首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Molecular bacterial community composition was characterized from three geographically distinct spacecraft-associated clean rooms to determine whether such populations are influenced by the surrounding environment or the maintenance of the clean rooms. Samples were collected from facilities at the Jet Propulsion Laboratory (JPL), Kennedy Space Flight Center (KSC), and Johnson Space Center (JSC). Nine clone libraries representing different surfaces within the spacecraft facilities and three libraries from the surrounding air were created. Despite the highly desiccated, nutrient-bare conditions within these clean rooms, a broad diversity of bacteria was detected, covering all the main bacterial phyla. Furthermore, the bacterial communities were significantly different from each other, revealing only a small subset of microorganisms common to all locations (e.g. Sphingomonas, Staphylococcus). Samples from JSC assembly room surfaces showed the greatest diversity of bacteria, particularly within the Alpha- and Gammaproteobacteria and Actinobacteria. The bacterial community structure of KSC assembly surfaces revealed a high presence of proteobacterial groups, whereas the surface samples collected from the JPL assembly facility showed a predominance of Firmicutes. Our study presents the first extended molecular survey and comparison of NASA spacecraft assembly facilities, and provides new insights into the bacterial diversity of clean room environments .  相似文献   

2.
In the course of this biodiversity study, the cultivable microbial community of European spacecraft-associated clean rooms and the Herschel Space Observatory located therein were analyzed during routine assembly operations. Here, we focused on microorganisms capable of growing without oxygen. Anaerobes play a significant role in planetary protection considerations since extraterrestrial environments like Mars probably do not provide enough oxygen for fully aerobic microbial growth. A broad assortment of anaerobic media was used in our cultivation strategies, which focused on microorganisms with special metabolic skills. The majority of the isolated strains grew on anaerobic, complex, nutrient-rich media. Autotrophic microorganisms or microbes capable of fixing nitrogen were also cultivated. A broad range of facultatively anaerobic bacteria was detected during this study and also, for the first time, some strictly anaerobic bacteria (Clostridium and Propionibacterium) were isolated from spacecraft-associated clean rooms. The multiassay cultivation approach was the basis for the detection of several bacteria that had not been cultivated from these special environments before and also led to the discovery of two novel microbial species of Pseudomonas and Paenibacillus.The major issue of planetary protection is to prevent the contamination of extraterrestrial environments by terrestrial biomolecules and life forms. Furthermore, reverse contamination of Earth by extraterrestrial material is also a fundamental concern (1). In order not to affect or even to confound future life detection missions on celestial bodies, which are of interest for their chemical and biological evolution, spacecraft are constructed in so-called clean rooms and are subject to severe cleaning processes and microbiological controls before launch (9). Therefore, these clean rooms are considered extreme environments for microorganisms (47).Detailed planetary protection protocols for missions to Mars were designed for the Viking missions, which were launched in 1975, and about 7,000 samples were taken from the two Viking spacecraft during prelaunch activities in order to determine the cultivable microbial load (37). Besides human-associated bacteria (pathogens and opportunistic pathogens), which were predominant among the microbes detected in these samples, aerobic spore-forming microorganisms (Bacillus) were found frequently on spacecraft and within the facilities.Spores are the resting states of bacteria and are often highly resistant to heat, desiccation, and other abiotic stresses. These multiresistance properties of such spore-forming microorganisms make them perfect candidates for surviving a space flight, and thus, the main focus of attention has been on them. Furthermore, only the detection of aerobic spore-forming bacteria is currently included in space agencies'' planetary protection protocols for the quantitative determination of microbial burden on spacecraft.The presence of extraordinarily (UV-) resistant spores in spacecraft facilities has been reported (31), but it also has been proven that vegetative microbial cells (e.g., Deinococcus radiodurans and Halobacterium sp. strain NRC-1) can resist very harsh conditions, such as extreme doses of (UV and ionizing) radiation and desiccation (8, 11). Recent culture-based and molecular studies have shown that the microbial diversity on spacecraft and within the clean rooms is extraordinarily high and does include extremotolerant bacteria and even archaea (25, 30).The atmospheres of most planets and bodies within the reach of human exploration contain only traces of oxygen (Mars contains 0.13%), probably not enough to support terrestrial aerobic life as we know it (26, 44). Even though Mars'' surface is highly oxidizing and radiation exposed, the Martian subsurface, as well as those of other planets and bodies (like, e.g., Titan), has been discussed as an anaerobic biotope for possible life (4, 40).Therefore, the lack of studies of the existence of anaerobically growing microorganisms in spacecraft-associated clean rooms is quite surprising. One possible reason for this discrepancy might be that the cultivation of anaerobes is challenging. Already in 1969, Hungate published a method for the cultivation of strictly anaerobic methanogenic Archaea (20). Although this technique has undergone a few simplifications during past decades, the cultivation of anaerobes requires specialized and expensive equipment (e.g., anaerobic glove boxes and gas stations), practical experience, and skills in specific methodology. Nevertheless, by the application of anaerobic cultivation strategies, many fascinating microorganisms—such as Nanoarchaeum equitans, the first representative of the new archaeal phylum Nanoarchaeota, or Thermotoga maritima, a hyperthermophilic bacterium growing at up to 90°C (17, 18)—have successfully been isolated from diverse and sometimes extreme biotopes.Generally, there are different types of anaerobic organisms. Facultative anaerobes (like Escherichia coli) are able to adapt their metabolism and can grow under conditions with or without oxygen but prefer aerobic conditions. Aerotolerant anaerobes do not need oxygen for their growth and show no preference, and strict anaerobes (e.g., methanogens) never require oxygen for their reproduction and metabolism. Even more, obligate (strict) anaerobes can be growth inhibited or even killed by oxygen.The presence of anaerobic microorganisms (enriched using the BD GasPak system) in surface samples from U.S. clean rooms has rarely been reported. Members of the facultatively anaerobic genera Paenibacillus and Staphylococcus have been isolated in the course of a study about extremotolerant microorganisms (25). During molecular surveys of U.S. clean rooms, the 16S rRNA genes from strictly anaerobic microorganisms, such as the spore-forming genus Clostridium, have already been detected (29). Nevertheless, the cultivation of these microbes has not yet been successful.With the ExoMars mission impending, the European Space Agency (ESA) is organizing and funding a biodiversity study of the ESA''s clean rooms and the spacecraft therein. The microbiology of these special environments is characterized in detail by a combination of standard procedures, new cultivation approaches, and molecular methods that shall illuminate the presence of planetary protection-relevant microorganisms in these facilities. At the date of sampling, all the clean rooms harbored the Herschel Space Observatory, a spacecraft to be launched together with the Planck satellite in spring 2009, as of this writing. Herschel will be fitted with the largest mirror ever built for a space mission (3.5 m in diameter), and its main goal will be the exploration of the cold universe, i.e., the formation and evolution of proto-galaxies (35). The Herschel Space Observatory does not demand planetary protection requirements, but all clean rooms were in a fully operating state during the construction work. This gave us the opportunity to sample the microbial diversity in these extreme environments without bioburden control but under strict contamination-controlled conditions, with respect to particulates and molecular contamination.This paper presents the results from our attempts to isolate anaerobic and facultatively anaerobic microorganisms from samples of spacecraft and surfaces in European spacecraft-associated clean rooms. For this purpose, we have successfully applied Hungate technology for anaerobic culturing and used an assortment of noncommercial media for the cultivation of a broad variety of microorganisms. Besides the capability of anaerobic growth, many of our isolates revealed special physiological capacities (e.g., nitrogen fixation and autotrophic metabolism) that might be relevant for further planetary protection considerations.  相似文献   

3.
The primary objective of this study was to determine quantitatively and qualitatively the predominant types of microbial contamination occurring in conventional and laminar flow clean rooms. One horizontal laminar flow, three conventional industrial clean rooms, and three open factory areas were selected for microbiological tests. The results showed that as the environment and personnel of a clean room were controlled in a more positive manner with respect to the reduction of particulate contamination, the levels of airborne and surface microbial contaminants were reduced accordingly. The chief sources of microbial contamination were associated with the density and activity of clean room personnel. In addition, the majority of microorganisms isolated from the intramural air by air samplers were those indigenous to humans. Studies on the fallout and accumulation of airborne microorganisms on stainless-steel surfaces showed that, although there were no significant differences in the levels of microbial contamination among the conventional clean rooms, the type of microorganism detected on stainless-steel surfaces was consistently and significantly different. In addition, the "plateau phenomenon" occurred in all environments studied. It was concluded that the stainless-steel strip method for detecting microbial accumulation on surfaces is efficient and sensitive in ultra-clean environments and is the most reliable and practical method for monitoring microbial contamination in future class 100 clean rooms to be used for the assembly of spacecraft which will be sterilized.  相似文献   

4.
Coral reefs are among the most diverse and productive ecosystems in the world. Most research has, however, focused on eukaryotes such as corals and fishes. Recently, there has been increasing interest in the composition of prokaryotes, particularly those inhabiting corals and sponges, but these have mainly focused on bacteria. There have been very few studies of coral reef Archaea, despite the fact that Archaea have been shown to play crucial roles in nutrient dynamics, including nitrification and methanogenesis, of oligotrophic environments such as coral reefs. Here, we present the first study to assess Archaea in four different coral reef biotopes (seawater, sediment, and two sponge species, Stylissa massa and Xestospongia testudinaria). The archaeal community of both sponge species and sediment was dominated by Crenarchaeota, while the seawater community was dominated by Euryarchaeota. The biotope explained more than 72 % of the variation in archaeal composition. The number of operational taxonomic units (OTUs) was highest in sediment and seawater biotopes and substantially lower in both sponge hosts. No “sponge-specific” archaeal OTUs were found, i.e., OTUs found in both sponge species but absent from nonhost biotopes. Despite both sponge species hosting phylogenetically distinct microbial assemblages, there were only minor differences in Kyoto Encyclopedia of Genes and Genomes (KEGG) functional pathways. In contrast, most functional pathways differed significantly between microbiomes from sponges and nonhost biotopes including all energy metabolic pathways. With the exception of the methane and nitrogen metabolic pathway, all energy metabolic pathways were enriched in sponges when compared to nonhost biotopes.  相似文献   

5.
The environment in space and on planets such as Mars can be lethal to microorganisms because of the high vacuum and high solar radiation flux, in particular UV radiation, in such environments. Spores of various Bacillus species are among the organisms most resistant to the lethal effects of high vacuum and UV radiation, and as a consequence are of major concern for planetary contamination via unmanned spacecraft or even natural processes. This review focuses on the spores of various Bacillus species: (i) their mechanisms of UV resistance; (ii) their survival in unmanned spacecraft, space flight and simulated space flight and Martian conditions; (iii) the UV flux in space and on Mars; (iv) factors affecting spore survival in such high UV flux environments.  相似文献   

6.
The presence of Archaea is currently being explored in various environments, including extreme geographic positions and eukaryotic habitats. Methanogens are the dominating archaeal organisms found in most animals, from unicellular protozoa to humans. Many methanogens can contribute to the removal of hydrogen, thereby improving the efficiency of fermentation or the reductive capacity of energy-yielding reactions. They may also be involved in tissue damage in periodontal patients. Recent molecular studies demonstrated the presence of Archaea other than methanogens in some animals—but so far, not in humans. The roles of these microorganisms have not yet been established. In the present review, we present the state of the art regarding the archaeal microflora in animals.  相似文献   

7.
In assessing the bacterial populations present in spacecraft assembly, spacecraft test, and launch preparation facilities, extremophilic bacteria (requiring severe conditions for growth) and extremotolerant bacteria (tolerant to extreme conditions) were isolated. Several cultivation approaches were employed to select for and identify bacteria that not only survive the nutrient-limiting conditions of clean room environments but can also withstand even more inhospitable environmental stresses. Due to their proximity to spacefaring objects, these bacteria pose a considerable risk for forward contamination of extraterrestrial sites. Samples collected from four geographically distinct National Aeronautics and Space Administration clean rooms were challenged with UV-C irradiation, 5% hydrogen peroxide, heat shock, pH extremes (pH 3.0 and 11.0), temperature extremes (4 degrees C to 65 degrees C), and hypersalinity (25% NaCl) prior to and/or during cultivation as a means of selecting for extremotolerant bacteria. Culture-independent approaches were employed to measure viable microbial (ATP-based) and total bacterial (quantitative PCR-based) burdens. Intracellular ATP concentrations suggested a viable microbial presence ranging from below detection limits to 10(6) cells/m(2). However, only 0.1 to 55% of these viable cells were able to grow on defined culture medium. Isolated members of the Bacillaceae family were more physiologically diverse than those reported in previous studies, including thermophiles (Geobacillus), obligate anaerobes (Paenibacillus), and halotolerant, alkalophilic species (Oceanobacillus and Exiguobacterium). Non-spore-forming microbes (alpha- and beta-proteobacteria and actinobacteria) exhibiting tolerance to the selected stresses were also encountered. The multiassay cultivation approach employed herein enhances the current understanding of the physiological diversity of bacteria housed in these clean rooms and leads us to ponder the origin and means of translocation of thermophiles, anaerobes, and halotolerant alkalophiles into these environments.  相似文献   

8.
Genome analysis points to N-glycosylation as being an almost universal posttranslational modification in Archaea. Although such predictions have been confirmed in only a limited number of species, such studies are making it increasingly clear that the N-linked glycans which decorate archaeal glycoproteins present diversity in terms of both glycan composition and architecture far beyond what is seen in the other two domains of life. In addition to continuing to decipher pathways of N-glycosylation, recent efforts have revealed how Archaea exploit this variability in novel roles. As well as encouraging glycoprotein synthesis, folding and assembly into properly functioning higher ordered complexes, N-glycosylation also provides Archaea with a strategy to cope with changing environments. Archaea can, moreover, exploit the apparent species-specific nature of N-glycosylation for selectivity in mating, and hence, to maintain species boundaries, and in other events where cell-selective interactions are required. At the same time, addressing components of N-glycosylation pathways across archaeal phylogeny offers support for the concept of an archaeal origin for eukaryotes. In this MicroReview, these and other recent discoveries related to N-glycosylation in Archaea are considered.  相似文献   

9.
Archaea play crucial roles in a number of key ecological processes including nitrification and methanogenesis. Although several studies have been conducted on these organisms, the roles and dynamics of coral reef archaeal communities are still poorly understood, particularly in host and nonhost biotopes and in high (HMA) and low microbial abundance (LMA) sponges. Here, archaeal communities detected in six distinct biotopes, namely, sediment, seawater and four different sponge species Stylissa carteri, Stylissa massa, Xestospongia testudinaria and Hyrtios erectus from the Spermonde Archipelago, SW Sulawesi, Indonesia were investigated using 454‐pyrosequencing of 16S rRNA genes (OTU cut‐off 97%). Archaeal communities from sediment and sponges were dominated by Crenarchaeota, while the seawater community was dominated by Euryarchaeota. The biotope explained almost 75% of the variation in archaeal composition, with clear separation between microbial assemblages from sediment, X. testudinaria and H. erectus (HMA). In contrast, samples from seawater and both Stylissa species (LMA) showed considerable overlap in the ordination and, furthermore, shared most abundant OTUs with the exception of a single dominant OTU specifically enriched in both Stylissa species. Predicted functional gene content in archaeal assemblages also revealed significant differences among biotopes. Different ammonia assimilation strategies were exhibited by the archaeal communities: X. testudinaria, H. erectus and sediment archaeal communities were enriched for glutamate dehydrogenase with mixed specificity (NAD(P)+) pathways, while archaeal planktonic communities were enriched for specific glutamate dehydrogenase (NADP+) and glutamate synthase pathways. Archaeal communities in Stylissa had intermediate levels of enrichment. Our results indicate that archaeal communities in different biotopes have distinct ecophysiological roles.  相似文献   

10.
Cold stress response in Archaea   总被引:6,自引:0,他引:6  
We live on a cold planet where more than 80% of the biosphere is permanently below 5°C, and yet comparatively little is known about the genetics and physiology of the microorganisms inhabiting these environments. Based on molecular probe and sequencing studies, it is clear that Archaea are numerically abundant in diverse low-temperature environments throughout the globe. In addition, non-low-temperature-adapted Archaea are commonly exposed to sudden decreases in temperature, as are other microorganisms, animals, and plants. Considering their ubiquity in nature, it is perhaps surprising to find that there is such a lack of knowledge regarding low-temperature adaptation mechanisms in Archaea, particularly in comparison to what is known about archaeal thermophiles and hyperthermophiles and responses to heat shock. This review covers what is presently known about adaptation to cold shock and growth at low temperature, with a particular focus on Antarctic Archaea. The review highlights the similarities and differences that exist between Archaea and Bacteria and eukaryotes, and addresses the potentially important role that protein synthesis plays in adaptation to the cold. By reviewing the present state of the field, a number of important areas for future research are identified. Received: August 10, 2000 / Accepted: September 26, 2000  相似文献   

11.
Phylogenetic diversity and ecology of environmental Archaea   总被引:1,自引:0,他引:1  
On the basis of culture studies, Archaea were thought to be synonymous with extreme environments. However, the large numbers of environmental rRNA gene sequences currently flooding into databases such as GenBank show that these organisms are present in almost all environments examined to date. Large sequence databases and new fast phylogenetic software allow more precise determination of the archaeal phylogenetic tree, but also indicate that our knowledge of archaeal diversity is incomplete. Although it is apparent that Archaea can be found in all environments, the chemistry of their ecological context is mostly unknown.  相似文献   

12.
AIMS: Application of molecular techniques to ecological studies has unveiled a wide diversity of micro-organisms in natural communities, previously unknown to microbial ecologists. New lineages of Archaea were retrieved from several non-extreme environments, showing that these micro-organisms are present in a large variety of ecosystems. The aim was therefore to assess the presence and diversity of Archaea in the sediments of the river Douro estuary (Portugal), relating the results obtained to ecological data. METHODS AND RESULTS: Total DNA was extracted from sediment samples obtained from an estuary deprived of vegetation, amplified by PCR and the resulting DNA fragments cloned. The archaeal origin of the cloned inserts was checked by Southern blot, dot blot or colony blot hybridization. Recombinant plasmids were further analysed by restriction with AvaII and selected for sequencing. Phylogenetic analyses of 14 sequences revealed the presence of members of the domain Archaea. Most of the sequences could be assigned to the kingdom Crenarchaeota. CONCLUSION: Most of these sequences were closely related to those obtained from non-extreme Crenarchaeota members previously retrieved from diverse ecosystems, such as freshwater and marine environments. SIGNIFICANCE AND IMPACT OF THE STUDY: The presence of archaeal 16S rDNA sequences in temperate estuarine sediments emerges as a valuable contribution to the understanding of the complexity of the ecosystem.  相似文献   

13.
Archaea form one of the three primary groups of extant life and are commonly associated with the extreme environments which many of their members inhabit. Currently, the Archaea are classified into two kingdoms, Crenarchaeota and Euryarchaeota, based on phylogenetic analysis of ribosomal RNA (rRNA) sequences. Molecular techniques allowing the retrieval and analysis of rRNA sequences from diverse environments are increasing our knowledge of archaeal diversity. This report describes the presence of marine Archaea in north-east Atlantic waters. Quantitative estimates indicated that the marine Archaea constitute 8 per cent of the total prokaryotic rRNA in Irish coastal waters. Phylogenetic analysis of the archaeal rRNA gene sequences revealed sufficient genetic diversity within Archaea to indicate that the current two-kingdom classification of Crenarchaeota and Euryarchaeota is restrictive.  相似文献   

14.
Archaea that live at high salt concentrations are a phylogenetically diverse group of microorganisms. They include the heterotrophic haloarchaea (class Halobacteria) and some methanogenic Archaea, and they inhabit both oxic and anoxic environments. In spite of their common hypersaline environment, halophilic archaea are surprisingly diverse in their nutritional demands, range of carbon sources degraded (including hydrocarbons and aromatic compounds) and metabolic pathways. The recent discovery of a new group of extremely halophilic Euryarchaeota, the yet uncultured Nanohaloarchaea, shows that the archaeal diversity and metabolic variability in hypersaline environments is higher than hitherto estimated.  相似文献   

15.
Based on lipid analyses, 16S rRNA/rRNA gene single-strand conformation polymorphism fingerprints and methane flux measurements, influences of the fertilization regime on abundance and diversity of archaeal communities were investigated in soil samples from the long-term (103 years) field trial in Bad Lauchst?dt, Germany. The investigated plots followed a gradient of increasing fertilization beginning at no fertilization and ending at the 'cattle manure' itself. The archaeal phospholipid etherlipid (PLEL) concentration was used as an indicator for archaeal biomass and increased with the gradient of increasing fertilization, whereby the concentrations determined for organically fertilized soils were well above previously reported values. Methane emission, although at a low level, were occasionally only observed in organically fertilized soils, whereas the other treatments showed significant methane uptake. Euryarchaeotal organisms were abundant in all investigated samples but 16S rRNA analysis also demonstrated the presence of Crenarchaeota in fertilized soils. Lowest molecular archaeal diversity was found in highest fertilized treatments. Archaea phylogenetically most closely related to cultured methanogens were abundant in these fertilized soils, whereas Archaea with low relatedness to cultured microorganisms dominated in non-fertilized soils. Relatives of Methanoculleus spp. were found almost exclusively in organically fertilized soils or cattle manure. Methanosarcina-related microorganisms were detected in all soils as well as in the cattle manure, but soils with highest organic application rate were specifically dominated by a close phylogenetic relative of Methanosarcina thermophila. Our findings suggest that regular application of cattle manure increased archaeal biomass, but reduced archaeal diversity and selected for methanogenic Methanoculleus and Methanosarcina strains, leading to the circumstance that high organic fertilized soils did not function as a methane sink at the investigated site anymore.  相似文献   

16.
The recent era of exploring the human microbiome has provided valuable information on microbial inhabitants, beneficials and pathogens. Screening efforts based on DNA sequencing identified thousands of bacterial lineages associated with human skin but provided only incomplete and crude information on Archaea. Here, we report for the first time the quantification and visualization of Archaea from human skin. Based on 16 S rRNA gene copies Archaea comprised up to 4.2% of the prokaryotic skin microbiome. Most of the gene signatures analyzed belonged to the Thaumarchaeota, a group of Archaea we also found in hospitals and clean room facilities. The metabolic potential for ammonia oxidation of the skin-associated Archaea was supported by the successful detection of thaumarchaeal amoA genes in human skin samples. However, the activity and possible interaction with human epithelial cells of these associated Archaea remains an open question. Nevertheless, in this study we provide evidence that Archaea are part of the human skin microbiome and discuss their potential for ammonia turnover on human skin.  相似文献   

17.
土壤中温泉古菌研究进展   总被引:1,自引:1,他引:1  
贺纪正  沈菊培  张丽梅 《生态学报》2009,29(9):5047-5055
古菌一直被冠以嗜极端环境的特征,直到最近十几年,由于分子生物学技术的发展,越来越多的证据表明,在许多非极端环境,包括海洋、湖泊和土壤中,分布着一类特殊的古菌-非嗜热泉古菌(non-thermophilic Crenarchaeota).该类古菌不仅分布广泛,而且数量巨大.通过16S rRNA基因序列分析发现,中温泉古菌可能参与到全球碳、氮等生物地球化学循环,预示着其在整个生态系统中起着重要的作用.从古菌分类着手,阐述了中温泉古菌在土壤中的分布和数量特征、影响因素,进而对其在氮和碳循环过程中的潜在作用进行了简要介绍,并提出了今后的研究重点.  相似文献   

18.
The enumeration of Archaea in deep-sea sediment samples is still limited, although different methodological procedures have been applied. Among these, catalysed reporter deposition-fluorescence in situ hybridisation (CARD-FISH) technique is a promising tool for estimation of archaeal abundance in deep-sea sediment samples. Comparing different permeabilisation treatments, the best results obtained both on archaeal pure cultures and on natural assemblages were with hydrochloric acid (0.1 M) and proteinase K (0.004 U/ml) treatments. The application of CARD-FISH on deep-sea sediments revealed that Archaea reach up to 41% of total prokaryotic cells. Specific probes for planktonic Archaea showed that marine Crenarchaea dominated archaeal seafloor communities. No clear bathymetric trends were observed for archaeal abundances and the morphology of continental margin (slope vs. canyon) seems not to have a direct influence on archaeal relative abundances. The site-specific sediment habitat—both abiotic environmental setting and sedimentary organic matter quality—explain up to 65% of variance of archaeal, crenarchaeal and euryarchaeal relative abundance, suggesting a wide ecophysiological adaptation to deep-sea benthic ecosystems. The findings demonstrate that Archaea are an important component of benthic microbial assemblages so far neglected, and hence they lay the groundwork for more focused research on their ecological importance in the functioning of deep-sea benthic ecosystems.  相似文献   

19.
In assessing the bacterial populations present in spacecraft assembly, spacecraft test, and launch preparation facilities, extremophilic bacteria (requiring severe conditions for growth) and extremotolerant bacteria (tolerant to extreme conditions) were isolated. Several cultivation approaches were employed to select for and identify bacteria that not only survive the nutrient-limiting conditions of clean room environments but can also withstand even more inhospitable environmental stresses. Due to their proximity to spacefaring objects, these bacteria pose a considerable risk for forward contamination of extraterrestrial sites. Samples collected from four geographically distinct National Aeronautics and Space Administration clean rooms were challenged with UV-C irradiation, 5% hydrogen peroxide, heat shock, pH extremes (pH 3.0 and 11.0), temperature extremes (4°C to 65°C), and hypersalinity (25% NaCl) prior to and/or during cultivation as a means of selecting for extremotolerant bacteria. Culture-independent approaches were employed to measure viable microbial (ATP-based) and total bacterial (quantitative PCR-based) burdens. Intracellular ATP concentrations suggested a viable microbial presence ranging from below detection limits to 106 cells/m2. However, only 0.1 to 55% of these viable cells were able to grow on defined culture medium. Isolated members of the Bacillaceae family were more physiologically diverse than those reported in previous studies, including thermophiles (Geobacillus), obligate anaerobes (Paenibacillus), and halotolerant, alkalophilic species (Oceanobacillus and Exiguobacterium). Non-spore-forming microbes (α- and β-proteobacteria and actinobacteria) exhibiting tolerance to the selected stresses were also encountered. The multiassay cultivation approach employed herein enhances the current understanding of the physiological diversity of bacteria housed in these clean rooms and leads us to ponder the origin and means of translocation of thermophiles, anaerobes, and halotolerant alkalophiles into these environments.  相似文献   

20.
Archaea are microorganisms that are distinct from bacteria and eukaryotes. They are prevalent in extreme environments, and yet found in most ecosystems. They are a natural component of the microbiota of most, if not all, humans and other animals. Despite their ubiquity and close association with humans, animals and plants, no pathogenic archaea have been identified. Because no archaeal pathogens have yet been identified, there is a general assumption that archaeal pathogens do not exist. This review examines whether this is a good assumption by investigating the potential for archaea to be or become pathogens. This is achieved by addressing: the diversity of archaea versus known pathogens, opportunities for archaea to demonstrate pathogenicity and be detected as pathogens, reports linking archaea with disease, and immune responses to archaea. In addition, molecular and genomic data are examined for the presence of systems utilised in pathogenesis. The view of this report is that, although archaea can presently be described as non-pathogenic, they have the potential to be (discovered as) pathogens. The present optimistic view that there are no archaeal pathogens is tainted by a severe lack of relevant knowledge, which may have important consequences in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号