首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have reported that xeroderma pigmentosum group A (Xpa) gene-knockout mice [Xpa (−/−) mice] are deficient in nucleotide excision repair (NER) and highly sensitive to UV-induced skin carcinogenesis. Although xeroderma pigmentosum group A patients show growth retardation, immature sexual development, and neurological abnormalities as well as a high incidence of UV-induced skin tumors, Xpa (−/−) mice were physiologically and behaviorally normal. In the present study, we kept Xpa (−/−) mice for 2 years under specific pathogen-free (SPF) conditions and found that the testis diminished in an age-dependent manner, and degenerating seminiferous tubules and no spermatozoa were detected in the 24-month-old Xpa (−/−) mice. In addition, a higher incidence of spontaneous tumorigenesis was observed in the 24-month-old Xpa (−/−) mice compared to Xpa (+/+) controls. Xpa (−/−) mice provide a useful model for investigating the aging and internal tumor formation in XPA patients.  相似文献   

2.
The DNA damage checkpoint is a surveillance mechanism activated by DNA lesions and devoted to the maintenance of genome stability. It is considered as a signal transduction cascade, involving a sensing step, the activation of a set of protein kinases and the transmission and amplification of the damage signal through several phosphorylation events. In budding yeast many players of this pathway have been identified. Recent work showed that G1 and G2 checkpoint activation in response to UV irradiation requires prior recognition and processing of UV lesions by nucleotide excision repair (NER) factors that likely recruit checkpoint proteins near the damage. However, another report suggested that NER was not required for checkpoint function. Since the functional relationship between repair mechanisms and checkpoint activation is a very important issue in the field, we analyzed, under different experimental conditions, whether lesion processing by NER is required for checkpoint activation. We found that DNA damage checkpoint can be triggered in an NER-independent manner only if cells are subjected to liquid holding after UV treatment. This incubation causes a time-dependent breakage of DNA strands in NER-deficient cells and leads to partial activation of the checkpoint kinase. The analysis of the genetic requirements for this alternative activation pathway suggest that it requires Mec1 and the Rad17 complex and that the observed DNA breaks are likely to be due to spontaneous decay of damaged DNA.  相似文献   

3.
As a critical tumor suppressor, p53 is inactivated in human cancer cells by somatic gene mutation or disruption of pathways required for its activation. Therefore, it is critical to elucidate the mechanism underlying p53 activation after genotoxic and cellular stresses. Accumulating evidence has indicated the importance of posttranslational modifications such as acetylation in regulating p53 stability and activity. However, the physiological roles of the eight identified acetylation events in regulating p53 responses remain to be fully understood. By employing homologous recombination, we introduced various combinations of missense mutations (lysine to arginine) into eight acetylation sites of the endogenous p53 gene in human embryonic stem cells (hESCs). By determining the p53 responses to DNA damage in the p53 knock-in mutant hESCs and their derivatives, we demonstrate physiological importance of the acetylation events within the core domain (K120 and K164) and at the C-terminus (K370/372/373/381/382/ 386) in regulating human p53 responses to DNA damage.  相似文献   

4.
DNA damage was assessed in smoker lymphocytes by subjecting them to the single cell gel electrophoresis (SCGE) assay. In addition to the appearance of comet tails, smoker cells exhibited enlarged nuclei when analysed by the comet assay. On comparing basal DNA damage among smokers and a non-smoking control group, smoker lymphocytes showed higher basal DNA damage (smokers, 36.25±8.45 μm; non-smokers, 21.6±2.06 μm). A significant difference in DNA migration lengths was observed between the two groups at 10 min after UV exposure (smokers, 65.5±20.34 μm; non-smokers, 79.2±11.59 μm), but no significant differences were seen at 30 min after UV exposure (smokers, 21.13±10.73 μm; non-smokers, (27.2±4.13 μm). The study thus implies that cigarette smoking perhaps interferes with the incision steps of the nucleotide excision repair (NER) process. There appeared be no correlation between the frequency of smoking and DNA damage or the capacity of the cells to repair UV-induced DNA damage that suggests inherited host factors may be responsible for the inter-individual differences in DNA repair capacities. The study also suggests monitoring NER following UV insult using the SCGE assay is a sensitive and simple method to assess DNA damage and integrity of DNA repair in human cells exposed to chemical mutagens.  相似文献   

5.
The cellular response to DNA double‐strand breaks involves direct activation of ataxia telangiectasia mutated (ATM) and indirect activation of ataxia telangiectasia and Rad3 related (ATR) in an ATM/Mre11/cell‐cycle‐dependent manner. Here, we report that the crucial checkpoint signalling proteins—p53, structural maintainance of chromosomes 1 (SMC1), p53 binding protein 1 (53BP1), checkpoint kinase (Chk)1 and Chk2—are phosphorylated rapidly by ATR in an ATM/Mre11/cell‐cycle‐independent manner, albeit at low levels. We observed the sequential recruitment of replication protein A (RPA) and ATR to the sites of DNA damage in ATM‐deficient cells, which provides a mechanistic basis for the observed phosphorylations. The recruitment of ATR and consequent phosphorylations do not require Mre11 but are dependent on Exo1. We show that these low levels of phosphorylation are biologically important, as ATM‐deficient cells enforce an early G2/M checkpoint that is ATR‐dependent. ATR is also essential for the late G2 accumulation that is peculiar to irradiated ATM‐deficient cells. Interestingly, phosphorylation of KRAB associated protein 1 (KAP‐1), a protein involved in chromatin remodelling, is mediated by DNA‐dependent protein kinase catalytic subunit (DNA‐PKcs) in a spatio‐temporal manner in addition to ATM. We posit that ATM substrates involved in cell‐cycle checkpoint signalling can be minimally phosphorylated independently by ATR, while a small subset of proteins involved in chromatin remodelling are phosphorylated by DNA‐PKcs in addition to ATM.  相似文献   

6.
7.
The involvement of p53 as a determinant of chemosensitivity or radiosensitivity is not well understood and is complicated by numerous contradictory reports. Here we have addressed this issue using a series of isogenic clones derived from two neuroblastoma cell lines that express wild-type p53 genes, Nub7 and IMR32. Two different mutant p53 transgenes were used in an attempt to disrupt p53 function in the clones. Our findings indicate that the cellular response is dependent on the genotoxic agent used as well as on the specific p53 transgene used. Cellular radiosensitivity showed no association with apoptosis or with the ability of the cells to arrest in G1 after irradiation. An association was observed, however, between gamma-radiation sensitivity and DNA double-strand break rejoining activity.  相似文献   

8.
It has been almost a decade since the last review appeared comparing and contrasting the influences that the different families of High Mobility Group proteins (HMGA, HMGB and HMGN) have on the various DNA repair pathways in mammalian cells. During that time considerable progress has been made in our understanding of how these non-histone proteins modulate the efficiency of DNA repair by all of the major cellular pathways: nucleotide excision repair, base excision repair, double-stand break repair and mismatch repair. Although there are often similar and over-lapping biological activities shared by all HMG proteins, members of each of the different families appear to have a somewhat ‘individualistic’ impact on various DNA repair pathways. This review will focus on what is currently known about the roles that different HMG proteins play in DNA repair processes and discuss possible future research areas in this rapidly evolving field.  相似文献   

9.
The realization, that the androgen receptor (AR) is essential for prostate cancer (PC) even after relapse following androgen deprivation therapy motivated the search for novel types of AR inhibitors. We proposed that targeting AR expression versus its function would work in cells having either wild type or mutant AR as well as be independent of androgen synthesis pathways. Previously, using a phenotypic screen in androgen-independent PC cells we identified a small molecule inhibitor of AR, ARTIK-52. Treatment with ARTIK-52 caused the loss of AR protein and death of AR-positive, but not AR-negative, PC cells. Here we present data that ARTIK-52 induces degradation of AR mRNA through a mechanism that we were unable to establish. However, we found that ARTIK-52 is toxic to breast cancer (BC) cells expressing AR, although they were not sensitive to AR knockdown, suggesting an AR-independent mechanism of toxicity. Using different approaches we detected that ARTIK-52 induces replication-dependent double strand DNA breaks exclusively in cancer cells of prostate and breast origin, while not causing DNA damage, or any toxicity, in normal cells, as well as in non-PC and non-BC tumor cells, independent of their proliferation status. This amazing specificity, combined with such a basic mechanism of toxicity, makes ARTIK-52 a potentially useful tool to discover novel attractive targets for the treatment of BC and PC. Thus, phenotypic screening allowed us to identify a compound, whose properties cannot be predicted based on existing knowledge and moreover, uncover a barely known link between AR and DNA damage response in PC and BC epithelial cells.  相似文献   

10.
11.
Unscheduled DNA synthesis has been measured in human fibroblasts under conditons of reduced rates of conversion of NAD to poly(ADP-ribose). Cells heterozygous for the xeroderma pigmentosum genotype showed normal rates of UV induced unscheduled DNA synthesis under conditions in which the rate of poly(ADP-ribose) synthesis was one-half the rate of normal cells. The addition of theophylline, a potent inhibitor of poly(ADP-ribose) polymerase, to the culture medium of normal cells blocked over 90% of the conversion of NAD to poly(ADP-ribose) following treatment with UV or N-methyl-N′-nitro-N-nitro-soguanidine but did not affect the rate of unscheduled DNA synthesis.  相似文献   

12.
In the absence of blood brain barrier (BBB) the DNA of peripheral nervous system (PNS) neurons is exposed to a broader spectrum of endogenous and exogenous threats compared to that of the central nervous system (CNS). Hence, while CNS and PNS neurons cope with many similar challenges inherent to their high oxygen consumption and vigorous metabolism, PNS neurons are also exposed to circulating toxins and inflammatory mediators due to relative permeability of PNS blood nerve barrier (BNB). Consequently, genomes of PNS neurons incur greater damage and the question awaiting investigation is whether specialized repair mechanisms for maintenance of DNA integrity have evolved to meet the additional needs of PNS neurons. Here, I review data showing how PNS neurons manage collateral DNA damage incurred in the course of different anti-cancer treatments designed to block DNA replication in proliferating tumor cells. Importantly, while PNS neurotoxicity and concomitant chemotherapy-induced peripheral neuropathy (CIPN) are among major dose limiting barriers in achieving therapy goals, CIPN is partially reversible during post-treatment nerve recovery. Clearly, cell recovery necessitates mobilization of the DNA damage response and underscores the need for systematic investigation of the scope of DNA repair capacities in the PNS to help predict post-treatment risks to recovering neurons.  相似文献   

13.
14.
Maintenance of genome integrity and stability is a critical responsibility of the DNA damage response (DDR) within cells, such that any disruption in this kinase-based signaling pathway leads to development of various disorders, particularly cancer. The tumor suppressor P53-binding protein 1 (53BP1), as one of the main mediators of DDR, plays a pivotal role in orchestrating the choice of double-strand break (DSB) repair pathway and contains interaction surfaces for numerous DSB-responsive proteins. It has been extensively demonstrated that aberrant expression of 53BP1 contributes to tumor occurrence and development. 53BP1 loss of function in tumor tissues is also related to tumor progression and poor prognosis in human malignancies. Due to undeniable importance of this protein in various aspects of cancer initiation/progression, angiogenesis, metastasis and development of drug resistance, as well as its targeting in the treatment of cancer, this review focused on explaining the structure and function of 53BP1 and its contribution to cancer.  相似文献   

15.
Much effort has been put in the discovery of ways to selectively kill p53-deficient tumor cells and targeting cell cycle checkpoint pathways has revealed promising candidates. Studies in zebrafish and human cell lines suggested that the DNA damage response kinase, checkpoint kinase 1 (Chk1), not only regulates onset of mitosis but also cell death in response to DNA damage in the absence of p53. This effect reportedly relies on ataxia telangiectasia mutated (ATM)-dependent and PIDDosome-mediated activation of Caspase-2. However, we show that genetic ablation of PIDDosome components in mice does not affect cell death in response to γ-irradiation. Furthermore, Chk1 inhibition largely failed to sensitize normal and malignant cells from p53−/− mice toward DNA damaging agents, and p53 status did not affect the death-inducing activity of DNA damage after Chk1 inhibition in human cancer cells. These observations argue against cross-species conservation of a Chk1-controlled cell survival pathway demanding further investigation of the molecular machinery responsible for cell death elicited by forced mitotic entry in the presence of DNA damage in different cell types and model organisms.  相似文献   

16.
Telomeres are specialized structures at the ends of chromosomes that consist of tandem repeats of the DNA sequence TTAGGG and several proteins that protect the DNA and regulate the plasticity of the telomeres. The telomere-associated protein TRF2 (telomeric repeat binding factor 2) is critical for the control of telomere structure and function; TRF2 dysfunction results in the exposure of the telomere ends and activation of ATM (ataxia telangiectasin mutated)-mediated DNA damage response. Recent findings suggest that telomere attrition can cause senescence or apoptosis of mitotic cells, but the function of telomeres in differentiated neurons is unknown. Here, we examined the impact of telomere dysfunction via TRF2 inhibition in neurons (primary embryonic hippocampal neurons) and mitotic neural cells (astrocytes and neuroblastoma cells). We demonstrate that telomere dysfunction induced by adenovirus-mediated expression of dominant-negative TRF2 (DN-TRF2) triggers a DNA damage response involving the formation of nuclear foci containing phosphorylated histone H2AX and activated ATM in each cell type. In mitotic neural cells DN-TRF2 induced activation of both p53 and p21 and senescence (as indicated by an up-regulation of beta-galactosidase). In contrast, in neurons DN-TRF2 increased p21, but neither p53 nor beta-galactosidase was induced. In addition, TRF2 inhibition enhanced the morphological, molecular and biophysical differentiation of hippocampal neurons. These findings demonstrate divergent molecular and physiological responses to telomere dysfunction in mitotic neural cells and neurons, indicate a role for TRF2 in regulating neuronal differentiation, and suggest a potential therapeutic application of inhibition of TRF2 function in the treatment of neural tumors.  相似文献   

17.
The DNA damage and replication checkpoints are signaling mechanisms that regulate and coordinate cellular responses to genotoxic conditions. Unlike typical signal transduction mechanisms that respond to one or a few stimuli, checkpoints can be activated by a broad spectrum of extrinsically or intrinsically derived DNA damage or replication interference. Recent investigations have shed light on how the damage and replication checkpoints are able to respond to such diverse stimuli. The activation of checkpoints not only attenuates cell cycle progression but also facilitates DNA repair and recovery of faltered replication forks, thereby preventing DNA lesions from being converted to inheritable mutations. Recently, more checkpoint targets from the cell cycle and DNA replication apparatus have been identified, revealing the increasing complexity of the checkpoint control of the cell cycle. In this article, we discuss current models of the DNA damage and replication checkpoints and highlight recent advances in the field.  相似文献   

18.
The effect of the tumor suppressor gene TP53 on repair of genomic DNA damage was examined in human urinary bladder transitional cell carcinoma (TCC) cell lines. Utilizing TCC10 containing wild-type p53 (wt-p53) as the parental line, an isogenic set of cell lines was derived by retroviral infection that expressed a transdominant mutant p53 (Arg --> His at codon 273, TDM273-TCC10), or the human papilloma virus 16-E6 oncoprotein (E6-TCC10). 32P-postlabeling analyses were performed on DNA from TCC cultures obtained after treatment with N-hydroxy-4-aminobiphenyl (N-OH-ABP), N-hydroxy-4-acetylaminobiphenyl (N-OH-AABP) and N-acetoxy-4-acetylaminobiphenyl (N-OAc-AABP). The major adduct was identified as N-(deoxyguanosin-8-yl)-4-aminobiphenyl (dG-C8-ABP) with all three chemicals. The amount of adducts in urothelial DNA ranged between 0.1 and 20 per 10(6) nucleotides, N-OAc-AABP yielding the highest levels, followed by N-OH-ABP and N-OH-AABP. To determine, if the functional status of p53 affects the rate of repair of dG-C8-ABP in genomic DNA, TCC10 and the TDM273-TCC10 and E6-TCC10 isotypes were exposed to N-OH-AABP for 12h and the DNA damage was allowed to repair up to 24h. The adduct levels were quantified and compared between the TCC10 isotypes. The amounts of dG-C8-ABP that remained in genomic DNA from E6-TCC10 and TDM273-TCC10 were approximately two-fold higher, as compared to the parental TCC10. At the dose used for DNA repair studies, N-OH-AABP or N-OAc-AABP did not induce apoptosis in TCC10. However, N-OAc-AABP at high doses (>5 microM) induced apoptosis, as evidenced by DNA fragmentation analyses. Furthermore, N-OAc-AABP-mediated apoptosis was independent of the functional status of wt-p53, since both E6-TCC10 and the parental TCC10 exhibited DNA fragmentation following treatment. These results suggest that p53 might modulate the repair of DNA adducts generated from the human bladder carcinogen ABP in its target human uroepithelial cells. This implies that in p53 null cells the unrepaired DNA damage could cause accumulation of mutation, which might contribute to increased genomic instability and neoplastic progression.  相似文献   

19.
Cordycepin, an adenosine analog derived from Cordyceps militaris has been shown to exert anti-tumor activity in many ways. However, the mechanisms by which cordycepin contributes to the anti-tumor still obscure. Here our present work showed that cordycepin inhibits cell growth in NB-4 and U937 cells by inducing apoptosis. Further study showed that cordycepin increases the expression of p53 which promotes the release of cytochrome c from mitochondria to the cytosol. The released cytochrome c can then activate caspase-9 and trigger intrinsic apoptosis. Cordycepin also blocks MAPK pathway by inhibiting the phosphorylation of ERK1/2, and thus sensitizes the apoptosis. In addition, our results showed that cordycepin inhibits the expression of cyclin A2, cyclin E, and CDK2, which leads to the accumulation of cells in S-phase. Moreover, our study showed that cordycepin induces DNA damage and causes degradation of Cdc25A, suggesting that cordycepin-induced S-phase arrest involves activation of Chk2-Cdc25A pathway. In conclusion, cordycepin-induced DNA damage initiates cell cycle arrest and apoptosis which leads to the growth inhibition of NB-4 and U937 cells.  相似文献   

20.
A plethora of clinically distinct human disorders exist whose underlying cause is a defect in the response to or repair of DNA damage. The clinical spectrum of these conditions provides evidence for the role of the DNA damage response (DDR) in mediating diverse processes such as genomic stability, immune system function and normal human development. Cell lines from these disorders provide a valuable resource to help dissect the consequences of compromised DDR at the molecular level. Here we will discuss some well known, less well known and ‘novel’ DDR defective disorders with particular reference to the functional interplay between the DNA damage response and cell cycle checkpoints. We will describe recent advances in further delineating the genetic basis of Seckel syndrome and microcephalic osteodysplastic primordial dwarfism type II, which have shed more light on the interplay between the DDR, cycle progression and centrosomes. We will also overview recent developments concerning haploinsufficiency of DDR components and their association with certain genomic disorders such as Miller–Dieker lissencephaly syndrome and Williams–Beuren syndrome. Finally, we will discuss how defects in the DDR result in some unexpected clinical features before describing how the nature of a DDR defect impacts on the management and treatment of individuals with these conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号