首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background

Our knowledge of the phylogeny and diversity of aquatic protists is rapidly increasing due to molecular surveys and next-generation sequencing approaches. This has led to a considerable discrepancy between the taxa known from cultures and those known from environmental 18S rRNA gene sequences. Hence, it is generally difficult to assign ecological functions to new taxa detected by culture-independent molecular approaches.

Methodology/Principal Findings

A combination of unamended dark incubations and 18S rRNA sequencing was chosen to link molecular diversity data of uncultured protists with heterotrophic, presumably bacterivorous, growth. The incubations, conducted with Baltic Sea brackish water, resulted in a consistent shift from a protistan community dominated by phototrophs to one in which heterotrophs predominated. This was determined on the basis of cell abundance and 18S rRNA sequences derived from fingerprint analysis and clone libraries. The bulk of enriched phylotypes after incubation were related to hitherto uncultured marine taxa within chrysophytes, ochrophytes, choanoflagellates, cercozoans, and picobiliphytes, mostly represented in recently established or here defined environmental clades. Their growth in the dark, together with coinciding results from studies with a similar objective, provides evidence that these uncultured taxa represent heterotrophic or mixotrophic species.

Conclusions/Significance

These findings shed some light into the trophic role of diverse uncultured protists especially within functionally heterogeneous groups (e.g., chrysophytes, ochrophytes) and groups that appear to be puzzling with regard to their nutrition (picobiliphytes). Additionally, our results indicate that the heterotrophic flagellate community in the southwestern Baltic Sea is dominated by species of marine origin. The combination of unamended incubations with molecular diversity analysis is thus confirmed as a promising approach to explore the trophic mode of environmentally relevant protist taxa for which only sequence data are currently available.  相似文献   

2.
Molecular surveys in planktonic marine systems have unveiled a large novel diversity of small protists. A large part of this diversity belongs to basal heterotrophic stramenopiles and is distributed in a set of polyphyletic ribogroups (described from rDNA sequences) collectively named as MAST (MArine STramenopiles). In the few groups investigated, MAST cells are globally distributed and abundant bacterial grazers, therefore having a putatively large impact on marine ecosystem functioning. The main aim of this study is to reevaluate the MAST ribogroups described so far and to determine whether additional groups can be found. For this purpose, we used traditional and state-of-the-art molecular tools, combining 18S rDNA sequences from publicly available clone libraries, single amplified genomes (SAGs) of planktonic protists, and a pyrosequencing survey from coastal waters and sediments. Our analysis indicated a final set of 18 MAST groups plus 5 new ribogroups within Ochrophyta (named as MOCH). The MAST ribogroups were then analyzed in more detail. Seven were typical of anoxic systems and one of oxic sediments. The rest were clearly members of oxic marine picoplankton. We characterized the genetic diversity within each MAST group and defined subclades for the more diverse (46 subclades in 8 groups). The analyses of sequences within subclades revealed further ecological specializations. Our data provide a renovated framework for phylogenetic classification of the numerous MAST ribogroups and support the notion of a tight link between phylogeny and ecological distribution. These diverse and largely uncultured protists are widespread and ecologically relevant members of marine microbial assemblages.  相似文献   

3.
The overwintering deployment of an icebreaker during the Canadian Flaw Lead study provided an opportunity to evaluate how protist communities (phytoplankton and other single-celled eukaryotes) respond to changing spring irradiance conditions in flaw lead polynyas, where open water persists between the central pack ice and land fast ice. We combined microscopic analysis of the protist communities (all cell sizes) with clone libraries of 18S rRNA genes and 18S rRNA (from RNA converted to cDNA) of size-fractionated seawater (0.2–3.0 μm) from 10 to 12 m depth in the surface mixed layer. The rRNA gene analysis provided information on the presence of organisms, while the rRNA analysis provided information on the most active members of the community. There was little overlap between the two types of clone libraries, and there were large community shifts over time. Heterotrophic dinoflagellates and ciliates were the most common sequences recovered. The relative proportion of photosynthetic protist sequences increased in March and April, and there was greater representation of Bacillariophyta, Prasinophyta, Haptophyta, and Cryptophyta in the rRNA compared to rRNA gene libraries. Microscopy indicated that large-celled diatoms dominated the community in May, when chlorophyll concentrations were greatest. However, the RNA sequencing showed that heterotrophic and putative parasitic protists were proportionately more active, and the concomitant decrease in nutrients suggested that the spring phytoplankton bloom had begun to decline by this time. These observations provide evidence of substantial changes in protist community structure and function during the spring transition.  相似文献   

4.
Over the last decade, culture-independent surveys of marine picoeukaryotic diversity based on 18S ribosomal DNA clone libraries have unveiled numerous sequences of novel high-rank taxa. This newfound diversity has significantly altered our understanding of marine microbial food webs and the evolution of eukaryotes. However, the current picture of marine eukaryotic biodiversity may be significantly skewed by PCR amplification biases, occurrence of rDNA genes in multiple copies within a single cell, and the capacity of DNA to persist as extracellular material. In this study we performed an analysis of the metagenomic dataset from the Global Ocean Survey (GOS) expedition, seeking eukaryotic ribosomal signatures. This PCR-free approach revealed similar phylogenetic patterns to clone library surveys, suggesting that PCR steps do not impose major biases in the exploration of environmental DNA. The different cell size fractions within the GOS dataset, however, displayed a distinct picture. High protistan diversity in the <0.8 µm size fraction, in particular sequences from radiolarians and ciliates (and their absence in the 0.8–3 µm fraction), suggest that most of the DNA in this fraction comes from extracellular material from larger cells. In addition, we compared the phylogenetic patterns from rDNA and reverse transcribed rRNA 18S clone libraries from the same sample harvested in the Mediterranean Sea. The libraries revealed major differences, with taxa such as pelagophytes or picobiliphytes only detected in the 18S rRNA library. MAST (Marine Stramenopiles) appeared as potentially prominent grazers and we observed a significant decrease in the contribution of alveolate and radiolarian sequences, which overwhelmingly dominated rDNA libraries. The rRNA approach appears to be less affected by taxon-specific rDNA copy number and likely better depicts the biogeochemical significance of marine protists.  相似文献   

5.
The study of cultured strains has a long tradition in protistological research and has greatly contributed to establishing the morphology, taxonomy, and ecology of many protist species. However, cultivation‐independent techniques, based on 18S rRNA gene sequences, have demonstrated that natural protistan assemblages mainly consist of hitherto uncultured protist lineages. This mismatch impedes the linkage of environmental diversity data with the biological features of cultured strains. Thus, novel taxa need to be obtained in culture to close this knowledge gap. In this study, traditional cultivation techniques were applied to samples from coastal surface waters and from deep oxygen‐depleted waters of the Baltic Sea. Based on 18S rRNA gene sequencing, 126 monoclonal cultures of heterotrophic protists were identified. The majority of the isolated strains were affiliated with already cultured and described taxa, mainly chrysophytes and bodonids. This was likely due to “culturing bias” but also to the eutrophic nature of the Baltic Sea. Nonetheless, ~ 12% of the isolates in our culture collection showed highly divergent 18S rRNA gene sequences compared to those of known organisms and thus may represent novel taxa, either at the species level or at the genus level. Moreover, we also obtained evidence that some of the isolated taxa are ecologically relevant, under certain conditions, in the Baltic Sea.  相似文献   

6.
The effect of primer specificity for studying the diversity of ammonia-oxidizing betaproteobacteria (βAOB) was evaluated. βAOB represent a group of phylogenetically related organisms for which the 16S rRNA gene approach is especially suitable. We used experimental comparisons of primer performance with water samples, together with an in silico analysis of published sequences and a literature review of clone libraries made with four specific PCR primers for the βAOB 16S rRNA gene. With four aquatic samples, the primers NitA/NitB produced the highest frequency of ammonia-oxidizing-bacterium-like sequences compared to clone libraries with products amplified with the primer combinations βAMOf/βAMOr, βAMOf/Nso1255g, and NitA/Nso1225g. Both the experimental examination of ammonia-oxidizing-bacterium-specific 16S rRNA gene primers and the literature search showed that neither specificity nor sensitivity of primer combinations can be evaluated reliably only by sequence comparison. Apparently, the combination of sequence comparison and experimental data is the best approach to detect possible biases of PCR primers. Although this study focused on βAOB, the results presented here more generally exemplify the importance of primer selection and potential primer bias when analyzing microbial communities in environmental samples.  相似文献   

7.
The data on the structure and functions of the mitochondrial genomes of protists (Protozoa and unicellular red and green algae) are reviewed. It is emphasized that mitochondrial gene structure and composition, as well as organization of mitochondrial genomes in protists are more diverse than in multicellular eukaryotes. The gene content of mitochondrial genomes of protists are closer to those of plants than animals or fungi. In the protist mitochondrial DNA, both the universal (as in higher plants) and modified (as in animals and fungi) genetic codes are used. In the overwhelming majority of cases, protist mitochondrial genomes code for the major and minor rRNA components, some tRNAs, and about 30 proteins of the respiratory chain and ribosomes. Based on comparison of the mitochondrial genomes of various protists, the origin and evolution of mitochondria are briefly discussed.  相似文献   

8.
Odintsova MS  Iurina NP 《Genetika》2002,38(6):773-788
The data on the structure and functions of the mitochondrial genomes of protists (Protozoa and unicellular red and green algae) are reviewed. It is emphasized that mitochondrial gene structure and composition, as well as organization of mitochondrial genomes in protists are more diverse than in multicellular eukaryotes. The gene content of mitochondrial genomes of protists are closer to those of plants than animals or fungi. In the protist mitochondrial DNA, both the universal (as in higher plants) and modified (as in animals and fungi) genetic codes are used. In the overwhelming majority of cases, protist mitochondrial genomes code for the major and minor rRNA components, some tRNAs, and about 30 proteins of the respiratory chain and ribosomes. Based on comparison of the mitochondrial genomes of various protists, the origin and evolution of mitochondria are briefly discussed.  相似文献   

9.
Heterotrophic protists are a highly diverse and biogeochemically significant component of marine ecosystems, yet little is known about their species-specific prey preferences and symbiotic interactions in situ. Here we demonstrate how these previously unresolved questions can be addressed by sequencing the eukaryote and bacterial SSU rRNA genes from individual, uncultured protist cells collected from their natural marine environment and sorted by flow cytometry. We detected Pelagibacter ubique in association with a MAST-4 protist, an actinobacterium in association with a chrysophyte and three bacteroidetes in association with diverse protist groups. The presence of identical phylotypes among the putative prey and the free bacterioplankton in the same sample provides evidence for predator–prey interactions. Our results also suggest a discovery of novel symbionts, distantly related to Rickettsiales and the candidate divisions ZB3 and TG2, associated with Cercozoa and Chrysophyta cells. This study demonstrates the power of single cell sequencing to untangle ecological interactions between uncultured protists and prokaryotes.  相似文献   

10.
This study reports the use of culture-independent and culture-dependent approaches to identify naturally occurring communities of Bacteria and Fungi fouling the surfaces of concrete structures with and without an acrylic paint coating in Georgia, USA. Genomic DNA was extracted from four different sites and PCR amplification of bacterial ribosomal RNA (16S rRNA) genes and the internal transcribed spacer (ITS) region of fungal rRNA genes was conducted. Bacterial and fungal community composition was determined by restriction analysis of amplified DNA of eight clone libraries and sequencing. Five bacterial phyla were observed, and representatives of the phylum Cyanobacteria and the classes Betaproteobacteria and Gammaproteobacteria dominated the bacterial clone libraries. The ITS region of rRNA gene sequences revealed the dominant phylotypes in the fungal clone libraries to be most closely related to Alternaria, Cladosporium, Epicoccum and Udeniomyces. The majority of these fungal genera could be cultured from the sites and successfully used to foul concrete in laboratory-based experiments. While the fungal sequences were most closely related to cultured isolates, the vast majority of bacterial sequences in the libraries were related to uncultured environmental clones. Results show phylogenetically distinct microbial populations occurring at the four sites.  相似文献   

11.
Eukaryotic marine microbes play pivotal roles in biogeochemical nutrient cycling and ecosystem function, but studies that focus on the protistan biogeography and genetic diversity lag-behind studies of other microbes. 18S rRNA PCR amplification and clone library sequencing are commonly used to assess diversity that is culture independent. However, molecular methods are not without potential biases and artifacts. In this study, we compare the community composition of clone libraries generated from the same water sample collected at the San Pedro Ocean Time Series (SPOTs) station in the northwest Pacific Ocean. Community composition was assessed using different cell lysis methods (chemical and mechanical) and the extraction of different nucleic acids (DNA and RNA reverse transcribed to cDNA) to build Sanger ABI clone libraries. We describe specific biases for ecologically important phylogenetic groups resulting from differences in nucleic acid extraction methods that will inform future designs of eukaryotic diversity studies, regardless of the target sequencing platform planned.  相似文献   

12.
The species richness of eukaryotes in the hypersaline environment is generally thought to be low. However, recent studies showed a high degree of phylogenetic novelty at these extreme conditions with variable chemical parameters. These findings call for a more thorough look into the species richness of hypersaline environments. In this study, various hypersaline lakes (salars, 1–348 PSU) as well as further aquatic ecosystems of northern Chile were investigated regarding diversity of heterotrophic protists by metabarcoding studies of surface water samples. Investigations of genotypes of 18S rRNA genes showed a unique community composition in nearly each salar and even among different microhabitats within one salar. The genotype distribution showed no clear connection to the composition of main ions at the sampling sites, but protist communities from similar salinity ranges (either hypersaline, hyposaline or mesosaline) clustered together regarding their OTU composition. Salars appeared to be fairly isolated systems with only little exchange of protist communities where evolutionary lineages could separately evolve.  相似文献   

13.
Microscopic analysis of the phytoplankton and other protist communities in High Arctic lakes has shown that they often contain taxa in the Chrysophyceae. Such studies have been increasingly supported by pigment analysis using high-performance liquid chromatography (HPLC) to identify the major algal groups. However, the use of 18S rRNA gene surveys in other systems indicates that many protists, especially small heterotrophs, are underreported or missed by microscopy and HPLC. Here, we investigated the late summer protist community structure of three contrasting lakes in High Arctic polar desert catchments (Char Lake at 74°42′ N, Lake A at 83°00′ N and Ward Hunt Lake at 83°05′ N) with a combination of microscopy, pigment analysis and small subunit 18S ribosomal RNA gene surveys. All three methods showed that chrysophytes were well represented, accounting for 50–70% of total protist community biomass and 25–50% of total 18S rRNA gene sequences. HPLC analysis supported these observations by showing the ubiquitous presence of chrysophyte pigments. The clone libraries revealed a greater contribution of heterotrophs to the protist communities than suggested by microscopy. The flagellate Telonema and ciliates were common in all three lakes, and one fungal sequence was recovered from Char Lake. The approaches yielded complementary information about the protist community structure in the three lakes and underscored the importance of chrysophytes, suggesting that they are well adapted to cope with the low nutrient supply and strong seasonality that characterize the High Arctic environment.  相似文献   

14.
Diversity of Bacteria and Archaea was studied in deep marine sediments by PCR amplification and sequence analysis of 16S rRNA and methyl co-enzyme M reductase (mcrA) genes. Samples analysed were from Ocean Drilling Program (ODP) Leg 190 deep subsurface sediments at three sites spanning the Nankai Trough in the Pacific Ocean off Shikoku Island, Japan. DNA was amplified, from three depths at site 1173 (4.15, 98.29 and 193.29 mbsf; metres below the sea floor), and phylogenetic analysis of clone libraries showed a wide variety of uncultured Bacteria and Archaea. Sequences of Bacteria were dominated by an uncultured and deeply branching 'deep sediment group' (53% of sequences). Archaeal 16S rRNA gene sequences were mainly within the uncultured clades of the Crenarchaeota. There was good agreement between sequences obtained independently by cloning and by denaturing gradient gel electrophoresis. These sequences were similar to others retrieved from marine sediment and other anoxic habitats, and so probably represent important indigenous bacteria. The mcrA gene analysis suggested limited methanogen diversity with only three gene clusters identified within the Methanosarcinales and Methanobacteriales. The cultivated members of the Methanobacteriales and some of the Methanosarcinales can use CO2 and H2 for methanogenesis. These substrates also gave the highest rates in 14C-radiotracer estimates of methanogenic activity, with rates comparable to those from other deep marine sediments. Thus, this research demonstrates the importance of the 'deep sediment group' of uncultured Bacteria and links limited diversity of methanogens to the dominance of CO2/H2 based methanogenesis in deep sub-seafloor sediments.  相似文献   

15.
Picoeukaryotes (protists <3 μm) form an important component of Arctic marine ecosystems, although knowledge of their diversity and ecosystem functioning is limited. In this study, the molecular diversity and autotrophic biomass contribution of picoeukaryotes from January to June 2009 in two Arctic fjords at Svalbard were examined using 18S environmental cloning and size-fractioned chlorophyll a measurements. A total of 62 putative picoeukaryotic phylotypes were recovered from 337 positive clones. Putative picoeukaryotic autotrophs were mostly limited to one species: Micromonas pusilla, while the putative heterotrophic picoeukaryote assemblage was more diverse and dominated by uncultured marine stramenopiles (MAST) and marine alveolate groups. One MAST-1A phylotype was the only phylotype to be found in all clone libraries. The diversity of picoeukaryotes in general showed an inverse relationship with total autotrophic biomass, suggesting that the conditions dominating during the peak of the spring bloom may have a negative impact on picoeukaryote diversity. Picoplankton could contribute more than half of total autotrophic biomass before and after the spring bloom and benefited from an early onset of the growth season, whereas larger cells dominated the bloom itself.  相似文献   

16.
The oxic-anoxic transition zone of the Black Sea comprises a large suboxic zone as well as anoxic and sulfidic waters. While the prokaryotes and biogeochemical cycles that characterize this zone have been frequently studied, little is known about the diversity or ecology of its microbial eukaryotes. Here, we present the first broad qualitative report of the protist species composition in the Black Sea redoxcline using molecular tools. Fingerprint analysis from the whole redoxcline revealed a complex community structure of metabolically active protists with distinct shifts along the redox gradient. Additionally, 18S rRNA gene clone libraries were used to compare protist species composition of suboxic and sulfidic water layers. Among the ciliates, sequences related to Pleuronema and Strombidium were dominant in both water layers whereas sequences affiliated with anaerobic plagiopylids and Cyclidium were detected only in the sulfidic zone. Among the flagellates, mainly stramenopiles (mostly bicosoecids and chrysophytes) occurred throughout the redoxcline. In the sulfidic zone we found stramenopile sequences but also euglenozoans, jakobids and choanoflagellates that were related to clonal sequences from other anoxic marine habitats, thus indicating the existence of globally distributed groups of anoxic flagellates. Higher species diversity in the sulfidic zone and about twice as many novel sequence types of ciliates and stramenopiles compared with the suboxic layer emphasizes the importance of anoxic, sulfidic waters as habitat for high protist diversity although the function of these organisms is yet unknown.  相似文献   

17.
Nanoplanktonic protists are comprised of a diverse assemblage of species which are responsible for a variety of trophic processes in marine and freshwater ecosystems. Current methods for identifying small protists by electron microscopy do not readily permit both identification and enumeration of nanoplanktonic protists in field samples. Thus, one major goal in the application of molecular approaches in protistan ecology has been the detection and quantification of individual species in natural water samples. Sequences of small subunit ribosomal RNA (SSU rRNA) genes have proven to be useful towards achieving this goal. Comparison of sequences from clone libraries of protistan SSU rRNA genes amplified from natural assemblages of protists by the polymerase chain reaction (PCR) can be used to examine protistan diversity. Furthermore, oligonucleotide probes complementary to short sequence regions unique to species of small protists can be designed by comparative analysis of rRNA gene sequences. These probes may be used to either detect the RNA of particular species of protists in total nucleic acid extracts immobilized on membranes, or the presence of target species in water samples via in situ hybridization of whole cells. Oligonucleotide probes may also serve as primers for the selective amplification of target sequences from total population DNA by PCR. Thus, molecular sequence information is becoming increasingly useful for identifying and enumerating protists, and for studying their spatial and temporal distribution in nature. Knowledge of protistan species composition, abundance and variability in an environment can ultimately be used to relate community structure to various aspects of community function and biogeochemical activity.  相似文献   

18.
Abyssal marine sediments cover a large proportion of the ocean floor, but linkages between their microbial community structure and redox stratification have remained poorly constrained. This study compares the downcore gradients in microbial community composition to porewater oxygen and nitrate concentration profiles in an abyssal marine sediment column in the South Pacific Ocean. Archaeal 16S rRNA clone libraries showed a stratified archaeal community that changed from Marine Group I Archaea in the aerobic and nitrate-reducing upper sediment column towards deeply branching, uncultured crenarchaeotal and euryarchaeotal lineages in nitrate-depleted, anaerobic sediment horizons. Bacterial 16S rRNA clone libraries revealed a similar shift on the phylum and subphylum level within the bacteria, from a complex community of Alpha-, Gamma- and Deltaproteobacteria, Actinobacteria and Gemmatimonadetes in oxic surface sediments towards uncultured Chloroflexi and Planctomycetes in the anaerobic sediment column. The distinct stratification of largely uncultured bacterial and archaeal groups within the oxic and nitrate-reducing marine sediment column provides initial constraints for their microbial habitat preferences.  相似文献   

19.
Molecular approaches aimed at detection of a broad-range of prokaryotes in the environment routinely rely on classifying heterogeneous 16S rRNA genes amplified by polymerase chain reaction (PCR) using primers with broad specificity. The general method of sampling and categorizing DNA has been to clone then sequence the PCR products. However, the number of clones required to adequately catalog the majority of taxa in a sample is unwieldy. Alternatively, hybridizing target sequences to a universal 16S rRNA gene microarray may provide a more rapid and comprehensive view of prokaryotic community composition. This study investigated the breadth and accuracy of a microarray in detecting diverse 16S rRNA gene sequence types compared to clone-and-sequencing using three environmental samples: urban aerosol, subsurface soil, and subsurface water. PCR products generated from universal 16S rRNA gene-targeted primers were classified by using either the clone-and-sequence method or by hybridization to a novel high-density microarray of 297,851 probes complementary to 842 prokaryotic subfamilies. The three clone libraries comprised 1391 high-quality sequences. Approximately 8% of the clones could not be placed into a known subfamily and were considered novel. The microarray results confirmed the majority of clone-detected subfamilies and additionally demonstrated greater amplicon diversity extending into phyla not observed by the cloning method. Sequences matching operational taxonomic units within the phyla Nitrospira, Planctomycetes, and TM7, which were uniquely detected by the array, were verified with specific primers and subsequent amplicon sequencing. Subfamily richness detected by the array corresponded well with nonparametric richness predictions extrapolated from clone libraries except in the water community where clone-based richness predictions were greatly exceeded. It was concluded that although the microarray is unreliable in identifying novel prokaryotic taxa, it reveals greater diversity in environmental samples than sequencing a typically sized clone library. Furthermore, the microarray allowed samples to be rapidly evaluated with replication, a significant advantage in studies of microbial ecology.  相似文献   

20.

Background

Photosynthetic picoeukaryotes (PPE) with a cell size less than 3 µm play a critical role in oceanic primary production. In recent years, the composition of marine picoeukaryote communities has been intensively investigated by molecular approaches, but their photosynthetic fraction remains poorly characterized. This is largely because the classical approach that relies on constructing 18S rRNA gene clone libraries from filtered seawater samples using universal eukaryotic primers is heavily biased toward heterotrophs, especially alveolates and stramenopiles, despite the fact that autotrophic cells in general outnumber heterotrophic ones in the euphotic zone.

Methodology/Principal Findings

In order to better assess the composition of the eukaryotic picophytoplankton in the South East Pacific Ocean, encompassing the most oligotrophic oceanic regions on earth, we used a novel approach based on flow cytometry sorting followed by construction of 18S rRNA gene clone libraries. This strategy dramatically increased the recovery of sequences from putative autotrophic groups. The composition of the PPE community appeared highly variable both vertically down the water column and horizontally across the South East Pacific Ocean. In the central gyre, uncultivated lineages dominated: a recently discovered clade of Prasinophyceae (IX), clades of marine Chrysophyceae and Haptophyta, the latter division containing a potentially new class besides Prymnesiophyceae and Pavlophyceae. In contrast, on the edge of the gyre and in the coastal Chilean upwelling, groups with cultivated representatives (Prasinophyceae clade VII and Mamiellales) dominated.

Conclusions/Significance

Our data demonstrate that a very large fraction of the eukaryotic picophytoplankton still escapes cultivation. The use of flow cytometry sorting should prove very useful to better characterize specific plankton populations by molecular approaches such as gene cloning or metagenomics, and also to obtain into culture strains representative of these novel groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号