首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An efficient and rapid plant regeneration system through somatic embryogenesis was developed using 13-week-old zygotic embryos of oil palm (Elaeis guineensis Jacq.) cv. ‘Tenera’. Zygotic embryos were cultured on MS and N6 media supplemented with 2.0 mg L−1 picloram, 2,4-D and dicamba. The highest embryogenic callus formation (32%) was observed on N6 medium with 2,4-D after 3 month culture on callus induction medium. Somatic embryos were continuously formed from nodular calli on embryo maturation medium [N6 + 0.1 mg L−1 2,4-D, 0.16 g L−1 putrescine, 0.5 g L−1 casein amino acids and 2.0 g L−1 activated charcoal(AC)] for 3–5 months. Histological analysis confirmed that embryo development occurred via somatic embryogenesis. For plant regeneration, modified N6 medium (MN6) with AC (0.5 g L−1) without growth regulators, induced both shoot and root formation simultaneously with the highest regeneration rate of 56%. This combined shoot and root induction protocol shortened the culture time to 9–12 months. Furthermore, after acclimatization, more than 85% of transferred plants from our protocol developed successfully in the soil.  相似文献   

2.
In Vitro Cellular & Developmental Biology - Plant - Plants were regenerated from in vitro leaf and petiole tissues of Rubus spp. L. (red raspberry) ‘Joan J’ and ‘Polana’...  相似文献   

3.
Summary Pollen calli and plantlets of Hordeum vulgare cv. Sabarlis were obtained through direct pollen culture without pretreatment of spikes or preculture of anthers. Isolated immature pollen grains were cultured first in a 0.3 M mannitol solution or a C1 basal medium (Chen et al. 1979) supplemented with 0.3 M mannitol but without sucrose for 5–7 days, then transferred into a C1 medium containing 6% sucrose, 3 mM glutamine and 5 mM m-inositol. After a 3 week culture period small pollen calli derived from the pollen grains were transferred into a growth medium comprising C1 basal medium supplemented with 250 mg/1 lactalbumin hydrolysate and 0.5 mg/1 kinetin. For shoot regeneration, vigorously growing calli were transferred onto agarsolidified MS medium (Murashige and Skoog 1962) containing 3% sucrose, 2 mg/1 benzyladenine and 0.5 mg/1 indole-3-acetic acid. The ratio of green plants to albino was approximately 12.2.  相似文献   

4.
5.

Echinodorus ‘Indian Red’ is an underwater plant, used worldwide for aquarium ornamentation. An efficient method for in vitro propagation and plantlet acclimatization of this popular aquarium plant was standardized. Surface-disinfected shoot-tips were cultured in submerged conditions in a solid–liquid bilayer medium, consisting of an upper, liquid layer (sterile distilled water) and a lower, solid layer Murashige and Skoog (MS) basal medium supplemented with 3.0% (w/v) sucrose, 0.8% (w/v) agar-agar, and plant growth regulators (PGRs) in different combinations and concentrations. The combination of 2.5 mg L−1 6-benzylaminopurine and 1.0 mg L−1 α-naphthaleneacetic acid improved the multiplication rate to a maximum of 26.8 ± 0.51 shoots per explant after 60 d of culture. The number of multiplied shoots increased with each regeneration cycle, thus from only 26.8 ± 0.51 shoots per explant (first regeneration cycle), this number increased to 33.5 ± 0.58 (second regeneration cycle), and to 38.3 ± 0.62 for the third regeneration cycle with the same medium composition. The highest number of roots (8.3 ± 0.28) per shoot was induced in the presence of 1.0 mg L−1 indole-3-butyric acid, but further growth of these roots was stunted. The best rooting was achieved on PGR-free ½-strength MS medium, where 6.1 ± 0.21 roots per shoot were induced with 5.8 ± 0.35 cm length after 30 d of culture. The regenerated plantlets were successfully acclimatized to submerged underwater conditions, with 100% survival rate. The present protocol is suitable for the commercial propagation of Echinodorus ‘Indian Red’ for aquarium-industries.

  相似文献   

6.
The mycorrhizal status of several representative shrub species (Lavandula spp. and Thymus satureioides) in Moroccan semiarid ecosystems, was evaluated as well as their contribution to the mycorrhizal potential of the soil. Furthermore, the rhizosphere soils collected under these target species were tested for their influence on the growth of Cupressus atlantica, a tree species whose natural stands has declined in this area. Soil samples were collected from the rhizosphere of L. stoechas, L. dentata and of C. atlantica existing in the experimental area. Control samples were randomly collected from bare soil sites, away from plant influence.All the target species formed AM symbiosis and the extent of AM fungal colonization was not significantly different between plant species. No significant difference was detected between the total number of AM fungal spores of the bare soil and those recorded in the root zones of target species and C. atlantica. Three genera of AM fungi (Scutellospora, Glomus and Acaulospora) were present in the rhizospheres of the plant species and in the bare soil.The number of mycorrhizal propagules in soil originating from around the four target plant species was significantly higher than the one in the bare soil (Figure 1). The most probable number (MPN) of mycorrhizal propagules per 100 g of dry soil ranged from 7.82 (bare soil) to 179.7 (L. dentata and C. atlantica) and 244.5 (L. stoechas and T. satureioides). As the total number of spores was not different for the soil of different origins, the increase of the mycorrhizal soil infectivity (MSI) mainly resulted from larger AM mycelial networks that constituted the main source of AM fungal inoculum. In addition, this MSI enhancement was linked with changes in the functioning of soil microbial communities. In a glasshouse experiment, the growth of C. atlantica seedlings was significantly higher in the C. atlantica and in the shrub species soils than in the bare soil. Although the AM inoculum potential is not sufficient to ensure the development of forest trees in Mediterranean ecosystems, the use of plant nurses such as T. satureioides or Lavandula spp. could be of great interest to restore a self-sustaining vegetation cover to act against desertification.  相似文献   

7.
Summary Novel and efficient protocols for plant regeneration and genetic transformation from longitudinally-halved cotyledons ofin vitro raised seedlings in eggplant (Solanum melongena L.) are described. After co-cultivation withAgrobacterium vectors harboring neomycin phosphotransferase (nptll) as selectable marker, transgenic plantlets were regenerated on selective media containing 100 mg/l kanamycin. Transformants were recovered from embryogenic calli induced by 4 mg/l-naphthaleneacetic acid (NAA), and from organogenic calli induced by the addition of 2 mg/l zeatin plus 0.01 mg/l NAA. Nineteen independent transgenic lines were grown to maturity. The structural integrity, expression and sexual transmission of the introduced genes for neomycin phosphotransferase and ß-glucuronidase (gus) were investigated.  相似文献   

8.
Somatic embryogenesis in cotton (Gossypium hirsutum L.) is accelerated when the plant regeneration medium is supplemented with haemoglobin (erythrogen). In cotton SVPR 2 lines, a higher frequency of embryoid formation was observed when the medium contained 400 mg/l haemoglobin. Fresh weight of the callus, rate of embryoid induction, number of embryoids formed and the percentage of plant regeneration from somatic embryos were increased. Among the two different cultivars tested, MCU 11 showed no response to the presence of haemoglobin when compared to SVPR 2, and embryogenic callus formation was completely absent in the former. Medium containing MS salts, 100 mg/l myo-inositol , 0.3 mg/l thiamine-HCL, 0.3 mg/l Picloram (PIC), 0.1 mg/l kinetin and 400 mg/l haemoglobin effected a better response with respect to embryogenic callus induction. After 8 weeks of culture, a high frequency of embryoid induction was observed on medium containing MS basal salts, 100 mg/l myo-inositol, 0.3 mg/l PIC , 0.1 mg/l isopentenyl adenine, 1.0 g/l NH4NO3 and 400 mg/l haemoglobin. Plant regeneration was observed in 75.8% of the mature somatic embryos, and whole plant regeneration was achieved within 6–7 months of culture. The regenerated plantlets were fertile and similar to in vivo-grown, seed-derived plants except that they were phenotypically smaller. A positive influence of haemoglobin was observed at concentrations up to 400 mg/l at all stages of somatic embryogenesis. The increase in the levels of antioxidant enzyme activities, for example superoxide dismutase and peroxidase, indicated the presence of excess oxygen uptake and the stressed condition of the plant tissues that arose from haemoglobin supplementation. This increased oxygen uptake and haemoglobin-mediated stress appeared to accelerate somatic embryogenesis in cotton.Abbreviations BAP Benzylaminopurine - 2,4-D 2,4-Dichlorophenoxyacetic acid - GA3 Gibberellic acid - GR Glutathione reductase - 2iP Isopentenyl adenine - KT Kinetin - NAA Naphthaleneacetic acid - PFC Perfluorocarbon - PIC Picloram - PO Peroxidase - ROS Reactive oxygen species - SOD Superoxide dismutase - T.HCl Thiamine hydrochloride  相似文献   

9.
This article demonstrates the single bead alginate-encapsulation and conversion (complete plantlet regeneration) from protocorm-like bodies (PLBs) of Aranda Wan Chark Kuan ??Blue???×?Vanda coerulea Grifft. ex. Lindl. (AV) (a monopodial orchid hybrid) for the first time. PLBs, induced from leaf segments of AV were isolated from in vitro proliferating PLB clusters. Individual PLBs (4?±?1?mm diameter) were encapsulated in calcium alginate beads to manage mass propagation, short-term storage and germplasm sharing. The superior gel matrix for encapsulation was obtained using 3?% sodium alginate and 75?mM calcium chloride (CaCl2·2H2O). Highest percentage of germination (98.1?%) and conversion (96.2?%) of encapsulated PLBs (capsules) was obtained on plant growth regulator-free half-strength MS (Murashige and Skoog, Physiol Plant 15:473?C497, 1962) medium. Successful storage of capsules, until 180?days, was achieved at 25?°C under zero-irradiance with germination and conversion frequency of 76.9 and 70.2?%, respectively. Plantlets regenerated from capsules were acclimatized successfully with 92?% survival rate.  相似文献   

10.
Leaf and petiole explants of monocotyledonous pothos (Epipremnum aureum) ‘Jade’ were cultured on Murashige and Skoog basal medium supplemented with N-(2-chloro-4-pyridl)-N′-phenylurea (CPPU) or N-phenyl-N′-1,2,3-thiadiazol-5-ylurea (TDZ) with α-naphthalene acetic acid (NAA). Somatic embryos appeared directly from explants after 4–8 weeks of culture; 9.1 μM TDZ with 1.1 μM NAA induced 61.1 % leaf discs and 94.4 % of petiole segments to produce plantlets through embryo conversion. Using this established regeneration method and an enhanced green fluorescent protein (GFP) gene (egfp) as a reporter marker, an Agrobacterium-mediated transformation procedure was developed. Leaf discs and petiole segments were inoculated with Agrobacterium tumefaciens strain EHA105 harboring a binary vector pLC902 that contains novel bi-directional duplex promoters driving the egfp gene and hygromycin phosphotransferase gene (hpt), respectively. The explants were co-cultivated with strain EHA105 for 3, 5, and 7 days, respectively prior to selective culture with 25 mg l?1 hygromycin. A 5-day co-cultivation led to 100 % of leaf discs to show transient GFP expression and 23.8 % of the discs to produce stable GFP-expressing somatic embryos. A 7-day co-cultivation of petiole explants resulted in the corresponding responses at 100 and 14.3 %, respectively. A total of 237 transgenic plants were obtained, and GFP fluorescence was observed in all plant organs. Regular PCR and quantitative real-time PCR analyses confirmed the presence of 1 or 2 copies of the egfp gene in analyzed plants. The highly efficient regeneration and transformation systems established in this study may enable genetic improvement of this vegetatively propagated species through biotechnological means.  相似文献   

11.
Summary Direct shoot and cormlet regeneration from leaf explants were obtained in triploid dessert banana cultivar Nanjanagud Rasabale (NR) that is classified under the group ‘Silk’ and has the genotype AAB. The response for both cormlet and direct shool formation was observed only in leaf explants obtained from shoots cultured in liquid medium but not in similar explants obtained from shoots grown on gelled medium. Shoot initiation occurred after a sequential culture of leaf (sheath) explants on modified Murashige and Skoog (MS) medium supplemented with different growth regulators. In the sequence, the leaf explants were cultured first on medium with a high level (22.4 μM) of benzyladenine (BA), second on indolc-3-butyric acid (IBA) supplemented medium, and third on reduced BA medium under incubation in the dark. The highest adventitious shoot regeneration in 24% of the explants, with the number of shoots ranging from 2 to 3 per explant, occurred in the explants incubated at the first step in medium with 22.4 and 0.198 μM IBA. Further growth and complete shoot formation occurred under incubation in a 16-h photoperiod. While keeping the culture conditions constant and replacing BA with picloram (0.83–20.71 μM) in the initial step, adventious origin of cormlets occurred in 12% of the explants. However, when rhizome explants (also obtained from shoots grown in liquid medium) were cultured with various growth regulators in the first step, medium containing 2,4,5-trichlorophenoxyacctic acid (7.82 μM) produced friable callus that re-differentiated into roots only. Physical forms of the medium, ie.e. agar-gelled or liquid, imparted specific effects on the extent of multiplication of leaf-regenerated shoots with no differences in morphology and growth patterns when compared to those of meristem-derived plants.  相似文献   

12.
A procedure for the regeneration of fertile transgenic Chinese cabbage (Brassica campestris ssp. pekinensis cv. Spring Flavor) is presented in this report. The protocol is based on infection of cotyledon explants of 5-d-old seedlings with an Agrobacterium tumefaciens strain LBA4404 carrying a disarmed binary vector pTOK/BKS-1. The T-DNA region of this binary vector contains the nopaline synthase/neomycin phosphotransferase II (nptII) chimeric gene for kanamycin resistance and the cauliflower mosaic virus 35S/coat protein gene of tobacco mosaic virus L (TMV-L) chimeric gene. After co-cultivation for 48 h, the cotyledonary petioles were placed on shoot induction media containing 15 mg/L kanamycin sulfate. Shoot induction was continued for 3–4 weeks, then subcultured once and after 2 weeks the shoots were transferred to root induction medium. After 1 week 8 putatively transformed plantlets from 200 cotyledon explants were obtained and transferred to greenhouse. Six of them grew to maturity, produced normal flowers and set seeds. Polymerase chain reaction and Southern blot hybridization analyses confirmed the introduction of the T-DNA into the Chinese cabbage genome. Further, Western blot analysis using polyclonal TMV antiserum showed most of the regenerants (5 out of 6) expressed TMV coat protein gene. Stable inheritance of the inserted clone was investigated in the next generation.  相似文献   

13.
In banana and plantain research, it is essential to establish embryogenic cell suspensions together with a highly efficient regeneration and transformation system. This article describes the development of an embryogenic cell suspension (ECS), regeneration, and transformation for plantain cv. “Gonja manjaya”. ECS was established using highly proliferative multiple buds. The frequency of embryogenic friable callus formation was 56.8% of the cultured explants. Friable embryogenic calli with many translucent proembryos were transferred to liquid medium and homogenous cell suspensions were established within 3–4 mo. Approximately 25,000 to 30,000 plants per 1.0 ml of settled cell volume were regenerated in approximately 13–14 mo. ECSs were transformed using Agrobacterium strain EHA 105 harboring the binary vector pBI121. About 50–60 transgenic plants per 0.5 ml settled cell volume were regenerated on selective medium containing 100 mg l−1 kanamycin. Histochemical GUS assays using different tissues of putatively transformed plants demonstrated stable expression of uidA gene. The presence and integration of the uidA gene were confirmed by PCR and Southern blot analysis, respectively. This is the first report showing establishment of embryogenic cell suspension cultures and Agrobacterium-mediated transformation of an important plantain cultivar, “Gonja manjaya”. This study shows the huge potential for genetic transformation of plantains for disease or pest resistance, as well as tolerance to abiotic factors such as drought stress using this robust regeneration and transformation protocol.  相似文献   

14.
Callus cultures from cotyledon and hypocotyl explants of a Spanish cultivar of melon (Amarillo Oro) have been tested for their growth and morphogenic capacity on a series of media with different concentrations of indole-3-acetic acid (IAA) and 6-furfurylaminopurine (kinetin). Melon tissues were able to undergo morphogenesis both via organogenesis and embryogenesis, depending on culture conditions and explant source. Shoot buds were obtained at high rates in cotyledon explants. In response to 1.5 mg/l IAA and 6.0 mg/l kinetin, more than 90% of the calli produced well-developed shoots. Hypocotyls failed to form shoots but formed somatic embryos on auxin containing media while cotyledon explants usually gave abundant shoots but only rarely formed embryos. It was possible to maintain organogenic callus lines for at least 12 months under defined conditions. Plants were recovered from adventitious shoots produced both in cotyledon-derived calli and from organogenic cell lines.  相似文献   

15.
Summary A simple procedure was developed to induce callus growth and whole plant regeneration for a tetraploid cultivar of Alstroemeria. The callus, induced from mature zygotic embryos cultured on a medium supplemented with 20 M kinetin with 10 or 20 M NAA, could be maintained for one year without any loss of regeneration potential. Maximum frequency of regeneration (40%) was obtained with calli maintained on the medium containing 20 M kinetin and 20 M NAA. Whole plant regeneration occurred via somatic embryogenesis in the absence of growth regulators and the plantlets grew to maturity and flowered in the greenhouse conditions.Abbreviations BAP N6-benzylaminopurine - MS Murashige and Skoog (1962) medium - MSO Basal medium devoid of any plant growth regulator - NAA -Naphthaleneacetic acid - TDZ N-phenyl-N 1,2,3,-thiadiazol-5-ylurea (thidiazuron) - IAA Indole-3-acetic acid - 2,4-D 2,4-Dichlorophenoxyacetic acid  相似文献   

16.
17.
The chemical composition of volatiles emitted in vivo from different plant parts of P. cerasifera and P. cerasifera ‘Pissardii’ were collected during the entire biological cycle of the plant growth and analyzed by gas chromatography mass spectrometry (GC-MS) after solid phase micro-extraction (SPME). All the data were submitted to multivariate statistical analysis evidencing many differences amongst the selected plant parts and growth stages. A total of 136 compounds were identified corresponding to 90.1–99.6% of the whole aroma profile of cherry plum samples. Non-terpenes were the most abundant class of constituents present in the volatile emission of all analyzed samples. In particular, the aroma of both fruit stages was mainly characterized by alcohols and esters in different amounts.  相似文献   

18.
Availability of explants with adequate embryogenic competence is one of the most important limitations for the development of regenerable cell suspensions in banana. To increase the number and ease of accessibility to potentially embryogenic explants, a novel methodology is described by which young male flower clusters isolated from adult plants are induced to form new flower buds and proliferate in vitro. Different concentrations of the plant growth regulator thidiazuron (TDZ) induced inflorescence proliferation, which could be maintained over time as a continuous source of young flower buds. Intensity of proliferation was evaluated during successive subcultures. At the third cycle of proliferation, the highest multiplication rate (2.89) was obtained on the medium containing 5 microM TDZ. Newly generated floral tissues were assessed for embryogenic competence, resulting in an average embryogenic frequency of 12.5%. The observed embryogenic capacity, together with the recurrent availability of immature flowers, allowed for the direct initiation of cell suspensions from bulked explant cultures. Regular observation and regeneration tests during the development of suspended cell cultures confirmed their embryogenic condition. Produced embryos successfully matured and germinated to regenerate hundreds of somatic in vitro plants.  相似文献   

19.
Halse  S. A.  McRae  J. M. 《Hydrobiologia》2004,524(1):1-52
Two new genera of giant ostracods Lacrimicypris n. gen. and Repandocypris n. gen. from Australia are described and eight new species:L. kumbar n. sp., R. austinensis n. sp., R. gleneagles n. sp., Mytilocypris coolcalalaya n. sp., Australocypris bennetti n. sp., A. beaumonti n. sp., A. mongerensis n. sp. and Caboncypris kondininensis n. sp. The number of known Australian genera and species of giant ostracods are now 6 and 21, respectively. Keys to genera and species are provided: all species can be distinguished using the hemipenis and male first leg. The usefulness of the bursa copulatrix as a species-level taxonomic character is highlighted. Most of the species described in this paper occur in salt lakes and existing ecological information on Western Australian species, as well as the distributions of all species, are summarized. Western Australia has a particularly rich halobiont fauna but current explanations relating richness of the halobiont fauna to the widespread occurrence of salt lakes appear incomplete. Australocypris bennetti is unusual in that it is frequently found at pH < 4. Its morphology differs slightly in acidic and alkaline waters.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号