首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The diversity of methanotrophic bacteria associated with roots of submerged rice plants was assessed using cultivation-independent techniques. The research focused mainly on the retrieval of pmoA, which encodes the α subunit of the particulate methane monooxygenase. A novel methanotroph-specific community-profiling method was established using the terminal restriction fragment length polymorphism (T-RFLP) technique. The T-RFLP profiles clearly revealed a more complex root-associated methanotrophic community than did banding patterns obtained by pmoA-based denaturing gradient gel electrophoresis. The comparison of pmoA-based T-RFLP profiles obtained from rice roots and bulk soil of flooded rice microcosms suggested that there was a substantially higher abundance of type I methanotrophs on rice roots than in the bulk soil. These were affiliated to the genera Methylomonas, Methylobacter, Methylococcus, and to a novel type I methanotroph sublineage. By contrast, type II methanotrophs of the Methylocystis-Methylosinus group could be detected with high relative signal intensity in both soil and root compartments. Phylogenetic treeing analyses and a set of substrate-diagnostic amino acid residues provided evidence that a novel pmoA lineage was detected. This branched distinctly from all currently known methanotrophs. To examine whether the retrieval of pmoA provided a complete view of root-associated methanotroph diversity, we also assessed the diversity detectable by recovery of genes coding for subunits of soluble methane monooxygenase (mmoX) and methanol dehydrogenase (mxaF). In addition, both 16S rRNA and 16S ribosomal DNA (rDNA) were retrieved using a PCR primer set specific to type I methanotrophs. The overall methanotroph diversity detected by recovery of mmoX, mxaF, and 16S rRNA and 16S rDNA corresponded well to the diversity detectable by retrieval of pmoA.  相似文献   

2.
Stable isotope probing (SIP) can be used to analyze the active bacterial populations involved in a process by incorporating 13C-labeled substrate into cellular components such as DNA. Relatively long incubation times are often used with laboratory microcosms in order to incorporate sufficient 13C into the DNA of the target organisms. Addition of nutrients can be used to accelerate the processes. However, unnatural concentrations of nutrients may artificially change bacterial diversity and activity. In this study, methanotroph activity and diversity in soil was examined during the consumption of 13CH4 with three DNA-SIP experiments, using microcosms with natural field soil water conditions, the addition of water, and the addition of mineral salts solution. Methanotroph population diversity was studied by targeting 16S rRNA and pmoA genes. Clone library analyses, denaturing gradient gel electrophoresis fingerprinting, and pmoA microarray hybridization analyses were carried out. Most methanotroph diversity (type I and type II methanotrophs) was observed in nonamended SIP microcosms. Although this treatment probably best reflected the in situ environmental conditions, one major disadvantage of this incubation was that the incorporation of 13CH4 was slow and some cross-feeding of 13C occurred, thereby leading to labeling of nonmethanotroph microorganisms. Conversely, microcosms supplemented with mineral salts medium exhibited rapid consumption of 13CH4, resulting in the labeling of a less diverse population of only type I methanotrophs. DNA-SIP incubations using water-amended microcosms yielded faster incorporation of 13C into active methanotrophs while avoiding the cross-feeding of 13C.  相似文献   

3.
4.
5.
The impact of environmental perturbation (e.g., nitrogenous fertilizers) on the dynamics of methane fluxes from soils and wetland systems is poorly understood. Results of fertilizer studies are often contradictory, even within similar ecosystems. In the present study the hypothesis of whether these contradictory results may be explained by the composition of the methane-consuming microbial community and hence whether methanotrophic diversity affects methane fluxes was investigated. To this end, rice field and forest soils were incubated in microcosms and supplemented with different nitrogenous fertilizers and methane concentrations. By labeling the methane with 13C, diversity and function could be coupled by analyses of phospholipid-derived fatty acids (PLFA) extracted from the soils at different time points during incubation. In both rice field and forest soils, the activity as well as the growth rate of methane-consuming bacteria was affected differentially. For type I methanotrophs, fertilizer application stimulated the consumption of methane and the subsequent growth, while type II methanotrophs were generally inhibited. Terminal restriction fragment length polymorphism analyses of the pmoA gene supported the PLFA results. Multivariate analyses of stable-isotope-probing PLFA profiles indicated that in forest and rice field soils, Methylocystis (type II) species were affected by fertilization. The type I methanotrophs active in forest soils (Methylomicrobium/Methylosarcina related) differed from the active species in rice field soils (Methylobacter/Methylomonas related). Our results provide a case example showing that microbial community structure indeed matters, especially when assessing and predicting the impact of environmental change on biodiversity loss and ecosystem functioning.  相似文献   

6.
7.
Termite-derived methane contributes 3 to 4% to the total methane budget globally. Termites are not known to harbor methane-oxidizing microorganisms (methanotrophs). However, a considerable fraction of the methane produced can be consumed by methanotrophs that inhabit the mound material, yet the methanotroph ecology in these environments is virtually unknown. The potential for methane oxidation was determined using slurry incubations under conditions with high (12%) and in situ (∼0.004%) methane concentrations through a vertical profile of a termite (Macrotermes falciger) mound and a reference soil. Interestingly, the mound material showed higher methanotrophic activity. The methanotroph community structure was determined by means of a pmoA-based diagnostic microarray. Although the methanotrophs in the mound were derived from populations in the reference soil, it appears that termite activity selected for a distinct community. Applying an indicator species analysis revealed that putative atmospheric methane oxidizers (high-indicator-value probes specific for the JR3 cluster) were indicative of the active nest area, whereas methanotrophs belonging to both type I and type II were indicative of the reference soil. We conclude that termites modify their environment, resulting in higher methane oxidation and selecting and/or enriching for a distinct methanotroph population.  相似文献   

8.
We investigated the diversity of methane-oxidizing bacteria (i.e., methanotrophs) in an annual upland grassland in northern California, using comparative sequence analysis of the pmoA gene. In addition to identifying type II methanotrophs commonly found in soils, we discovered three novel pmoA lineages for which no cultivated members have been previously reported. These novel pmoA clades clustered together either with clone sequences related to “RA 14” or “WB5FH-A,” which both represent clusters of environmentally retrieved sequences of putative atmospheric methane oxidizers. Conservation of amino acid residues and rates of nonsynonymous versus synonymous nucleotide substitution in these novel lineages suggests that the pmoA genes in these clades code for functionally active methane monooxygenases. The novel clades responded to simulated global changes differently than the type II methanotrophs. We observed that the relative abundance of type II methanotrophs declined in response to increased precipitation and increased atmospheric temperature, with a significant antagonistic interaction between these factors such that the effect of both together was less than that expected from their individual effects. Two of the novel clades were not observed to respond significantly to these environmental changes, while one of the novel clades had an opposite response, increasing in relative abundance in response to increased precipitation and atmospheric temperature, with a significant antagonistic interaction between these factors.  相似文献   

9.
Molecular diversity of deep-sea hydrothermal vent aerobic methanotrophs was studied using both 16S ribosomalDNA and pmoA encoding the subunit A of particulate methane monooxygenase (pMOA). Hydrothermal vent plume and chimney samples were collected from back-arc vent at Mid-Okinawa Trough (MOT), Japan, and the Trans-Atlantic Geotraverse (TAG) site along Mid-Atlantic Ridge, respectively. The target genes were amplified by polymerase chain reaction from the bulk DNA using specific primers and cloned. Fifty clones from each clone library were directly sequenced. The 16S rDNA sequences were grouped into 3 operational taxonomic units (OTUs), 2 from MOT and 1 from TAG. Two OTUs (1 MOT and 1 TAG) were located within the branch of type I methanotrophic ?-Proteobacteria. Another MOT OTU formed a unique phylogenetic lineage related to type I methanotrophs. Direct sequencing of 50 clones each from the MOT and TAG samples yielded 17 and 4 operational pmoA units (OPUs), respectively. The phylogenetic tree based on the pMOA amino acid sequences deduced from OPUs formed diverse phylogenetic lineages within the branch of type I methanotrophs, except for the OPU MOT-pmoA-8 related to type X methanotrophs. The deduced pMOA topologies were similar to those of all known pMOA, which may suggest that the pmoA gene is conserved through evolution. Neither the 16S rDNA nor pmoA molecular analysis could detect type II methanotrophs, which suggests the absence of type II methanotrophs in the collected vent samples.  相似文献   

10.
Numeric abundance, identity, and pH preferences of methanotrophic Gammaproteobacteria (type I methanotrophs) inhabiting the northern acidic wetlands were studied. The rates of methane oxidation by peat samples from six wetlands of European Northern Russia (pH 3.9–4.7) varied from 0.04 to 0.60 μg CH4 g?1 peat h?1. The number of cells revealed by hybridization with fluorochrome labeled probes M84 + M705 specific for type I methanotrophs was 0.05–2.16 × 105 cells g?1 dry peat, i.e., 0.4–12.5% of the total number of methanotrophs and 0.004–0.39% of the total number of bacteria. Analysis of the fragments of the pmoA gene encoding particulate methane monooxygenase revealed predominance of the genus Methylocystis (92% of the clones) in the studied sample of acidic peat, while the proportion of the pmoA sequences of type I methanotrophs was insignificant (8%). PCR amplification of the 16S rRNA gene fragments of type I methanotrophs with TypeIF-Type IR primers had low specificity, since only three sequences out of 53 analyzed belonged to methanotrophs and exhibited 93–99% similarity to those of Methylovulum, Methylomonas, and Methylobacter species. Isolates of type I methanotrophs obtained from peat (strains SH10 and 83A5) were identified as members of the species Methylomonas paludis and Methylovulum miyakonense, respectively. Only Methylomonas paludis SH10 was capable of growth in acidic media (pH range for growth 3.8–7.2 with the optimum at pH 5.8–6.2), while Methylovulum miyakonense 83A5 exhibited the typical growth characteristics of neutrophilic methanotrophs (pH range for growth 5.5–8.0 with the optimum at pH 6.5–7.5).  相似文献   

11.
12.
Analysis of pmoA and 16S rRNA gene clone libraries of methanotrophic bacteria in Lake Constance revealed an overall dominance of type I methanotrophs in both littoral and profundal sediments. The sediments exhibited minor differences in their methanotrophic community structures. Type X methanotrophs made up a significant part of the clone libraries only in the profundal sediment and were also found only there as a prominent peak by T-RFLP analyses.  相似文献   

13.
The 16S rRNA and pmoA genes from natural populations of methane-oxidizing bacteria (methanotrophs) were PCR amplified from total community DNA extracted from Lake Washington sediments obtained from the area where peak methane oxidation occurred. Clone libraries were constructed for each of the genes, and approximately 200 clones from each library were analyzed by using restriction fragment length polymorphism (RFLP) and the tetrameric restriction enzymes MspI, HaeIII, and HhaI. The PCR products were grouped based on their RFLP patterns, and representatives of each group were sequenced and analyzed. Studies of the 16S rRNA data obtained indicated that the existing primers did not reveal the total methanotrophic diversity present when these data were compared with pure-culture data obtained from the same environment. New primers specific for methanotrophs belonging to the genera Methylomonas, Methylosinus, and Methylocystis were developed and used to construct more complete clone libraries. Furthermore, a new primer was designed for one of the genes of the particulate methane monooxygenase in methanotrophs, pmoA. Phylogenetic analyses of both the 16S rRNA and pmoA gene sequences indicated that the new primers should detect these genes over the known diversity in methanotrophs. In addition to these findings, 16S rRNA data obtained in this study were combined with previously described phylogenetic data in order to identify operational taxonomic units that can be used to identify methanotrophs at the genus level.  相似文献   

14.
We investigated the effect of afforestation and reforestation of pastures on methane oxidation and the methanotrophic communities in soils from three different New Zealand sites. Methane oxidation was measured in soils from two pine (Pinus radiata) forests and one shrubland (mainly Kunzea ericoides var. ericoides) and three adjacent permanent pastures. The methane oxidation rate was consistently higher in the pine forest or shrubland soils than in the adjacent pasture soils. A combination of phospholipid fatty acid (PLFA) and stable isotope probing (SIP) analyses of these soils revealed that different methanotrophic communities were active in soils under the different vegetations. The C18 PLFAs (signature of type II methanotrophs) predominated under pine and shrublands, and C16 PLFAs (type I methanotrophs) predominated under pastures. Analysis of the methanotrophs by molecular methods revealed further differences in methanotrophic community structure under the different vegetation types. Cloning and sequencing and terminal-restriction fragment length polymorphism analysis of the particulate methane oxygenase gene (pmoA) from different samples confirmed the PLFA-SIP results that methanotrophic bacteria related to type II methanotrophs were dominant in pine forest and shrubland, and type I methanotrophs (related to Methylococcus capsulatus) were dominant in all pasture soils. We report that afforestation and reforestation of pastures caused changes in methane oxidation by altering the community structure of methanotrophic bacteria in these soils.  相似文献   

15.
The particulate methane monooxygenase gene pmoA, encoding the 27 kDa polypeptide of the membrane-bound particulate methane monooxygenase, was amplified by PCR from DNA isolated from a blanket peat bog and from enrichment cultures established, from the same environment, using methane as sole carbon and energy source. The resulting 525 bp PCR products were cloned and a representative number of clones were sequenced. Phylogenetic analysis of the derived amino acid sequences of the pmoA clones retrieved directly from environmental DNA samples revealed that they form a distinct cluster within representative PmoA sequences from type II methanotrophs and may originate from a novel group of acidophilic methanotrophs. The study also demonstrated the utility of the pmoA gene as a phylogenetic marker for identifying methanotroph-specific DNA sequences in the environment.  相似文献   

16.
17.
A primer set was designed for the specific detection of methanotrophic bacteria in forest soils by PCR. The primer sequences were derived from highly conservative regions of the pmoA gene, encoding the α-subunit of the particulate methane monooxygenase present in all methanotrophs. In control experiments with genomic DNA from a collection of different type I, II, and X methanotrophs, it could be demonstrated that the new primers were specific for members of the genera Methylosinus, Methylocystis, Methylomonas, Methylobacter, and Methylococcus. To test the suitability of the new primers for the detection of particulate methane monooxygenase (pMMO) containing methanotrophs in environmental samples we used DNA extracts from an acid spruce forest soil. For simple and rapid purification of the DNA extracts, the samples were separated by electrophoresis on a low-melting-point agarose gel. This allowed us to efficiently separate the DNA from coextracted humic acids. The DNA from the melted agarose gel was ready for use in PCR reactions. In PCR reactions with DNA from the Ah soil layer, products of the correct size were amplified by PCR by use of the new primers. By sequencing of cloned PCR products, it could be confirmed that the PCR products represented partial sequences with strong similarity to the pmoA gene. The sequence was most related to the pmoA sequence of a type II methanotroph strain isolated from the Ah layer of the investigated soils. Received: 1 September 2000 / Accepted: 2 October 2000  相似文献   

18.
Three stable methane-oxidizing enrichment cultures, SB26, SB31, and SB31A, were analyzed by transmission electron microscopy and by serological and molecular techniques. Electron microscopy revealed the presence of both type I and type II methanotrophs in SB31 and SB31A enrichments; only type II methanotrophs were found in SB26 enrichment. Methylosinus trichosporium was detected in all three enrichments by the application of species-specific antibodies. Additionally, Methylocystis echinoides was found in SB26 culture; Methylococcus capsulatus, in SB31 and SB31A; and Methylomonas methanica, in SB31. The analysis with pmoA and nifH gene sequences as phylogenetic markers revealed the presence of Methylosinus/Methylocystis group in all communities. Moreover, the analysis of pmoA sequences revealed the presence of Methylomonas in SB31. Methylocella was detected in SB31 and SB31A enrichments only by nifH analysis. It was concluded that the simultaneous application of different approaches reveals more reliable information on the diversity of methanotrophs.  相似文献   

19.
Aerobic methane oxidation has been mostly studied in environments with moderate to low temperatures. However, the process also occurs in terrestrial thermal springs, where little research on the subject has been done to date. The potential activity of methane oxidation and diversity of aerobic methanotrophic bacteria were studied in sediments of thermal springs with various chemical and physical properties, sampled across the Kunashir Island, the Kuriles archipelago. Activity was measured by means of the radioisotope tracer technique utilizing 14C-labeled methane. Biodiversity assessments were based on the particulate methane monooxygenase (pmoA) gene, which is found in all known thermophilic and thermotolerant methanotrophs. We demonstrated the possibility of methane oxidation in springs with temperature exceeding 74 °C, and the most intensive methane uptake was shown in springs with temperatures about 46 °C. PmoA was detected in 19 out of 30 springs investigated and the number of pmoA gene copies varied between 104 and 106 copies per ml of sediment. Phylogenetic analysis of PmoA sequences revealed the presence of methanotrophs from both the Alpha- and Gammaproteobacteria. Our results suggest that methanotrophs inhabiting thermal springs with temperature exceeding 50 °C may represent novel thermophilic and thermotolerant species of the genera Methylocystis and Methylothermus, as well as previously undescribed Gammaproteobacteria.  相似文献   

20.
Small mud volcanoes (cold seeps), which are common in the floodplains of northern rivers, are potentially important (although poorly studied) sources of atmospheric methane. Field research on the cold seeps of the Mukhrina River (Khanty-Mansiysk Autonomous okrug, Russia) revealed methane fluxes from these structures to be orders of magnitude higher than from equivalent areas of the mid-taiga bogs. Microbial communities developing around the seeps were formed under conditions of high methane concentrations, low temperatures (3–5°C), and near-neutral pH. Molecular identification of methane-oxidizing bacteria from this community by analysis of the pmoA gene encoding particulate methane monooxygenase revealed both type I and type II methanotrophs (classes Gammaproteobacteria and Alphaproteobacteria, respectively), with prevalence of type I methanotrophs. Among the latter, microorganisms related to Methylobacter psychrophilus and Methylobacter tundripaludum, Crenothrix polyspora (a stagnant water dweller), and a number of methanotrophs belonging to unknown taxa were detected. Growth characteristics of two methanotrophic isolates were determined. Methylobacter sp. CMS7 exhibited active growth at 4–10°C, while Methylocystis sp. SB12 grew better at 20°C. Experimental results confirmed the major role of methanotrophic gammaproteobacteria in controlling the methane emission from cold river seeps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号