首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microcalorimetry has been used to determine enthalpy changes for the hydrolysis of a series of oligosaccharides. High-pressure liquid chromatography was used to determine the extents of reaction and to check for any possible side reactions. The enzyme glucan 1,4-alpha-glucosidase was used to bring about the following hydrolysis reactions: (A) maltose(aq) + H2O(liq) = 2D-glucose(aq); (B) maltotriose(aq) + 2H2O(liq) = 3D-glucose(aq); (C) maltotetraose(aq) + 3H2O(liq) = 4D-glucose(aq); (D) maltopentaose(aq) + 4H2O(liq) = 5D-glucose(aq); (E) maltohexaose(aq) + 5H2O(liq) = 6D-glucose(aq); (F) maltoheptaose(aq) + 6H2O(liq) = 7D-glucose(aq); (G) amylose(aq) + nH2O(liq) = (n + 1) D-glucose(aq); and (H) panose(aq) + 2H2O(liq) = 3D-glucose(aq); (J) isomaltotriose(aq) + 2H2O(liq) = 3D-glucose(aq). The enzyme beta-fructofuranosidase was used for the reactions: (K) raffinose(aq) + H2O(liq) = alpha-D-melibiose(aq) + D-fructose(aq); and (L) stachyose(aq) + H2O(liq) = o-alpha-D-galactopyranosyl-(1----6)- alpha-o-D-galactopyranosyl-(1----6)-alpha-D-glucopyranose + D-fructose(aq). The results of the calorimetric measurements (298.15 K, 0.1 M sodium acetate buffer, pH 4.44-6.00) are: delta H0A = -4.55 +/- 0.10, delta H0B = -9.03 +/- 0.10, delta H0C = -13.79 +/- 0.15, delta H0D = -18.12 +/- 0.10, delta H0E = -22.40 +/- 0.15, delta H0F = -26.81 +/- 0.20, delta H0H = 1.46 +/- 0.40, delta H0J = 11.4 +/- 2.0, delta H0K = -15.25 +/- 0.20, and delta H0L = -14.93 +/- 0.20 kJ mol-1. The enthalpies of hydrolysis of two different samples of amylose were 1062 +/- 20 and 2719 +/- 100 kJ mol-1, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Genetic and demographic characteristics for urban and rural population of the Chuvash Republic (Chuvashes and Russians) were calculated based on 1122 questionnaires. The sibship sizes for Chuvashes were 2.05 (urban) and 2.78 (rural). For Russians these indices were 1.75 (urban) and 2.00 (rural), respectively. Crow's index and its components were I(m) = 0.04; I(f) = 0.18; and I(tot) = 0.22 for urban, and I(m) = 0.07; I(f) = 0.27; and I(tot) = 0.36 for rural Chuvashes, respectively; and I(m) = 0.04; I(f) = 0.30; and I(tot) = 0.36 for urban, and I(m) = 0.03; I(f) = 0.29; and I(tot) = 0.33 for rural Russians, respectively.  相似文献   

3.
Mechanism of reaction of myeloperoxidase with nitrite   总被引:10,自引:0,他引:10  
Myeloperoxidase (MPO) is a major neutrophil protein and may be involved in the nitration of tyrosine residues observed in a wide range of inflammatory diseases that involve neutrophils and macrophage activation. In order to clarify if nitrite could be a physiological substrate of myeloperoxidase, we investigated the reactions of the ferric enzyme and its redox intermediates, compound I and compound II, with nitrite under pre-steady state conditions by using sequential mixing stopped-flow analysis in the pH range 4-8. At 15 degrees C the rate of formation of the low spin MPO-nitrite complex is (2.5 +/- 0.2) x 10(4) m(-1) s(-1) at pH 7 and (2.2 +/- 0.7) x 10(6) m(-1) s(-1) at pH 5. The dissociation constant of nitrite bound to the native enzyme is 2.3 +/- 0.1 mm at pH 7 and 31.3 +/- 0.5 micrometer at pH 5. Nitrite is oxidized by two one-electron steps in the MPO peroxidase cycle. The second-order rate constant of reduction of compound I to compound II at 15 degrees C is (2.0 +/- 0.2) x 10(6) m(-1) s(-1) at pH 7 and (1.1 +/- 0.2) x 10(7) m(-1) s(-1) at pH 5. The rate constant of reduction of compound II to the ferric native enzyme at 15 degrees C is (5.5 +/- 0.1) x 10(2) m(-1) s(-1) at pH 7 and (8.9 +/- 1.6) x 10(4) m(-1) s(-1) at pH 5. pH dependence studies suggest that both complex formation between the ferric enzyme and nitrite and nitrite oxidation by compounds I and II are controlled by a residue with a pK(a) of (4.3 +/- 0.3). Protonation of this group (which is most likely the distal histidine) is necessary for optimum nitrite binding and oxidation.  相似文献   

4.
The synthesis of racemic and enantiomerically pure 3-butanamidoquinuclidines ((+/-)-Bu, (R)-Bu and (S)-Bu), (1-3) and 3-benzamidoquinuclidines ((+/-)-Bz, (R)-Bz, and (S)-Bz), (4-6) is described. The N-quaternary derivatives, N-benzyl-3-butanamidoquinuclidinium bromides ((+/-)-BnlBu, (R)-BnlBu and (S)-BnlBu), (7-9) and N-benzyl-3-benzamidoquinuclidinium bromides ((+/-)-BnlBz, (R)-BnlBz and (S)-BnlBz), (10-12) were subsequently synthesized. The interaction of the four enantiomerically pure quaternary derivatives with horse serum butyrylcholinesterase (BChE) was tested. All tested compounds inhibited the enzyme. The best inhibitior of the enzyme was (S)-BnlBz with a K(i) = 3.7 microM. The inhibitor potency decreases in order (S)-BnlBz > (R)-BnlBz > (R)-BnlBu > (S)-BnlBu.  相似文献   

5.
A sugar autoanalyzer was used on a preparative scale to resolve a gluco-oligosaccharide mixture. In this way the components of the following mixtures were resolved: O-alpha-D-glucopyranosyl-(1-3)-O-[alpha-D-glucopyranosyl-(1-6)]-D-glucose (1), O-alpha-D-glucopyranosyl-(1-6)-O-alpha-D-glucopyranosyl-(1-3)-D-glucose (2) and O-alpha-D-glucopyranosyl-(1-3)-O-alpha-D-glucopyranosyl-(1-6)-D-glucose (3), O-alpha-D-glucopyranosyl-(1-3)-O-alpha-D-glucopyranosyl-(1-4)-D-glucose (4) and O-alpha-D-glucopyranosyl-(1-4)-O-alpha-D-glucopyranosyl-(1-3)-D-glucose (5), and O-alpha-D-glucopyranosyl-(1-2)-O-alpha-D-glucopyranosyl-(1-6)-O-alpha-D-glucopranosyl-(1-6)-O-alpha-D-glucopyranosyl-(1-6)-D-glucose (6) and O-alpha-D-glucopyranosyl-(1-3)--O-alpha-D-glucopyranosyl-(1-6)-O-alpha-D-glucopyranosyl-(1-6)-O-alpha-D-glucopyranosyl-(1-6)-D-glucose (7).  相似文献   

6.
Aqueous vanadate and aqueous tungstate have been known to mimic all or most of the actions of insulin in intact cell systems with respect to normalization of the blood glucose level. By carrying out oral administration in vivo experiments on the blood glucose level of streptozotocin (STZ)-induced diabetes (STZ mice), the insulin-mimetic (IM) effects of metal-oxide clusters of all-inorganic composition were examined using many types of polyoxometalates (POM) with and without vanadium substitution. Several homo-POM and vanadium-substituted POM showed hypoglycemic effects. The observed hypoglycemic effects indicated that POM with the Dawson structure [[alpha-P(2)W(18)O(62)](6-) (W-2), [alpha-P(2)W(17)V(V)O(62)](7-) (V-19) and [alpha-1,2,3-P(2)W(15)V(V)(3)O(62)](9-) (V-04)] are more effective than those with the Keggin structure [[alpha-PW(12)O(40)](3-) (W-1), [alpha-PW(11)V(V)O(40)](4-) (V-01), [alpha-1,2-PW(10)V(V)(2)O(40)](5-) (V-02), [alpha-1,2,3-PW(9)V(V)(3)O(40)](6-) (V-03) and [alpha-1,4,9-PW(9)V(V)(3)O(40)](6-) (V-13)]. The vanadate cluster [V(10)O(28)](6-) (V-15) also showed a hypoglycemic effect. (31)P and (51)V NMR measurements showed that the Dawson POM (W-2, V-04 and V-19) are stable in aqueous solution under the conditions used. The effect of all POM on the body weight of STZ mice was also examined. The decrease in body weight after administration of W-2 was much less than for V-19, V-04 and V-15. This suggests that not only monomeric tungstate and vanadate, but also the structure factors of tungstate and vanadate clusters, can play a significant role in their biological action.  相似文献   

7.
Zhang M  Zhang L  Cheung PC 《Biopolymers》2003,68(2):150-159
Seven water-insoluble (1 --> 3)-beta-D-glucan fractions TM8-1 to TM8-7 with weight-average molecular mass M(w) ranged from 2.22 to 77.4 x 10(4) obtained from the sclerotia of Pleurotus tuber-regium were carboxymethylated to produce the water-soluble fractions CTM8-1 to CTM8-7 with M(w) ranged from 3.87 to 87.8 x 10(4). The degree of substitution (DS) of CTM8 fractions was analyzed by ir and elemental analysis (EA) to be 0.3-0.68. The M(w) and the intrinsic viscosity [eta] of the CTM8 fractions were measured by size-exclusion chromatography combined with multiangle laser light scattering (SEC-MALLS), MALLS, and viscometry in phosphate buffer solution (PBS) at 37 degrees C. The dependencies of [eta] and radius of gyration (z) (1/2) on M(w) for the CTM8 samples were found to be [eta] = (8.82 +/- 0.03) x 10(-3) M(w)(0.78 +/- 0.04) (cm(3) g(-1)) and (z) (1/2) = (3.09 +/- 0.05) x 10(-3) M(w)(0.75 +/- 0.06) (nm) in the M(w) range from 3.87 x 10(4) to 53.2 x 10(4). Based on current theories for wormlike chain model, the conformational parameters of the CTM8 were obtained to be 790 (nm(-1)) for M(L), 9.6 (nm) for q, which were higher than those of the native TM8 fractions, suggesting a more extended flexible chain of CTM8 in PBS. On the whole, the CTM8 fractions showed higher antitumor activity than their corresponding TM8 fractions. In view of data from molecular parameters and bioactivity, the antitumor activity of the CTM8 fractions may be correlated to its water solubility and relatively extended chain.  相似文献   

8.
The purpose of the present study was to use ratings of perceived exertion (RPE) from the Borg (6-20) and OMNI-Leg (0-10) scales to determine the Physical Working Capacity at the Borg and OMNI thresholds (PWC(BORG) and PWC(OMNI)). PWC(BORG) and PWC(OMNI) were compared with other fatigue thresholds determined from the measurement of heart rate (the Physical Working Capacity at the Heart Rate Threshold: PWC(HRT)), and oxygen consumption (the Physical Working Capacity at the Oxygen Consumption Threshold, PWC(VO2)), as well as the ventilatory threshold (VT). Fifteen men and women volunteers (mean age +/- SD = 22 +/- 1 years) performed an incremental test to exhaustion on an electronically braked ergometer for the determination of VO2 peak and VT. The subjects also performed 4 randomly ordered workbouts to exhaustion at different power outputs (ranging from 60 to 206W) for the determination of PWC(BORG), PWC(OMNI), PWC(HRT), and PWC(VO2). The results indicated that there were no significant mean differences among the fatigue thresholds: PWC(BORG) (mean +/- SD = 133 +/- 37W; 67 +/- 8% of VO2 peak), PWC(OMNI) (137 +/- 44W; 68 +/- 9% of VO2 peak), PWC(HRT) (135 +/- 36W; 68 +/- 8% of VO2 peak), PWC(VO2) (145 +/- 41W; 72 +/- 7% of VO2 peak) and VT (131 +/- 45W; 66 +/- 8% of VO2 peak). The results of this study indicated that the mathematical model used to estimate PWC(HRT) and PWC(VO2) can be applied to ratings of perceived exertion to determine PWC(BORG) and PWC(OMNI) during cycle ergometry. Salient features of the PWC(BORG) and PWC(OMNI) tests are that they are simple to administer and require the use of only an RPE scale, a stopwatch, and a cycle ergometer. Furthermore, the power outputs at the PWC(BORG) and PWC(OMNI) may be useful to estimate the VT noninvasively and without the need for expired gas analysis.  相似文献   

9.
Although Petunia axillaris subsp. axillaris is described as a self-incompatible taxon, some of the natural populations we have identified in Uruguay are composed of both self-incompatible and self-compatible plants. Here, we studied the self-incompatibility (SI) behavior of 50 plants derived from such a mixed population, designated U83, and examined the cause of the breakdown of SI. Thirteen plants were found to be self-incompatible, and the other 37 were found to be self-compatible. A total of 14 S-haplotypes were represented in these 50 plants, including two that we had previously identified from another mixed population, designated U1. All the 37 self-compatible plants carried either an S(C1)- or an S(C2)-haplotype. S(C1)S(C1) and S(C2)S(C2) homozygotes were generated by self-pollination of two of the self-compatible plants, and they were reciprocally crossed with 40 self-incompatible S-homozygotes (S(1)S(1) through S(40)S(40)) generated from plants identified from three mixed populations, including U83. The S(C1)S(C1) homozygote was reciprocally compatible with all the genotypes examined. The S(C2)S(C2) homozygote accepted pollen from all but the S(17)S(17) homozygote (identified from the U1 population), but the S(17)S(17) homozygote accepted pollen from the S(C2)S(C2) homozygote. cDNAs encoding S(C2)- and S(17)-RNases were cloned and sequenced, and their nucleotide sequences were completely identical. Analysis of bud-selfed progeny of heterozygotes carrying S(C1) or S(C2) showed that the SI behavior of S(C1) and S(C2) was identical to that of S(C1) and S(C2) homozygotes, respectively. All these results taken together suggested that the S(C2)-haplotype was a mutant form of the S(17)-haplotype, with the defect lying in the pollen function. The possible nature of the mutation is discussed.  相似文献   

10.
To investigate the molecular basis for the specificity of ligand recognition in human kinin B(1) (B(1)R) and B(2) (B(2)R) receptors, we constructed a series of chimeric receptors by progressively replacing, from the N to the C terminus, the human B(2)R domains by their B(1) counterparts. The chimeric construct possessing the C-terminal tail and the transmembrane domain VII (TM VII) of the B(2)R (construct 6) displayed 7- and 20- fold decreased affinities for the B(1) agonist [(3)H]desArg(10)-kallidin (desArg(10)-KD) and the B(1) antagonist [(3)H]desArg(10)-[Leu(9)]-KD respectively, as compared with the wild-type B(1)R. Moreover, the substitution of the B(1) TM VII by its B(2) homologue TM increased the affinity for the pseudopeptide antagonists, Hoe140 and NPC 567. High affinity for desArg(10)-KD binding was fully regained when the B(2) residue Thr(287) was replaced in construct 6 by the corresponding B(1) Leu(294) residue. When the B(2) residue Tyr(295) was exchanged with the corresponding B(1) Phe(302), high affinity binding for both agonist and antagonist was recovered. Moreover, the L294T and F302Y mutant B(1)R exhibited 69- and 6.5-fold increases, respectively, in their affinities for the B(2) receptor antagonist, Hoe140. Therefore we proposed that Leu(294) and Phe(302) residues, which may not be directly involved in the binding of B(1)R ligands and, hence, their Thr(287) and Tyr(295) B(2) counterparts, are localized in a receptor region, which plays a pivotal role in the binding selectivity of the peptide or pseudopeptide kinin ligands.  相似文献   

11.
Nitrite and SCN(-) in saliva can mixes with H(2)O(2) in the stomach. The mixing can result in the formation of ONOOH. It is not yet known how salivary SCN(-) reacts with ONOOH. An objective of the present study was to elucidate the reaction between ONOOH and SCN(-). In nitrite/H(2)O(2) systems at pH 2, SCN(-) inhibited the consumption of nitrite and the formation of O(3)(-). SCN(-) enhanced the decomposition of ONOOH and H(2)O(2) in HNO(2)/H(2)O(2) systems. Accompanying the reactions, sulfate was formed, suggesting that ONOOH oxidized SCN(-). SCN(-) inhibited the nitration of phenolics induced by HNO(2)/H(2)O(2). The inhibition is discussed taking SCN(-)-dependent reduction of ONOOH to HNO(2) into consideration. SCN(-) also inhibited H(2)O(2)-induced consumption of nitrite and nitration of phenolics in acidified saliva. The result obtained in this study suggests that salivary SCN(-) can reduce ONOOH to O(2)(-)/HNO(2) inhibiting nitrating reactions in the stomach.  相似文献   

12.
We report the results of NMR studies and computer simulations of potent antagonists reflective of the alpha(IIb)beta(3) receptor-bound conformations. The peptides c[Mpa-(15)N-Arg(1)-(15)N-Gly(2)-(15)N-Asp(3)-(15)N-Phe(4)-(15)N-Arg(5)-Cys]-NH(2) (Phe-Arg analog) (Mpa: 3-mercaptopropionic acid) and c[Mpa-(15)N-Arg(1)-(15)N-Gly(2)-(15)N-Asp(3)-(15)N-Asp(4)-(15)N-Val(5)-Cys]-NH(2) (Asp-Val analog) were subjected to (15)N-edited NMR experiments to study the conformations of these peptides in the absence and in the presence of alpha(IIb)beta(3) receptor. The NMR studies of the Phe-Arg analog, a selective alpha(IIb)beta(3) antagonist, resulted in distinctly different experimental data in the presence and absence of the receptor. The computer simulations for this peptide resulted in one large family of structures consistent with the experimental data. This conformation suggests a type I beta-turn spanning residues Arg(1) and Gly(2) when bound to the receptor and we were able to establish a model for the three dimensional arrangement of the pharmacophores. The studies on the Asp-Val analog, an alpha(v)beta(3) antagonist that binds to the alpha(IIb)beta(3) with moderate affinity, resulted in conformations that are not as well defined as those for the Phe-Arg analog but are consistent with the model established for this analog. These results are important for the design of novel alpha(IIb)beta(3) antagonists.  相似文献   

13.
The effects of combined chemical application of benomyl, ethylenedianinetetraacetate (EDTA), and iron (Fe) (foliar and root) on lead (Pb) phytoextraction by switchgrass (Panicum virgatum) and corn (Zea mays) was examined. Switchgrass was grown in Pb-contaminated urban topsoil with the following treatments: (C) Control, (B) benomyl, (E) EDTA, (F) foliar-Fe, (BE) benomyl + EDTA, (BF) benomyl + foliar-Fe, (FE) foliar-Fe + EDTA, (BFE) benomyl + foliar-Fe + EDTA. Corn was grown in sand-culture supplemented with Pb (500 mg kg?1) with the following treatments: (C) control, (B) benomyl, (E) EDTA, (F) root-Fe, (BE) benomyl + EDTA, (BF) benomyl + root-Fe, (FE) root-iron + EDTA, and, (BFE) benomyl + root-Fe + EDTA. All treatments were replicated three times and pots were arranged in a completely randomized design. Plants were analyzed for element concentration (Fe, Zn, P, and Pb) using either inductively coupled plasma (argon) atomic emission spectroscopy (ICP-AES) or graphite furnace atomic absorption spectrometer. Iron supplementation (foliar and root) affected Pb-translocation in plants. Foliar-Fe treatment increased translocation ratio of Pb (TF-Pb) significantly compared to other treatments with the exception of plants treated with benomyl and BF. Root-Fe treatment in combination with EDTA (FE) increased TF-Pb significantly compared to other treatments. Phytoextraction was improved by the combined chemical application; plants treated with BFE treatment increased Pb-total-phytoextraction by 424% compared to Control plants.  相似文献   

14.
Kinetics of biofilm nitrification   总被引:5,自引:0,他引:5  
The reaction rates (r(NH(4) (+) ) and r(NO(2) (-) )) in the two-step nitrification reaction were measured in a fluidized-sand-bed biofilm reactor under a range of steady-state conditions with respect to bulk NH(4) (+), NO(2) (-), and O(2) concentrations. It was shown from theory and experiment that under low NH(4) (+) concentration conditions, if the O(2)/NH(4) (+) concentration ratio in the bulk liquid is less than the stoichiometric coefficient (3.4 mg/mg), then oxygen will be rate limiting. In all experiments r(NO(2) (-) ) decreased more than r(NH(4) (+) ) under low oxygen conditions. This resulted in high NO(2) (-) effluent concentrations under low residence time conditions. The influence of the oxygen penetration effects on the relative values of r(NH(4) (+) ) and r(NO(2) (-) ) was experimentally shown to be caused either by the Nitrobacter location in the inner biofilm regions or by a K(m) effect for oxygen. Theoretical support of these findings was provided by a differential diffusion-reaction model which was used to simulate the experimental results.  相似文献   

15.
The syntheses are described of the 1-O-carbamoyl (11), 1-O-carbamoyl-2-O-stearoyl (10), 1-O-(acetylcarbamoyl)-2-O-stearoyl (12), 1-O-(heptylcarbamoyl) (13), 2-O-(heptylcarbamoyl) (14) 1,2-di-O-(heptylcarbamoyl) (15), and 1-O-(octadecylcarbamoyl) (16) derivatives of myo-inositol. None of these compounds had significant activity against phospholipase C.  相似文献   

16.
We used intact fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus muscles from rats and mice to test the hypothesis that exogenous application of an oxidant would increase maximum isometric force production (P(o)) of slow-twitch muscles to a greater extent than fast-twitch skeletal muscles. Exposure to an oxidant, hydrogen peroxide (H(2)O(2); 100 microM to 5 mM, 30 min), affected P(o) of rat muscles in a time- and dose-dependent manner. P(o) of rat soleus muscles was increased by 8 +/- 1 (SE) and 14 +/- 1% (P < 0.01) after incubation with 1 and 5 mM H(2)O(2), respectively, whereas in mouse soleus muscles P(o) was only increased after incubation with 500 microM H(2)O(2). P(o) of rat EDL muscles was affected by H(2)O(2) biphasically; initially there was a small increase (3 +/- 1%), but then P(o) diminished significantly after 30 min of treatment. In contrast, all concentrations of H(2)O(2) tested decreased P(o) of mouse EDL muscles. A reductant, dithiothreitol (DTT; rat = 10 mM, mouse = 1 mM), was added to quench H(2)O(2), and it reversed the potentiation in P(o) in rat soleus but not in rat EDL muscles or in any H(2)O(2)-treated mouse muscles. After prolonged equilibration (30 min) with 5 mM H(2)O(2) without prior activation, P(o) was potentiated in rat soleus but not EDL muscles, demonstrating that the effect of oxidation in the soleus muscles was also dependent on the activation history of the muscle. The results of these experiments demonstrate that P(o) of both slow- and fast-twitch muscles from rats and mice is modified by redox modulation, indicating that maximum P(o) of mammalian skeletal muscles is dependent on oxidation.  相似文献   

17.
Three new nickel(II) complexes with ligands 1,8-bis(2'-pyridyl)-3,6-dithiaoctane (Pdto) and dithiosemicarbazone of 4,7-dithiadecane-2,9-dione (DtdtzH2) of composition Ni(Pdto)(H2O)2(ClO4)2, Ni(DtdtzH2)(ClO4)2 and Ni(Dtdtz) were prepared, their molecular structures, spectral and redox-properties were studied. The possibilities of chemical reduction of Ni(Pdto)(H2O)2(ClO4)2 to nickel(I) and nickel(0) species and the reaction of nickel(I) complex with CO were shown, which may be described as the modeling of one of the stages of reactions with CO on active Ni-Fe-site of Ni-CO-dehydrogenases. It was found that Ni(DtdtzH2)(ClO4)2 reacted with (Et4N)2[Fe4S4(SBz)4] (BzSH = C6H5 CH2SH) forming adduct. In the row of studied complexes Ni(Pdto) (H2O)2(ClO4)2 may be described as the best structural model of Ni-Fe-site of Ni-CO-dehydrogenases on the redox properties.  相似文献   

18.
Bacterioferritin (EcBFR) of Escherichia coli is an iron-mineralizing hemoprotein composed of 24 identical subunits, each containing a dinuclear metal-binding site known as the "ferroxidase center." The chemistry of Fe(II) binding and oxidation and Fe(III) hydrolysis using H(2)O(2) as oxidant was studied by electrode oximetry, pH-stat, UV-visible spectrophotometry, and electron paramagnetic resonance spin trapping experiments. Absorption spectroscopy data demonstrate the oxidation of two Fe(II) per H(2)O(2) at the ferroxidase center, thus avoiding hydroxyl radical production via Fenton chemistry. The oxidation reaction with H(2)O(2) corresponds to [Fe(II)(2)-P](Z) + H(2)O(2) --> [Fe(III)(2)O-P](Z) + H(2)O, where [Fe(II)(2)-P](Z) represents a diferrous ferroxidase center complex of the protein P with net charge Z and [Fe(III)(2)O-P](Z) a micro-oxo-bridged diferric ferroxidase complex. The mineralization reaction is given by 2Fe(2+) + H(2)O(2) + 2H(2)O --> 2FeOOH((core)) + 4H(+), where two Fe(II) are again oxidized by one H(2)O(2). Hydrogen peroxide is shown to be an intermediate product of dioxygen reduction when O(2) is used as the oxidant in both the ferroxidation and mineralization reactions. Most of the H(2)O(2) produced from O(2) is rapidly consumed in a subsequent ferroxidase reaction with Fe(II) to produce H(2)O. EPR spin trapping experiments show that the presence of EcBFR greatly attenuates the production of hydroxyl radical during Fe(II) oxidation by H(2)O(2), consistent with the ability of the bacterioferritin to facilitate the pairwise oxidation of Fe(II) by H(2)O(2), thus avoiding odd electron reduction products of oxygen and therefore oxidative damage to the protein and cellular components through oxygen radical chemistry.  相似文献   

19.
Wet thermal conductance is an important thermoregulatory parameter for birds and mammals. It is generally calculated as C(wet) (ml O2 g(-1) h(-1) degrees C(-1)) = VO2/(T(b)-T(a)), where VO2 is metabolic rate measured in ml O2 g(-1) h(-1), T(b) is body and T(a) is ambient temperature measured in degrees C. Minimum C(wet) is measured at T(a) at or below the lower critical temperature (T(lc)) of the thermoneutral zone, and is strongly influenced by time of day (rest or activity phase) and body mass [J. Aschoff, Comp. Biochem. Physiol. 69A (1981) 611]. Allometric analyses indicate differences in C(wet) for passerine and non-passerine birds, in their rest and active phases (Aschoff, 1981). The allometric slope for non-passerine rest-phase (-0.583) is lower than that for non-passerine active-phase (-0.484), and passerine rest-phase (-0.461) and active-phase (-0.463), although none of these slopes are significantly different. This different-sloped relationship for non-passerine rest-phase C(wet) extrapolates to lower-than-expected values at high body mass, and so this allometric relationship may be inappropriate for predictive purposes. Consequently, we have reanalysed Aschoff's (1981) data, as well as more recent compilations, to determine a more useful allometric relationship for C(wet) of non-passerine rest-phase birds. Re-analyses of minimum thermal conductance data from Drent and Stonehouse [Comp. Biochem. Physiol. 40A (1971) 689], Aschoff (1981) and Gavrilov and Dolnik [Acta XVIII Congressus Internationalis Ornithologici Moscow (1982) 421] indicate that the most appropriate regressions for predicting C(wet) (ml O2 g(-1) h(-1) degrees C(-1)) of birds from body mass (M; g) are the pooled regressions for non-passerine and passerine birds, in the active (alpha) and resting (rho) phases, using data tabulated by Aschoff (1981): alpha, C(wet)=0.994M(-0.509); rho, C(wet)=0.702M(-0.519). C(wet) is approximately 40% higher in the active phase than the rest phase. Regressions of various data sets for C(wet) of birds and mammals indicate a similar slope of approximately -0.5 for the allometric relationship, but significantly higher elevations for mammals compared to birds. The approximately 50% higher C(wet) for mammals than birds indicates a better physical insulation for birds than mammals of the same body mass. The general scaling of C(wet) with M(-0.5) indicates that (T(b)-T(lc)) should scale with M(0.22), if mass-specific metabolic rate scales with M(-0.28) [Reynolds and Lee, Am. Nat. 147 (1996) 735]. The observed scaling for (T(b)-T(lc)) of M(0.183) (calculated from Gavrilov and Dolnik, 1985) is consistent with this expectation.  相似文献   

20.
Dance I 《Biochemistry》2006,45(20):6328-6340
The migration of H atoms over S and Fe atoms in the reaction domain of FeMo-co, the active site of nitrogenase, is described and used to explain mechanistic data on the catalyzed reductions of N(2) and C(2)H(2). After electron transfer to FeMo-co, H atoms are generated by fast proton supply to S3B (atom labels from structure 1M1N) and migrate vectorially via several pathways from S3B to locations on the FeMo-co face, specifically Fe6, S2B, Fe2, and S2A (calculated reaction profiles are reported). The E(n)H(n) reduction levels (n = 1-4) in the Thorneley-Lowe kinetic-mechanistic schemes are each potential sequences of substructures with different distributions of H atoms. The positions of H atoms influence the binding of substrates N(2) and C(2)H(2), and the bound substrate subsequently blocks further migration of H atoms past the binding site. This model provides a consistent structural interpretation of (a) the two-site reactivity of C(2)H(2) and the differentiation of the high- and low-affinity sites as due to different preparatory H migration; (b) the differing mutual inhibitions of N(2) and C(2)H(2) in wild-type protein; (c) the modified reactivity of the Azotobacter vinelandii alpha-(Gly)69(Ser) mutant with N(2) and C(2)H(2); and (d) the basis for the stereoselectivity of hydrogenation of C(2)D(2) and its loss in some mutant proteins. Some structures for initially bound N(2) and C(2)H(2), and their hydrogenated intermediates, are presented. The key new concept is that binding sites and binding states for substrates and intermediates are characterized not only by their locations on the FeMo-co face but also by the structural and temporal status of the distribution of H atoms over the FeMo-co reaction domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号