical distance when the two most distant colonies were included. Within a high density colony significant differences were found between coteries; analysis of the degree of relatedness between coterie members showed that this is due to related individuals associating preferentially with each other. Similarly, the contingent of individuals attending a nest were generally close relatives of the young they were aiding, supporting models invoking kin selection as the selective agency mediating helping.  相似文献   

4.
In mammals with female philopatry, co-resident females inevitably compete with each other for resources or reproductive opportunities, thereby reducing the kin-selected benefits of altruism towards relatives. These counteracting forces of cooperation and competition among kin should be particularly pronounced in plurally breeding species with limited alternative breeding opportunities outside the natal group. However, little is still known about the costs of reproductive competition on females' fitness and the victims' potential counter-strategies. Here we summarize long-term behavioural, demographic and genetic data collected on a plurally breeding primate from Madagascar to illuminate mechanisms and effects of female reproductive competition, focusing on forcible eviction and potential reproductive restraint. The main results of our study indicate that females in groups of redfronted lemurs (Eulemur rufifrons) above a critical size suffer from competition from their close relatives: females in larger groups face an increased probability of not giving birth as well as a higher probability of being evicted, especially during the annual mating and birth seasons. Eviction is not predicted by the number of adult females, the number of close female relatives, female age or inter-annual variation in rainfall but only by total group size. Thus, eviction in this species is clearly linked with reproductive competition, it cannot be forestalled by reproductive restraint or having many relatives in the group, and it occurs in the absence of a clear dominance hierarchy. Our study therefore also underscores the notion that potential inclusive fitness benefits from living with relatives may have been generally over-rated and should not be taken for granted.  相似文献   

5.
Because it increases relatedness between interacting individuals, population viscosity has been proposed to favour the evolution of altruistic helping. However, because it increases local competition between relatives, population viscosity may also act as a brake for the evolution of helping behaviours. In simple models, the kin selected fecundity benefits of helping are exactly cancelled out by the cost of increased competition between relatives when helping occurs after dispersal. This result has lead to the widespread view, especially among people working with social organisms, that special conditions are required for the evolution of altruism. Here, we re-examine this result by constructing a simple population genetic model where we analyse whether the evolution of a sterile worker caste (i.e. an extreme case of altruism) can be selected for by limited dispersal. We show that a sterile worker caste can be selected for even under the simplest life-cycle assumptions. This has relevant consequences for our understanding of the evolution of altruism in social organisms, as many social insects are characterized by limited dispersal and significant genetic population structure.  相似文献   

6.
Individual foraging site fidelity, whereby individuals repeatedly visit the same foraging areas, is widespread in nature, and likely benefits individuals through higher foraging efficiency and potentially, higher breeding success. It may arise as a consequence of habitat or resource specialisation, or alternatively, where resources are abundant or predictable, the partitioning of space might guarantee individuals exclusive foraging opportunities. We tracked seven adult great black‐backed gulls Larus marinus at a North Sea colony from early incubation to the end of the breeding season in 2016, providing a total of 1170 foraging trips over a mean ± SD tracking period of 67 ± 16 days. There was clear spatial segregation between individuals, with almost no overlap of their core areas (50% utilisation distribution) during incubation and chick‐rearing. Core areas were relatively small and there was high repeatability (R ± SE) in foraging parameters, including initial departure direction (0.73 ± 0.11), foraging range (0.41 ± 0.14) and cumulative distance travelled (0.19 ± 0.1) throughout the breeding season. Despite the low spatial overlap, there was little evidence of differential habitat use by individuals. The near‐exclusive individual foraging areas of this species, usually considered to be a generalist, indicate that where there is high resource availability throughout the breeding season and a small local population, individuals appear to adopt a territorial strategy which likely reduces intraspecific competition.  相似文献   

7.
In cooperatively breeding species, restricted dispersal of offspring leads to clustering of closely related individuals, increasing the potential both for indirect genetic benefits and inbreeding costs. In apostlebirds (Struthidea cinerea), philopatry by both sexes results in the formation of large (up to 17 birds), predominantly sedentary breeding groups that remain stable throughout the year. We examined patterns of relatedness and fine-scale genetic structure within a population of apostlebirds using six polymorphic microsatellite loci. We found evidence of fine-scale genetic structure within the study population that is consistent with behavioural observations of short-distance dispersal, natal philopatry by both sexes and restricted movement of breeding groups between seasons. Global F(ST) values among breeding groups were significantly positive, and the average level of pairwise relatedness was significantly higher for individuals within groups than between groups. For individuals from different breeding groups, geographical distance was negatively correlated with pairwise relatedness and positively correlated with pairwise F(ST). However, when each sex was examined separately, this pattern was significant only among males, suggesting that females may disperse over longer distances. We discuss the potential for kin selection to influence the evolution and maintenance of cooperative breeding in apostlebirds. Our results demonstrate that spatial genetic structural analysis offers a useful alternative to field observations in examining dispersal patterns of cooperative breeders.  相似文献   

8.
As breeding between relatives often results in inbreeding depression, inbreeding avoidance is widespread in the animal kingdom. However, inbreeding avoidance may entail fitness costs. For example, dispersal away from relatives may reduce survival. How these conflicting selection pressures are resolved is challenging to investigate, but theoretical models predict that inbreeding should occur frequently in some systems. Despite this, few studies have found evidence of regular incest in mammals, even in social species where relatives are spatio-temporally clustered and opportunities for inbreeding frequently arise. We used genetic parentage assignments together with relatedness data to quantify inbreeding rates in a wild population of banded mongooses, a cooperatively breeding carnivore. We show that females regularly conceive to close relatives, including fathers and brothers. We suggest that the costs of inbreeding avoidance may sometimes outweigh the benefits, even in cooperatively breeding species where strong within-group incest avoidance is considered to be the norm.  相似文献   

9.
Social behaviour of group-living animals is often influenced by the relatedness of individuals, thus understanding the genetic structure of groups is important for the interpretation of costs and benefits of social interactions. In this study, we investigated genetic relatedness in feeding aggregations of free-living house sparrows ( Passer domesticus ) during the nonbreeding season. This species is a frequent model system for studies of social behaviour (e.g. aggression, social foraging), but we lack adequate information on the kin structure of sparrow flocks. During two winters, we ringed and observed sparrows at feeding stations, and used resightings to identify stable flock-members and to calculate association indices between birds. We genotyped the birds using seven highly polymorphic microsatellite loci, and estimated pairwise relatedness coefficients and relatedness categories (close kin vs. unrelated) by maximum likelihood method. We found that most birds were unrelated to each other in the flocks (mean ± SE relatedness coefficient: 0.06 ± 0.002), although most individuals had at least a few close relatives in their home flock (14.3 ± 0.6% of flock-mates). Pairwise association between individuals was not significantly related to their genetic relatedness. Furthermore, there was no difference between within-flock vs. between-flock relatedness, and birds had similar proportions of close kin within and outside their home flock. Finally, relatedness among members of different flocks was unrelated to the distance between their flocks. Thus, sparrow flocks were not characterized by association of relatives, nevertheless the presence of some close kin may provide opportunity for kin-biased behaviours to evolve.  相似文献   

10.
The theories of kin selection and heterogeneous advantage have been central to studies of altruistic behaviour and the evolution of sex over the last 35 years. Yet they predict diametrically opposite effects of genetic diversity on population density. Close relatives gain inclusive fitness advantages by preferentially associating with and behaving altruistically towards one another. However, heterogeneous advantage, which predicts competition to be highest when genetic diversity is low, suggests that benefits will be greater for individuals in groups of non-kin. Here we test how these two processes balance and affect the productivity of populations of animals in natural habitats. We report from a study of juvenile Atlantic salmon in the wild that heterogeneous advantage outweighs the benefits of kin-biased behaviour, resulting in a 1.8-fold higher population biomass and significantly better condition of individual fish.  相似文献   

11.
Cooperatively breeding animals live in social groups in which some individuals help to raise the offspring of others, often at the expense of their own reproduction. Kin selection—when individuals increase their inclusive fitness by aiding genetic relatives—is a powerful explanation for the evolution of cooperative breeding, particularly because most groups consist of family members. However, recent molecular studies have revealed that many cooperative groups also contain unrelated immigrants, and the processes responsible for the formation and maintenance of non-kin coalitions are receiving increasing attention. Here, I provide the first systematic review of group structure for all 213 species of cooperatively breeding birds for which data are available. Although the majority of species (55%) nest in nuclear family groups, cooperative breeding by unrelated individuals is more common than previously recognized: 30% nest in mixed groups of relatives and non-relatives, and 15% nest primarily with non-relatives. Obligate cooperative breeders are far more likely to breed with non-kin than are facultative cooperators, indicating that when constraints on independent breeding are sufficiently severe, the direct benefits of group membership can substitute for potential kin-selected benefits. I review three patterns of dispersal that give rise to social groups with low genetic relatedness, and I discuss the selective pressures that favour the formation of such groups. Although kin selection has undoubtedly been crucial to the origin of most avian social systems, direct benefits have subsequently come to play a predominant role in some societies, allowing cooperation to persist despite low genetic relatedness.  相似文献   

12.
Several aspects of the ecology and biology of red grouse (Lagopus lagopus scoticus) could prevent the complete admixture of genes within and between populations. Male red grouse display a high degree of natal philopatry, are territorial, and show less aggression to kin man to non-kin. Such factors acting in combination predict limited male-mediated gene flow, which will promote social structure within a population by the formation of stable kin clusters, and facilitate a rapid rise in allelic coancestry and/or inbreeding. In this study we utilize hypervariable microsatellite polymorphisms to examine the extent of social affiliation between relatives in a moorland population of grouse from NE Scodand. Levels of genetic relatedness between individual male red grouse occupying territories at Glas Choille in die spring and autumn of 1995 were examined, and kin clusters delimited. Nine kin groups (mean size = 2.4 individuals) were identified prior to breeding in the spring, which increased to 11 kin groups (mean size =4.0 individuals) when territories were reformed in the autumn. The majority of tiiose individuals that were recruited into the adult population during the autumn already had a first-order male relative established, supporting the hypothesis that recruitment is facilitated by behavioural interactions among relatives. The demographic and population genetic consequences of philopatric recruitment and kin clustering are examined and discussed.  相似文献   

13.
Among mammals, some of the most common types of cohesive social groupings originate from natal philopatry through the extended mother family. This retention of females within social groups (i.e. the nonrandom dispersion of female relatives in space) should affect population genetic structure. We examined the relationship between genetic relatedness and female spatial organization in a wild population of the North-American raccoon, Procyon lotor, a solitary carnivore in east Tennessee. Multilocus genetic band-sharing data and 3(1/2) years of radiotelemetry observations were used to study the spatial and genetic relationships among 38 adult females. DNA amplification employing primers of arbitrary sequence (random amplified polymorphic DNA; RAPD) indicated that female philopatry in raccoons led to a greater likelihood of neighbours being more related than expected by chance. Genetic distance based on RAPD band frequency was positively correlated with spatial distance among females (P = 0.0001) and genetic similarity was positively correlated with the extent of home-range overlap (P = 0.0028). Philopatry seemed biased towards females; average female-female similarities were greater than average male-male similarities (P = 0.0001), or average male-female similarities (P = 0.0001). High home-range overlap among some females with low or moderate levels of band sharing indicated that maternal inheritance of space was not a prerequisite for establishing or sharing home ranges. Female philopatry was the most probable explanation for the nonrandom spatial and genetic association of raccoons in east Tennessee.  相似文献   

14.
Social structure can have a significant impact on divergence and evolution within species, especially in the marine environment, which has few environmental boundaries to dispersal. On the other hand, genetic structure can affect social structure in many species, through an individual preference towards associating with relatives. One social species, the short‐finned pilot whale (Globicephala macrorhynchus), has been shown to live in stable social groups for periods of at least a decade. Using mitochondrial control sequences from 242 individuals and single nucleotide polymorphisms from 106 individuals, we examine population structure among geographic and social groups of short‐finned pilot whales in the Hawaiian Islands, and test for links between social and genetic structure. Our results show that there are at least two geographic populations in the Hawaiian Islands: a Main Hawaiian Islands (MHI) population and a Northwestern Hawaiian Islands/Pelagic population (FST and ΦST < .001), as well as an eastern MHI community and a western MHI community (FST = .009). We find genetically driven social structure, or high relatedness among social units and clusters (< .001), and a positive relationship between relatedness and association between individuals (< .0001). Further, socially organized clusters are genetically distinct, indicating that social structure drives genetic divergence within the population, likely through restricted mate selection (FST = .05). This genetic divergence among social groups can make the species less resilient to anthropogenic or ecological disturbance. Conservation of this species therefore depends on understanding links among social structure, genetic structure and ecological variability within the species.  相似文献   

15.
Individuals are generally predicted to avoid inbreeding because of detrimental fitness effects. However, several recent studies have shown that limited inbreeding is tolerated by some vertebrate species. Here, we examine the costs and benefits of inbreeding in a largely polygynous rodent, the yellow-bellied marmot (Marmota flaviventris). We use a pedigree constructed from 8 years of genetic data to determine the relatedness of all marmots in our study population and examine offspring survival, annual male reproductive success, relatedness between breeding pairs and the effects of group composition on likelihood of male reproduction to assess inbreeding in this species. We found decreased survival in inbred offspring, but equal net reproductive success among males that inbred and those that avoided it. Relatedness between breeding pairs was greater than that expected by chance, indicating that marmots do not appear to avoid breeding with relatives. Further, male marmots do not avoid inbreeding: males mate with equal frequency in groups composed of both related and unrelated females and in groups composed of only female relatives. Our results demonstrate that inbreeding can be tolerated in a polygynous species if the reproductive costs of inbreeding are low and individuals that mate indiscriminately do not suffer decreased reproductive success.  相似文献   

16.
Why sexually mature individuals stay in groups as nonreproductive subordinates is central to the evolution of sociality and cooperative breeding. To understand such delayed dispersal, its costs and benefits need to be compared with those of permanently leaving to float through the population. However, comprehensive comparisons, especially regarding differences in future breeding opportunities, are rare. Moreover, extraterritorial prospecting by philopatric individuals has generally been ignored, even though the factors underlying this route to independent breeding may differ from those of strict philopatry or floating. We use a comprehensive predictive framework to explore how various costs, benefits and intrinsic, environmental and social factors explain philopatry, prospecting, and floating in Seychelles warblers (Acrocephalus sechellensis). Not only floaters more likely obtained an independent breeding position before the next season than strictly philopatric individuals, but also suffered higher mortality. Prospecting yielded similar benefits to floating but lower mortality costs, suggesting that it is overall more beneficial than floating and strict philopatry. While prospecting is probably individual‐driven, although limited by resource availability, floating likely results from eviction by unrelated breeders. Such differences in proximate and ultimate factors underlying each route to independent breeding highlight the need for simultaneous consideration when studying the evolution of delayed dispersal.  相似文献   

17.
Kinship and sociality in coastal river otters: are they related?   总被引:1,自引:0,他引:1  
Previous studies of coastal river otters (Lontra canadensis)in Prince William Sound, Alaska, USA, documented atypical socialorganization for mammals. Social groups were composed largelyof males, but some males remained solitary year-round and mostfemales were asocial. Because, in carnivores, groups are usuallycomposed of highly related individuals but group living alsoprovides advantages unrelated to kinship, we concurrently evaluatedthe role of relatedness and ecological benefits in socialityamong coastal river otters. By using DNA microsatellite analysisand radiotelemetry, we were able to reject the hypothesis thatsocial groups of otters were kin based. In addition, we foundno indication of kin avoidance, as would be expected from lowdispersal and high local competition. Sociality conferred noreproductive benefits or costs to otters; number of offspringand number of relatives in the population did not differ betweensocial and solitary animals. Solitary males were not older orlarger than were social males, and there was no relation betweenmale size and number of offspring, indicating that sexual selectiondid not mask a potential relation between sociality and reproductivesuccess. Among coastal river otters in this region, socialitycould be explained by the benefits obtained from cooperativeforaging on high-quality schooling pelagic fishes. Such benefitsdid not require association with kin, resulting in no selectionpressure for kin-based groups. The prediction that the degreeof sociality in the population will fluctuate relative to theabundance of schooling pelagic fishes merits further investigation.  相似文献   

18.
Researchers consider group size in primates to be determined by complex relationships among numerous ecological forces. Antipredator benefits and better resource defense are the primary pressures for large groups. Conversely, intragroup limited food availability, can result in greater intragroup feeding competition and individual energy expenditure in larger groups, creating energetic advantages for individuals in small groups and placing an upper limit group size. However, the extent to which food availability constrains group size remains unclear for many species, including black howlers (Alouatta pigra), which ubiquitously live in small social groups (≤10 individuals). We studied the relationship between group size and 2 key indices of feeding competition—day journey length and activity budgets—in 3 groups of wild Alouatta pigra at a hurricane-damaged site in Belize, Central America. We controlled for differences in food availability between home ranges (food tree density) and compared both indicators of feeding competition directly with temporal variation in food availability for each group. Our results show no consistent association between resource availability, group size, and either index of competition, indicating that feeding competition does not limit group size at the site—i.e., that larger groups can form without increased costs of feeding competition. The results support the search for other explanations, possibly social ones, for small group size in the primates, and we conclude with suggestions and evidence for such alternative explanations.  相似文献   

19.
The evolution of stable social groups can be promoted by both indirect and direct fitness benefits. Sperm whales (Physeter macrocephalus) are highly social, with a hierarchical social structure based around core groups of adult females and subadults, a rare level of complexity among mammals. We combined long-term satellite tracking (ranging from 11 to 607 days) of 51 individual sperm whales with genetic kinship analysis to assess the pattern of kin associations within and among coherent social units. Unlike findings for other species with similar social structure, we find no consistent correlation between kinship and association apart from close associations between two pairs of first-order relatives. A third pair of first-order relatives did not associate, and overall, the mean relatedness was the same within as among social groups. However, social behaviour can also be promoted by ecological factors such as resource dispersion. We assessed putative foraging behaviour during travel from the satellite-tracking data, which suggested that prey resources were dispersed and unpredictable, a condition that could promote living in groups.  相似文献   

20.
The extent and effect of inbreeding in natural populations remain largely undetermined. Pikas Ochotona princeps have been considered a likely candidate for close inbreeding in natural populations due to observations of frequent juvenile philopatry (colonization of natal home range or neighbouring home range) and high levels of spatial overlap and social tolerance between neighbouring individuals of the opposite sex. A 4-year investigation of inbreeding in pikas, however, has revealed that dispersal and mating patterns are uncoupled in this species, i.e. explained by different hypotheses. DNA fingerprinting analysis revealed that band-sharing scores between mated pairs, identified via parentage analysis, were not commensurate with band-sharing among known first-order relatives, but were similar to scores for a small sample of known second-order relatives (i.e. half-siblings, grandparent-grandchild pairs). Band-sharing scores between mated pairs were then compared with those between potential mated pairs within the population to assess whether mating was random or nonrandom with respect to genetic similarity. The results of Monte Carlo randomization tests show that pikas mated with individuals with intermediate genetic similarity in greater proportion than would be expected by chance. These data suggest mate choice in pikas may be based upon intermediate levels of relatedness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号