首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
In Streptococcus pneumoniae, the first four genes of the capsule locus (cpsA to cpsD) are common to most serotypes. By analysis of various in-frame deletion and site-directed mutants, the function of their gene products in capsular polysaccharide (CPS) biosynthesis was investigated. We found that while CpsB, C and D are essential for encapsulation, CpsA is not. CpsC and CpsD have similarity to the amino-terminal and carboxy-terminal regions, respectively, of the autophosphorylating protein-tyrosine kinase Wzc from Escherichia coli. Alignment of CpsD with Wzc and other related proteins identified conserved Walker A and B sequence motifs and a tyrosine rich domain close to the carboxy-terminus. We have shown that CpsD is also an autophosphorylating protein-tyrosine kinase and that point mutations in cpsD affecting either the ATP-binding domain (Walker A motif) or the carboxy-terminal [YGX]4 repeat domain eliminated tyrosine phosphorylation of CpsD. We describe, for the first time, the phenotypic impact of these two mutations on polysaccharide production and show that they affect CPS production differently. Whereas a mutation in the Walker A motif resulted in loss of encapsulation, mutation of the tyrosines in the [YGX]4 repeat domain resulted in an apparent increase in encapsulation and a mucoid phenotype. These data suggest that autophosphorylation of CpsD at tyrosine attenuates its activity and reduces the level of encapsulation. Additionally, we demonstrated that CpsC is required for CpsD tyrosine phosphorylation and that CpsB influences dephosphorylation of CpsD. These results are consistent with CpsD tyrosine phosphorylation acting to negatively regulate CPS production. This has implications for the function of CpsC/CpsD homologues in both Gram-positive and Gram-negative bacteria and provides a mechanism to explain regulation of CPS production during pathogenesis.  相似文献   

4.
5.
To test the hypothesis that the hexosamine biosynthesis pathway (HBP) affects cytokine production, we studied IL-2 production by Jurkat cells in response to PHA. We found that the HBP activator glucosamine (GlcN), but not glucose (Glc), dose-dependently reduced IL-2 production. Importantly, GlcN blocked trafficking of a GFP-NFAT chimeric protein to the nucleus of stimulated transfectants. Not surprisingly, changes in O-GlcNAc protein modifications were noted during cell activation with and without GlcN addition. These findings could not be explained by some non-specific change in cell metabolism because ATP concentrations did not significantly change. We speculate that HBP-active compounds may contribute to patient care in certain inflammatory and autoimmune diseases.  相似文献   

6.
7.
8.
9.
We have assessed the role of synapsins in catecholamine release by comparing the properties of exocytosis in adrenal chromaffin cells from wild-type and synapsin triple knock-out (TKO) mice. Brief depolarizations led to a greater amount of catecholamine release in chromaffin cells from TKO mice in comparison to chromaffin cells from wild-type mice. This increase in catecholamine release was due to an increased number of exocytotic events, while the properties of individual quanta of released catecholamine were unchanged. Barium ions produced similar amounts of catecholamine release from TKO and wild-type chromaffin cells, suggesting that the reserve pool of chromaffin granules is unchanged following loss of synapsins. Because expression of synapsin IIa in TKO chromaffin cells rescued the defect in depolarization-induced exocytosis, the TKO phenotype apparently results from loss of synapsin IIa. We conclude that synapsin IIa serves as a negative regulator of catecholamine release and that this protein influences exocytosis from a readily releasable pool of chromaffin granules. Further, because these defects in catecholamine release are different from those observed for glutamate and GABA release in TKO mice, we conclude that the functions of synapsins differ for vesicles containing different types of neurotransmitters.  相似文献   

10.
Calcineurin negatively regulates TLR-mediated activation pathways   总被引:2,自引:0,他引:2  
In innate immunity, microbial components stimulate macrophages to produce antimicrobial substances, cytokines, other proinflammatory mediators, and IFNs via TLRs, which trigger signaling pathways activating NF-kappaB, MAPKs, and IFN response factors. We show in this study that, in contrast to its activating role in T cells, in macrophages the protein phosphatase calcineurin negatively regulates NF-kappaB, MAPKs, and IFN response factor activation by inhibiting the TLR-mediated signaling pathways. Evidence for this novel role for calcineurin was provided by the findings that these signaling pathways are activated when calcineurin is inhibited either by the inhibitors cyclosporin A or FK506 or by small interfering RNA-targeting calcineurin, and that activation of these pathways by TLR ligands is inhibited by the overexpression of a constitutively active form of calcineurin. We further found that IkappaB-alpha degradation, MAPK activation, and TNF-alpha production by FK506 were reduced in macrophages from mice deficient in MyD88, Toll/IL-1R domain-containing adaptor-inducing IFN-beta (TRIF), TLR2, or TLR4, whereas macrophages from TLR3-deficient or TLR9 mutant mice showed the same responses to FK506 as those of wild-type cells. Biochemical studies indicate that calcineurin interacts with MyD88, TRIF, TLR2, and TLR4, but not with TLR3 or TLR9. Collectively, these results suggest that calcineurin negatively regulates TLR-mediated activation pathways in macrophages by inhibiting the adaptor proteins MyD88 and TRIF, and a subset of TLRs.  相似文献   

11.
RANKL induces the formation of osteoclasts, which are responsible for bone resorption. Herein, we investigated the role of SWAP-70-like adapter of T cells (SLAT) in RANKL-induced osteoclastogenesis. Expression levels of SLAT were reduced during RANKL-induced osteoclastogenesis. Overexpression of SLAT in BMMs inhibited TRAP-positive multinuclear osteoclast formation and attenuated the expression of NFATc1, which is an important modulator in osteoclastogenesis. Furthermore, silencing of SLAT by RNA interference enhanced osteoclast formation as well as NFATc1 expression. In addition, SLAT was involved in RANKL-induced JNK activation in osteoclasts. Taken together, our data suggest that SLAT acts as a negative modulator of RANKL-induced osteoclastogenesis.  相似文献   

12.
13.
14.
Journal of Plant Research - The model plant Arabidopsis thaliana has five double-stranded RNA-binding proteins (DRB1-DRB5), two of which, DRB1 and DRB4, are well characterized. In contrast, the...  相似文献   

15.
16.
17.
CHFR ubiquitin ligase acts as a checkpoint upon DNA damage and its functional inactivation is one of key characteristics of tumor development and metastasis. Despite the crucial role in maintaining genome integrity and cell cycle progression, little is known how CHFR stability is regulated. Here, we showed that CHFR is covalently modified by SUMO-1 at lysine 663 and subsequently destabilized by ubiquitin–proteasome system. While CHFRK663R substitution mutation does not alter its subcellular localization, SUMOylation-defective CHFRK663R-stable cells exhibit substantial growth suppression due to the increased stability of CHFRK663R. Moreover, protein level of CHFR, not CHFRK663R, is rapidly declined under SUMOylation-promoting conditions, and SENP2 deSUMOylating enzyme reverses its SUMO-modification. Collectively, we demonstrated that CHFR stability is regulated by SUMOylation-dependent proteasomal degradation. Therefore, our study underscores the importance of CHFR SUMOylation as a new regulatory mechanism of CHFR and highlights the emerging role of SUMOylation in modulating protein stability.  相似文献   

18.
Shriti  Surbhi  Paul  Sathi  Das  Sampa 《Protoplasma》2023,260(2):589-605
Protoplasma - Chickpea, an important grain legume, suffers from considerable loss of yield due to Fusarium wilt disease. Inaccessibility of resistant gene pool among cultivars and lack of report of...  相似文献   

19.
Early embryonic lung branching morphogenesis is regulated by many growth factor-mediated pathways. Bone morphogenetic protein 4 (BMP4) is one of the morphogens that stimulate epithelial branching in mouse embryonic lung explant culture. To further understand the molecular mechanisms of BMP4-regulated lung development, we studied the biological role of Smad-ubiquitin regulatory factor 1 (Smurf1), an ubiquitin ligase specific for BMP receptor-regulated Smads, during mouse lung development. The temporo-spatial expression pattern of Smurf1 in mouse embryonic lung was first determined by quantitative real-time PCR and immunohistochemistry. Overexpression of Smurf1 in airway epithelial cells by intratracheal introduction of recombinant adenoviral vector dramatically inhibited embryonic day (E) 11.5 lung explant growth in vitro. This inhibition of lung epithelial branching was restored by coexpression of Smad1 or by addition of soluble BMP4 ligand into the culture medium. Studies at the cellular level show that overexpression of Smurf1 reduced epithelial cell proliferation and differentiation, as documented by reduced PCNA-positive cell index and by reduced mRNA levels for surfactant protein C and Clara cell protein 10 expression. Further studies found that overexpression of Smurf1 reduced BMP-specific Smad1 and Smad5, but not Smad8, protein levels. Thus overexpression of Smurf1 specifically promotes Smad1 and Smad5 ubiquitination and degradation in embryonic lung epithelium, thereby modulating the effects of BMP4 on embryonic lung growth.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号