共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Dietary restriction (DR) extends life span in diverse organisms, including mammals, and common mechanisms may be at work. DR is often known as calorie restriction, because it has been suggested that reduction of calories, rather than of particular nutrients in the diet, mediates extension of life span in rodents. We here demonstrate that extension of life span by DR in Drosophila is not attributable to the reduction in calorie intake. Reduction of either dietary yeast or sugar can reduce mortality and extend life span, but by an amount that is unrelated to the calorie content of the food, and with yeast having a much greater effect per calorie than does sugar. Calorie intake is therefore not the key factor in the reduction of mortality rate by DR in this species. 相似文献
3.
Dietary restriction (DR) extends the lifespan of a wide range of species, although the universality of this effect has never been quantitatively examined. Here, we report the first comprehensive comparative meta-analysis of DR across studies and species. Overall, DR significantly increased lifespan, but this effect is modulated by several factors. In general, DR has less effect in extending lifespan in males and also in non-model organisms. Surprisingly, the proportion of protein intake was more important for life extension via DR than the degree of caloric restriction. Furthermore, we show that reduction in both age-dependent and age-independent mortality rates drives life extension by DR among the well-studied laboratory model species (yeast, nematode worms, fruit flies and rodents). Our results suggest that convergent adaptation to laboratory conditions better explains the observed DR-longevity relationship than evolutionary conservation although alternative explanations are possible. 相似文献
4.
5.
Pearson KJ Baur JA Lewis KN Peshkin L Price NL Labinskyy N Swindell WR Kamara D Minor RK Perez E Jamieson HA Zhang Y Dunn SR Sharma K Pleshko N Woollett LA Csiszar A Ikeno Y Le Couteur D Elliott PJ Becker KG Navas P Ingram DK Wolf NS Ungvari Z Sinclair DA de Cabo R 《Cell metabolism》2008,8(2):157-168
A small molecule that safely mimics the ability of dietary restriction (DR) to delay age-related diseases in laboratory animals is greatly sought after. We and others have shown that resveratrol mimics effects of DR in lower organisms. In mice, we find that resveratrol induces gene expression patterns in multiple tissues that parallel those induced by DR and every-other-day feeding. Moreover, resveratrol-fed elderly mice show a marked reduction in signs of aging, including reduced albuminuria, decreased inflammation, and apoptosis in the vascular endothelium, increased aortic elasticity, greater motor coordination, reduced cataract formation, and preserved bone mineral density. However, mice fed a standard diet did not live longer when treated with resveratrol beginning at 12 months of age. Our findings indicate that resveratrol treatment has a range of beneficial effects in mice but does not increase the longevity of ad libitum-fed animals when started midlife. 相似文献
6.
In Drosophila melanogaster, the Sir2 gene and four Sir2-like genes have been found to be homologous to yeast SIR2 genes. To examine whether the fly Sir2, CG5216, and two Sir2-like genes, CG5085 and CG6284, affect life span, we suppressed their expression using RNAi. Decreased expression of the Sir2 and Sir2-like genes in all cells caused lethality during development. Suppression of the Sir2 in neurons and ubiquitous silencing of the Sir2-like genes shortened life spans. The effects were severer at 28 degrees C than at 25 degrees C. These results suggest that Sir2-like genes as well as Sir2 are involved in the regulation of life span in Drosophila. 相似文献
7.
Hyperactivation of p53 leads to a reduction in tumor formation and an unexpected shortening of life span in two different model systems . The decreased life span occurs with signs of accelerated aging, such as osteoporosis, reduction in body weight, atrophy of organs, decreased stress resistance, and depletion of hematopoietic stem cells. These observations suggest a role for p53 in the determination of life span and the speculation that decreasing p53 activity may result in positive effects on some aging phenotypes . In this report, we show that expression of dominant-negative versions of Drosophila melanogaster p53 in adult neurons extends life span and increases genotoxic stress resistance in the fly. Consistent with this, a naturally occurring allele with decreased p53 activity has been associated with extended survival in humans . Expression of the dominant-negative Drosophila melanogaster p53 constructs does not further increase the extended life span of flies that are calorie restricted, suggesting that a decrease in p53 activity may mediate a component of the calorie-restriction life span-extending pathway in flies. 相似文献
8.
9.
10.
Human Sir2 and the 'silencing' of p53 activity 总被引:5,自引:0,他引:5
Smith J 《Trends in cell biology》2002,12(9):404-406
11.
We used quantitative trait loci (QTL) mapping to evaluate the age specificity of naturally segregating alleles affecting life span. Estimates of age-specific mortality rates were obtained from observing 51,778 mated males and females from a panel of 144 recombinant inbred lines (RILs). Twenty-five QTL were found, having 80 significant effects on life span and weekly mortality rates. Generation of RILs from heterozygous parents enabled us to contrast effects of QTL alleles with the means of RIL populations. Most of the low-frequency alleles increased mortality, especially at younger ages. Two QTL had negatively correlated effects on mortality at different ages, while the remainder were positively correlated. Chromosomal positions of QTL were roughly concordant with estimates from other mapping populations. Our findings are broadly consistent with a mix of transient deleterious mutations and a few polymorphisms maintained by balancing selection, which together contribute to standing genetic variation in life span. 相似文献
12.
Calorie restriction is the only life span extending regimen known that applies to all aging organisms. Although most fungi do not appear to senesce, all natural isolates of the modular filamentous fungus Podospora anserina have a limited life span. In this paper, we show that calorie restriction extends life span also in Podospora anserina. The response to glucose limitation varies significantly among 23 natural isolates from a local population in The Netherlands, ranging from no effect up to a 5-fold life span extension. The isolate dependent effect is largely due to the presence or absence of pAL2-1 homologous plasmids. These mitochondrial plasmids are associated with reduced life span under calorie restricted conditions, suggesting a causal link. This has been substantiated using three combinations of isogenic isolates with and without plasmids. A model is proposed to explain how pAL2-1 homologues influence the response to calorie restriction. 相似文献
13.
Cooperative effect of antisense-Rb and antisense-p53 oligomers on the extension of life span in human diploid fibroblasts, TIG-1 总被引:13,自引:0,他引:13
E Hara H Tsurui A Shinozaki S Nakada K Oda 《Biochemical and biophysical research communications》1991,179(1):528-534
Normal human diploid fibroblasts, TIG-1, which have a replicative life span of about 62 population doublings (PD), tended to senesce after about 50 PD with a gradual decrease in sensitivity to serum. Treatment of TIG-1 cells with the antisense-Rb oligomer, which completely depleted the retinoblastoma susceptibility gene product (RB), extended life span by about 10 PD. Treatment with the antisense-p53 oligomer alone had no effect; however, cotreatment with the antisense-Rb oligomer further potentiated the extension and the increased sensitivity to serum caused by the antisense-Rb oligomer alone, suggesting that p53 and RB function in separate, yet complementary pathways in signal transduction to senescence. The c-fos expression, which is presumed to be regulated negatively by RB, was not stimulated in partially senescent TIG-1 cells by treatment with the antisense-Rb oligomer. 相似文献
14.
Dietary restriction (DR) is a valuable experimental tool for studying the aging process. Primary advancement of research in this area has relied on rodent models, but attention has recently turned toward Drosophila melanogaster. However, little is known about the baseline effects of DR on wild-type Drosophila and continued experimentation requires such information. The findings described here survey the effects of DR on inbred, wild-type populations of Canton-S fruit flies and demonstrate a robust effect of diet on longevity. Over a circumscribed range of dietary conditions, healthy lifespan varies by as much as 121% for wild-type Drosophila females. Significant differences are also observed for male flies, but the magnitude of the DR effect is less robust. Mortality analyses of the survivorship data reveal that this variation in lifespan can be attributed to a modulation of the rate parameter for the mortality function - a change in the demographic rate of aging. Since the feeding of fruit flies is less easily controlled than that of rodents, this research also addresses the validity of applying a DR model to Drosophila populations. Feeding and body weight data for flies given the various dietary conditions surveyed indicate that Drosophila on higher-calorie diets consume a similar volume of food to those on a low-calorie diet, resulting in different levels of calorie intake. Fertility and activity levels demonstrate that the diets surveyed are comparable, and that increasing the calorie content of laboratory food up to twice the normal concentration is not pathologic for experimental fly populations. 相似文献
15.
16.
17.
Hyperactivation of the Silencing Proteins, Sir2p and Sir3p, Causes Chromosome Loss 总被引:10,自引:0,他引:10
下载免费PDF全文

S. G. Holmes A. B. Rose K. Steuerle E. Saez S. Sayegh Y. M. Lee J. R. Broach 《Genetics》1997,145(3):605-614
18.
Dietary restriction (DR) extends lifespan in an impressively wide array of species spanning three eukaryotic kingdoms. In sharp contrast, relatively little is known about the effects of DR on functional senescence, with most of the work having been done on mice and rats. Here we used Drosophila melanogaster to test the assumption that lifespan extension through DR slows down age-related functional deterioration. Adult virgin females were kept on one of three diets, with sucrose and yeast concentrations ranging from 7% to 11% to 16% (w/v). Besides age-specific survival and fecundity, we measured starvation resistance, oxidative stress resistance, immunity, and cold-stress resilience at ages 1, 3, 5, and 7 weeks. We confirmed that DR extends lifespan: median lifespans ranged from 38 days (16% diet) to 46 days (11% diet) to 54 days (7% diet). We also confirmed that DR reduces fecundity, although the shortest-lived flies only had the highest fecundity when males were infrequently available. The most striking result was that DR initially increased starvation resistance, but strongly decreased starvation resistance later in life. Generally, the effects of DR varied across traits and were age dependent. We conclude that DR does not universally slow down functional deterioration in Drosophila. The effects of DR on physiological function might not be as evolutionarily conserved as its effect on lifespan. Given the age-specific effects of DR on functional state, imposing DR late in life might not provide the same functional benefits as when applied at early ages. 相似文献
19.
Aging is associated with increased production of reactive oxygen species (ROS) and oxidation-induced damage to intracellular structures and membranes. Caloric restriction (CR) has been demonstrated to delay aging in a variety of species. Although the mechanisms of CR remain to be clearly elucidated, reductions in oxidative damage have been shown to increase lifespan in several model systems. Contrary to the general belief that ROS production is reduced in CR, this article provides evidence that not only oxygen consumption but ROS production is enhanced in the calorie restricted condition. To understand the biological mechanism underlying the anti aging action of CR, the role of scavenging enzymes was studied. It was found that super oxide dismutase (SOD1 and SOD2), catalase and glutathione peroxidase (GPx) all are over expressed in CR. We further investigated the role of Sir2, a potential effector of CR response in the activation of scavenging enzymes. No marked difference was found in CR mediated activation of SOD and catalase in the absence of Sir2. Our results suggest that in CR scavenging enzymes are activated by a Sir2 independent manner. 相似文献