共查询到20条相似文献,搜索用时 15 毫秒
1.
Establishing optimized protocols for micropropagation of some economical plants, such as Prunus sp., is still one of the most important challenges for in vitro plant culture researchers. As an example, micropropagation of GF677 hybrid rootstocks (peach × almond) are extremely dependent on the medium ingredients and a large undesirable proportion of GF677 shoots need to be discarded as a result of hyperhydricity and chlorosis. In this study, an artificial intelligence technique—specifically neurofuzzy logic—has been employed, as a modeling tool, to increase knowledge on the effect of 8 ion macronutrients (NH 4 +, NO 3 ?, Ca 2+, K +, Mg 2+, SO 4 2?, PO 4 2? and Na +; as inputs) on three growth parameters (outputs): total number of shoots per explant, healthy number of shoots per explant, and their bud number. The model delivered new insights, by three sets of IF–THEN rules, pinpointing the key role of NO 3 ? and their interactions (NO 3 ? × Ca 2+ and NO 3 ? × Ca 2+ × K +) on all growth parameters measured. All growth parameters showed a high correlation ratio between experimental and predicted values being 77.48, 91.78 and 90.78 for total shoots, healthy number and bud number, respectively. Regression coefficients higher than 77 % together with statistical significant ANOVA ( p < 0.01) indicated good performance of neurofuzzy logic models. Moreover, The model also can be used for inferring the best combination of ion concentrations to obtain high quality GF677 micropropagated shoots. In conclusion, we assess the utility of neurofuzzy logic technology in modeling complex databases, identifying new complex interactions among macronutrients, and inferring new results and valuable knowledge, which can be applied to design new plant tissue culture media and improve plant micropropagation. 相似文献
2.
Duckweeds are promising potential sources for bioethanol production due to their high starch content and fast growth rate. We assessed the potential for four species, Landoltia punctata, Lemna aequinoctialis, Spirodela polyrrhiza, and Wolffia arrhiza, for bioethanol production. We also optimized a possible production procedure, which must include saccharification to convert starch to soluble sugars that can serve as a substrate for fermentation. Duckweeds were cultivated on 10% Hoagland solution for 12 days, harvested, dried, homogenized, and dissolved in solutions that were tested as substrates for bioethanol production by the yeast Saccharomyces cerevisiae. First, we optimized the saccharification process, including the ideal ratio of the enzyme used to convert starch into simple sugars. The greatest starch-to-sugar conversion was obtained when the α-amylase and amyloglucosidase was 2:1 (v/v) and with a 24 h incubation period at 50 °C. After saccharification, the solutions were incubated with the yeast, S. cerevisiae. The fermentation process was carried out for 48 h with 10% (v/v) yeast inoculum. The ethanol content was maximal approximately 24 h after the start of incubation, and the sugars and protein were minimal, with little change over the next 24 h. The final ethanol concentration obtained were 0.19, 0.17, 0.19, and 0.16 g ethanol/g dry biomass for L. punctata, L. aequinoctialis, S. polyrrhiza, and W. arrhiza respectively. We suggest that these four species of duckweed have the potential to serve sources of bioethanol and hope that the procedure we have optimized proves useful in the endeavour. 相似文献
3.
Three species of duckweed, Spirodela oligorrhiza, Lemna minor and Wolffia arrhiza were grown under aseptic conditions on both buffered and unbuffered solutions of Jacob's media. Media with manually regulated pH levels were also used. Growth on unbuffered media is initially rapid but eventually inhibited, probably by increased pH levels. On buffered media growth is poor and effects of buffers cannot be separated out. These media give inadequate pictures of the species’ responses to changes in pH. Growth is most successful on media with regulated pH where sustained logarithmic population increases were achieved. Spirodela and Lemna rates are symmetrical about an almost neutral, optimal pH, declining fairly rapidly away from the optimum. Wolffia has an optimum at pH 5 and growth declined with increasing pH. All three species have optima at, or below, the neutral point. The range of tolerance of duckweeds is broader than has previously been suspected. Estimated lower limits, optimum and upper limits for each species are: Wolffia, pH 4·5–0·10, Lemna pH 4–6·2–10, Spirodela pH 3·7–0·10. Growth rate along a pH gradient is best described by means of polynomial equations: second-degree equations are sufficient for Spirodela and Lemna but a fifth-degree equation is required for Wolffia. Rates of population growth are similar for all species. In decreasing order they are: Wolffia, Lemna, Spirodela. However, in biomass units Lemna grew more than six and Spirodela seventeen times faster than Wolffia. 相似文献
4.
Plants growing in natural environments are exposed to radiofrequency electromagnetic radiation (EMR) emitted by various communication network base stations. The environmental concentration of this radiation is increasing rapidly with the congested deployment of base stations. Although numerous scientific studies have been conducted to investigate the effects of EMR on the physiology of humans and animals, there have been few attempts to investigate the effects of EMR on plants. In this study, we attempted to evaluate the effects of EMR on photosynthesis by investigating the chlorophyll fluorescence (ChF) parameters of duckweed fronds. During the experiment, the fronds were tested with 2, 2.5, 3.5, 5.5 and 8?GHz EMR frequencies, which are not widely studied even though there is a potentially large concentration of these frequencies in the environment. The duckweed fronds were exposed to EMR for 30?min, 1?h and 24?h durations with electric field strength of 45–50?V/m for each frequency. The results indicated that exposure to EMR causes a change in the non-photochemical quenching of the duckweeds. The changes varied with the frequency of the EMR and were time-varying within a particular frequency. The temperature remained unchanged in the duckweed fronds upon exposure to EMR, which confirms that the effect is non-thermal. 相似文献
5.
Summary An efficient protocol for in vitro propagation of the valuable medicinal plant, Wasabia japonica (Miq.) Matsumura is described through shoot tip proliferation and direct regeneration. Multiple shoots were induced from
shoort tips cultured on Murashige and Skoog (MS) semi-solid medium containing various concentrations (0.5–50 μ M) of N 6-benzyladenine (BA), thidiazuron, kinetin, and zeatin. A comparison was made on shoot multiplication between semi-solid and
liquid culture media. Well-developed shoots were obtained using full-strength MS semi-solid medium containing 5.0 μ M BA. However, the greatest shoot proliferation was achieved on either full- or half-strength MS liquid media supplemented
with 5.0 μ M BA for 4 wk (15.3±0.9 and 15.0±0.7 shoots per explant, respectively), and on half-strength MS liquid medium for 6 wk (25.8±1.3
shoots per explant) in culture. In contrast, the maximum number of shoots per explant on full-strength MS semi-solid medium
was achieved with either 5.0 μ M BA (10.4±0.6 shoots per explant) or 10.0 μ M kinetin (10.9±0.8 shoots per explant). Fresh weight of explants and length of shoots derived from full-strength MS liquid
medium (1055±77 mg and 34.2±1.0 mm, respectively) were significantly higher than those derived from full-strength MS semisolid
medium (437.6±17.3 mg and 15.4±0.7 mm, respectively). Quarter-strength MS liquid medium had no significant difference in shoot
proliferation when compared to quarter-strength MS semi-solid medium. Elongated shoots were separated and rooted on half-strength
MS semi-solid media fortified with 1-naphthaleneacetic acid (NAA), indole-3-butyric acid (IBA), or indole-3-acetic acid (IAA)
ranging from 0.1 to 10.0 μ M. Root formation was greatest with IBA when compared with IAA and NAA. One hundred percent of shoots were rooted on half-strength
MS medium with 5.0 μ M IBA, while vigorous roots were obtained with 10.0 μ M IBA. Micropropagated plantlets were successfully established in soil with 95% survival rate after heardening. 相似文献
6.
1. Duckweed ( Lemna minor), collected either in summer or early fall was exposed under laboratory conditions to control (photosynthetically active and UV‐A radiation) or experimental (control plus UV‐B radiation) conditions. 2. Growth and survival were determined by counting the number of green, and brown/white fronds following 1–5 or 11 days of irradiation. Growth of duckweed was impaired by exposure to UV‐B radiation in the fall experiment but not in the summer. 3. Fatty acid compositions were analysed following 5 or 11 days of irradiation and a recovery period of 0, 5, 29 or 40 h. Concentrations of the major fatty acids, palmitic, linoleic (LA) and α‐linolenic (ALA) acids were similar in the summer and fall duckweed collections, but the summer samples had higher concentrations of the desaturation products of LA and ALA. 4. UV‐B exposure had small, but significant, and contrasting effects on duckweed fatty acid concentrations. In the summer experiment, duckweed exposed to UV‐B had slightly lower concentrations of major fatty acids than control duckweed, while the reverse was true in the fall experiments. 5. These minor effects of UV‐B on concentrations of LA and ALA would be unlikely to have a major impact on the supply of these essential fatty acids from duckweed to freshwater food webs. 相似文献
7.
Lemna minor L. (strain 6591) and L. turionifera Landolt (strains 6573 and A) respond differently to culture conditions. Turions are produced and the frondsdie in strains grown in Lm medium, while those same strains continue to grow without turion formation when cultured in E medium.Attempts were made to discover possible triggers for turion production in Lm medium. Nutrient limitation, especially of phosphorus and/or nitrogen, does not appear to be the principal cause of turion induction; however, phosphorus addition encouraged turion germination. 相似文献
8.
In this study, laboratory tests were performed in order to examine growth characteristics of floating aquatic macrophytes (Lemna gibba and Lemna minor) in the presence of wastewater with circulation. The results showed that circulation of the waste water enhanced the kinetics of the process, as compared to the control systems. However, prolonged application of high circulation level had a different effect. In the presence of circulation with aquatic plants, there was additional 85.3-88.2% for BODs and 59.6-66.8% for COD decreases in the water quality indicators. In this study, the effectiveness of L. gibba and L. minor with circulation addition for the removal of four heavy metals (Pb, Ni, Mn, and Cu) from waste water was also investigated. Results from analysis confirmed the accumulation of different metals within the plant and a corresponding decrease of metals in the waste water. At the end of the study of circulation, L. gibba provided the metal removal for Cu, Pb, Ni, and Mn in the waste water as the ratio of 57%, 60%, 60%, and 62%, respectively. In this context, the best results were obtained when the action of L. gibba and L. minor plants, was combined with that of circulation. It is shown that in the presence of L. gibba and L. minor plants that are supplemented with circulation, the national standards of biochemical oxygen demand (BOD5) 27-33 mgL(-1) and chemical oxygen demand (COD) 62-78 mgL(-1) for L. minor and L. gibba, respectively, were reached after treatment. The new results can be used for design calculations regarding expected removal of pollutants by aquatic floating plants. 相似文献
9.
The aim of this study was to investigate the ability of Lemna minor for Toluidine Blue (TB) removal. Influence of the initial concentration over the removal process was considered. Experimental data have been analyzed using Langmuir, Freundlich, Dubinin–Radushkevich (D–R), and Elovich isotherm models. In addition, several kinetic models, pseudo-first-, pseudo-second-order, intraparticle and film diffusion models were considered. Langmuir and Freundlich isotherm suggested a favorable adsorption of TB by Lemna minor plants. From the D–R the mean free energy was calculated to be 11.18 kJ/mol, which indicates that TB adsorption was characterized by a chemisorption process. Kinetic studies showed that liquid film diffusion plays an important role during the process. Adsorption capacities of up to 26.69 mg/g and a high capacity of adaptation indicated that phytoremediation using Lemna minor could be a valuable alternative for dyes removal from wastewaters. 相似文献
10.
Macrophytes in forested areas and in prairie wetlands furnish critical habitat for aquatic communities and for several species of birds and mammals. North American agriculture relies heavily on herbicides and these compounds are detected routinely in surface waters of Western Canada. The question is whether these residues have biological meaning. There is surprisingly little literature on the responses of macrophytes to herbicides, or indeed to other chemicals. Previously we have used common duckweed in efforts to detect effects of herbicides and other chemicals. Duckweed clones were developed from local collections and grown axenically. In this study the plants were exposed to glyphosate herbicide either by dissolving formulated Roundup ® (Monsanto Canada Inc.) in the culture media or by spraying of the cultures in a laboratory spray chamber. Plant growth was monitored by counting the fronds present on several occasions over a 2-week period following treatment and by taking wet and dry weights of plants after the final counting period. Plant growth, as measured by increased numbers of fronds or increased wet or dry weights was relatively insensitive to glyphosate dissolved in the culture medium. However, the plants were killed by application of glyphosate as a spray. 相似文献
11.
BackgroundPlant infection models provide certain advantages over animal models in the study of pathogenesis. However, current plant models face some limitations, e.g., plant and pathogen cannot co-culture in a contained environment. Development of such a plant model is needed to better illustrate host-pathogen interactions. Methodology/Principal FindingsWe describe a novel model plant system for the study of human pathogenic bacterial infection on a large scale. This system was initiated by co-cultivation of axenic duckweed ( Lemna minor) plants with pathogenic bacteria in 24-well polystyrene cell culture plate. Pathogenesis of bacteria to duckweed was demonstrated with Pseudomonas aeruginosa and Staphylococcus aureus as two model pathogens. P. aeruginosa PAO1 caused severe detriment to duckweed as judged from inhibition to frond multiplication and chlorophyll formation. Using a GFP-marked PAO1 strain, we demonstrated that bacteria colonized on both fronds and roots and formed biofilms. Virulence of PAO1 to duckweed was attenuated in its quorum sensing (QS) mutants and in recombinant strains overexpressing the QS quenching enzymes. RN4220, a virulent strain of S. aureus, caused severe toxicity to duckweed while an avirulent strain showed little effect. Using this system for antimicrobial chemical selection, green tea polyphenols exhibited inhibitory activity against S. aureus virulence. This system was further confirmed to be effective as a pathogenesis model using a number of pathogenic bacterial species. Conclusions/SignificanceOur results demonstrate that duckweed can be used as a fast, inexpensive and reproducible model plant system for the study of host-pathogen interactions, could serve as an alternative choice for the study of some virulence factors, and could also potentially be used in large-scale screening for the discovery of antimicrobial chemicals. 相似文献
12.
The objective was to establish an efficient defined culture medium for bovine somatic cell nuclear transfer (SCNT) embryos. In this study, modified synthetic oviductal fluid (mSOF) without bovine serum albumin (BSA) was used as the basic culture medium (BCM), whereas the control medium was BCM with BSA. In Experiment 1, adding polyvinyl alcohol (PVA) to BCM supported development of SCNT embryos to blastocyst stage, but blastocyst formation rate and blastocyst cell number were both lower (P < 0.05) compared to the undefined group (6.1 vs. 32.6% and 67.3 ± 3.4 vs. 109.3 ± 4.5, respectively). In Experiment 2, myo-inositol, a combination of insulin, transferrin and selenium (ITS), and epidermal growth factor (EGF) were added separately to PVA-supplemented BCM. The blastocyst formation rate and blastocyst cell number of those three groups were dramatically improved compared with that of PVA-supplemented group in Experiment 1 (18.5, 23.0, 24.1 vs. 6.1% and 82.7 ± 2.0, 84.3 ± 4.2, 95.3 ± 3.8 vs. 67.3 ± 3.4, respectively, P < 0.05), but were still lower compared with that of undefined group (33.7% and 113.8 ± 3.4, P < 0.05). In Experiment 3, when a combination of myo-inositol, ITS and EGF were added to PVA-supplemented BCM, blastocyst formation rate and blastocyst cell number were similar to that of undefined group (30.4 vs. 31.1% and 109.3 ± 4.4 vs. 112.0 ± 3.6, P > 0.05). In Experiment 4, when blastocysts were cryopreserved and subsequently thawed, there were no significant differences between the optimized defined group (Experiment 3) and undefined group in survival rate and 24 and 48 h hatching blastocyst rates. Furthermore, there were no significant differences in expression levels of H19, HSP70 and BAX in blastocysts derived from optimized defined medium and undefined medium, although the relative expression abundance of IGF-2 was significantly decreased in the former. In conclusion, a defined culture medium containing PVA, myo-inositol, ITS, and EGF supported in vitro development of bovine SCNT embryos. 相似文献
13.
Optimization of cell culture media based on statistical experimental design methodology is a widely used approach for improving
cultivation conditions. We applied this methodology to refine the composition of an established culture medium for growth
of a human hepatoma cell line, C3A. A selection of growth factors and nutrient supplements were systematically screened according
to standard design of experiments (DoE) procedures. The results of the screening indicated that the medium additives hepatocyte
growth factor, oncostatin M, and fibroblast growth factor 4 significantly influenced the metabolic activities of the C3A cell
line. Surface response methodology revealed that the optimum levels for these factors were 30 ng/ml for hepatocyte growth
factor and 35 ng/ml for oncostatin M. Additional experiments on primary human hepatocyte cultures showed high variance in
metabolic activities between cells from different individuals, making determination of optimal levels of factors more difficult.
Still, it was possible to conclude that hepatocyte growth factor, epidermal growth factor, and oncostatin M had decisive effects
on the metabolic functions of primary human hepatocytes. 相似文献
14.
A new basal culture medium was developed and tested using a rapid and efficient protocol of in vitro axillary shoot bud proliferation of Ceratonia siliqua L., an important Mediterranean Fabaceae plant species. In a first experiment, the new formulated ‘LA’ mineral composition significantly improved shoot growth and proliferation as compared with Murashige and Skoog medium (MS, 1962) in both solid and liquid culture media. However, the liquid culture system proved to be the most suitable for shoot induction, shoot length (about fourfold higher), and multiplication rate (about two-fold higher), the difference being significant. The measured growth and proliferation parameters were further improved when LA mineral composition was optimized, in a second experiment. The highest multiplication rate (6.3) was achieved during the second subculture using the optimized ‘LAC’ medium. Noticeably, hyperhydricity and shoot-tip necrosis symptoms were absent in both formulated LA and LAC compositions when using the liquid culture system. In vitro rooting in solid medium showed 41.7 to 46.3% response on a solid medium which was more suitable than the liquid culture system, the difference being significant. In contrast, pretreated microcuttings with 3 μM IBA (indole-3-butyric acid) were successfully rooted ex vitro, showing significantly higher response (91.7%), average root number (8.3), and root length (31.5 mm). The plantlets were successfully acclimatized showing more than 90% survivability and normal morphology. The present study is a first cost-effective protocol for carob micropropagation combining the use of the newly formulated LAC basal medium, a liquid culture system, and ex vitro rooting. 相似文献
15.
Five different species of freshwater bacteria ( Pseudomonas sp., Vibrio sp., Klebsiella sp., Enterobacter sp., Serratia sp.) and a mixed natural population were used separately to inoculate cultures of axenic duckweed ( Lemna minor ). Inoculation with Vibrio sp. caused the final population density of Lemna plants to be significantly greater after 52 d than that of either axenic controls or Lemna inoculated with a mixed bacterial community. Inoculation with Pseudomonas sp. caused the final population density of Lemna to be significantly higher than with the mixed bacterial treatment. Inoculation of Lemna with Klebsiella sp., Enterobacter sp. or Serratia sp. resulted in higher plant populations compared with controls, but these differences were not statistically significant. The presence of a mixed community of bacteria did not significantly affect the final population density of Lemna compared with the controls. However, Lemna plants inoculated with a natural population of bacteria showed significantly higher levels of senescence compared with the other five treatments and the controls. None of the five single bacterial taxa used appeared to have any significant effect of the sensescence of duckweed. 相似文献
16.
Aquatic habitats are vulnerable to the invasion of alien species, so early warning protocols are necessary for eradication. The presence in Italy of two alien duckweeds in freshwaters has been documented: Lemna minuta, that showed high invasivity, and L. valdiviana, still confined to south Lazio. These two species may be mistaken for each other and for the domestic L. minor and L. gibba due to morphological variation. Here, we assess the applicability of DNA barcoding as a complement to morphological analysis for monitoring the spread of alien Lemna. We chose two chloroplast genome sequences for their ability to discriminate all Lemna species: the 5’ intron of the trnK gene and the matK gene. Among 48 samples of Lemna collected at 20 sites in Central Italy, 20 were identified as L. minor, 19 as L. minuta, five as L. trisulca and four as L. gibba. L. minuta was present at most sampling sites; in particular, at six locations of Lake Trasimeno, eight L. minuta samples were found. We demonstrate that DNA sequence analyses with cost-effective barcoding techniques can effectively support expert efforts in species determination for an early alert system of invasive Lemna species. 相似文献
17.
Optimization of culture parameters for achieving the most efficient ethanol fermentation is challenging due to multiple variables involved. Here we presented a rationalized methodology for multi‐variables optimization through the design of experiments DoE approach. Three critical parameters, pH, temperature, and agitation speed, affecting ethanol fermentation in S. stipitis was investigated. A predictive model showed that agitation speed significantly affected ethanol synthesis. Reducing pH and temperature also improved ethanol production. The model identified the optimum culture conditions for the most efficient ethanol production with the yield and productivity of 0.46 g/g and 0.28 g/l h, respectively, which is consistent with experimental observation. The results also indicated the scalability of the model from shake flask to bioreactor. Thus, DoE is a promising tool permitting the rapid establishment of culture conditions for the most efficient ethanol fermentation in S. stipitis. The approach could be useful to reduce process development time in lignocellulosic ethanol industry. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012 相似文献
18.
The concentrations of total free amino acids (TFAA) and humic substances (HS) accumulating in media conditioned by axenic and non-axenic duckweed fronds ( Lemna minor L.) were analyzed at various time intervals over a 21-day incubation period with the aid of a Shimadzu HPLC system. In the non-axenic Lemna cultures, the concentrations of both TFAA and HS continued to increase throughout the incubation period, although the rate of increase was higher in the initial stages. In contrast, the concentrations of both TFAA and HS reached asymptotic values in media conditioned by non-axenic Lemna after 10–12 days. As a result, the concentrations of both FAA and HS became significantly higher in media conditioned by axenic Lemna fronds than in those conditioned by non-axenic Lemna from days 10–12 until the end of the experiment. The possible reasons for the differences in the accumulation patterns of TFAA and HS in media conditioned by axenic and non-axenic Lemna and their ecological significance are discussed. 相似文献
19.
The present study was designed to investigate the stimulatory effects of different doses (0.1 to 2.5 μM) of thidiazuron (TDZ) on in vitro shoot induction and proliferation of mature nodal explants of Tecoma stans. Of the tested concentrations, 2.0 μM TDZ proved to be optimal for maximum regeneration (91%) with a mean shoot number of 5.6 ± 0.67, and length of 2.38 ± 0.08 cm, after 4 wk of incubation. To determine the negative effects of prolonged TDZ exposure, after 4 wk of incubation at optimized level of TDZ, the cultures were transferred to a secondary medium either lacking plant growth regulators or supplemented with benzyladenine (BA) alone, or in combination with different auxins (indole-3-acetic acid, indole-3-butyric acid, or α-naphthalene acetic acid; NAA). Among the tested concentrations, 2.5 μM BA in combination with 0.5 μM NAA yielded the maximum mean shoot number (16.60 ± 0.40), and average shoot length (4.76 ± 0.15 cm) after 4 wk of culture. The best rhizogenesis (93%) was achieved on ½ MS medium containing 1.5 μM NAA, with a mean root number of 7.60 ± 0.40 and length of 4.11 ± 0.23 cm, after 4 wk of incubation. The micropropagated plantlets were successfully acclimatized and hardened off in Soilrite™ with a 90% survival rate. The plantlets grew well with normal growth, flowering and showed, by gas chromatography–mass spectroscopy, an increase in the number of bioactive compounds compared with the donor plant. This is the first report on T. stans in vitro regeneration using TDZ. 相似文献
20.
Lapiedra martinezii Lag. is a potential medicinal and ornamental plant facing conservation challenges. Thus, this study was focused on determining the conditions for culture initiation and propagation using in vitro techniques. The optimal sterilization procedure combined thermotherapy at 54°C for 60 min and immersion in 7% (w/v) Ca(ClO)2 solution for 20 min. The most suitable medium to initiate bulb scales cultures was Gamborg B5 medium containing 500 mg L−1 casein, 2 mg L−1 adenine, 10 mg L−1 glutathione and 10 g L−1 sucrose. The most productive multiplication medium tested was Murashige and Skoog medium containing 30 g L−1 sucrose, 4.0 mg L−1 6-benzylaminopurine, and 0.12 mg L−1 1-naphtaleneacetic acid. Most plants developed in vitro rooted spontaneously in the multiplication phase. The vast majority of the plants (89%) were successfully transferred to ex vitro conditions, and 100% survived over 1 yr of cultivation outdoors. Sucrose at a concentration of 60 g L−1 was the most effective treatment to increase the biomass of bulblets. High auxin/cytokinin ratios produced the highest callus induction efficiency. The vast majority of callus developed in dark conditions, but none regenerated in the combinations of growth regulators previously tested. The plants obtained by micropropagation did not show significant differences in morphometric traits compared with the wild specimens, which supported the stability of the materials produced in vitro. This is the first report on cell cultures and micropropagation of L. martinezii, and the results can be applied to other Amaryllidaceae for industrial or conservation purposes. 相似文献
|