首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-frequency plant regeneration of C. roseus cv. ‘little bright eye’ via somatic embryogenesis and organogenesis from five out of six explants was standardized. Two factors were found to be important for regeneration: (1) the type of explants, and (2) the combination and concentrations of plant growth regulators. The highest regeneration percentage through somatic embryogenesis was obtained from mature zygotic embryo in MS medium supplemented with 7.5 μM of thidiazuron (TDZ). The mature embryo also regenerated efficiently via organogenesis in MS medium supplemented with either 2.5 μM TDZ or 5.3 μM α-naphthalene acetic acid (NAA) and 2.2 μM 6-benzylaminopurine (BA). Hypocotyl and cotyledon did not induce somatic embryogenesis and organogenesis in TDZ-containing medium but gave a maximum percentage of shoots in MS medium supplemented with 5.3 μM NAA and 2.2 μM BA. Stem nodes and meristem tips showed better regeneration via organogenesis in the medium supplemented with NAA and BA and in lower concentrations of TDZ.  相似文献   

2.
Abstract

Callus production, shoot formation via organogenesis and rooting of the regenerated shoots are reported in an Egyptian variety of Pisum sativum L. Calli were initiated from hypocotyl, leaf, root and mature embryo explants when cultured on MS medium containing B5 vitamins and supplemented with 2 mg/l 2,4-D+1 mg/l kin. Among the different types of explants, hypocotyl showed best potential for callus proliferation. Hypocotyl, leaf and immature cotyledon explants were used for shoot organogenesis. The best results of shoot formation were achieved when hypocotyl explants were cultured on MS-medium supplemented with 2 mg/l BA+1 mg/l NAA. However, immature cotyledon explants showed the highest frequency of shoot formation with 1 mg/l BA. Data of in vitro rooting showed that maximum root frequency occurred on culture medium containing half strength of MS salts, 40 g/l sucrose and 2 mg/l NAA.  相似文献   

3.
Role of Thidiazuron (TDZ) in inducing adventitious organogenesis in Pongamia was studied. TDZ at different concentrations (0, 0.45, 2.27, 4.54, 6.71, 9.08, 11.35, 13.12 and 22.71 μM) were used for induction of caulogenic bud formation in deembryonated cotyledon explants. Each cotyledon was cut into three segments and identified as proximal, middle and distal. Duration of TDZ exposure, influence of the segment and orientation of the explant were studied. TDZ at 11.35 μM concentration was optimum for the induction of shoots and rapid elongation. Shoots induced at higher concentration elongated after several passages in growth regulator free medium, thereby extending the period of differentiation. Exposure of the explant for 20 days yielded more number of buds than 10 days. Proximal segment of the cotyledon was more responsive. Contact of abaxial surface in the medium was more effective and generated more buds than the adaxial side. Buds differentiated and elongated on transfer to MS basal medium for 8–12 passages of 15 days each. Rooting and elongation of shoots was achieved in charcoal supplemented half-strength MS medium. Rooted plantlets survived on transfer to sand soil mixture. The plants were hardened and transferred to green house. This is the first report on in vitro regeneration of Pongamia pinnata via adventitious organogenesis using TDZ. This protocol may find application in studies in genetic transformation, isolation of somaclonal variants and in induction of mutants. It also provides a system to study the inhibitory role of TDZ on shoot differentiation.  相似文献   

4.
Seabuckthorn (Hippophae rhamnoides) is a multipurpose small tree with unique berries of high nutritional and pharmaceutical values. A clonally propagated plant originating from a 20-year-old tree of H. r. rhamnoides × mongolica hybrid cultivar Julia and seedling offspring of this cultivar were investigated regarding induction of shoot organogenesis in leaf explants and in roots of intact seedlings, and induction of direct somatic embryogenesis in explants from shoot tissue. The highest percentage of leaf explants showing shoot organogenesis was achieved (juvenile explants, 65%; adult explants, 75%) when incubated in Murashige and Skoog (MS) medium supplemented with either 4.5 μM of the phenylurea cytokinin thidiazuron (TDZ) or 2.25 μM TDZ plus 2.2 μM 6-benzyladenine (BA), for juvenile and adult explants, respectively, both supplemented with 0.53 μM α-naphthaleneacetic acid (NAA). Juvenile explants developed on average 18 shoots per explant in the MS medium supplemented with 4.5 μM TDZ, a four fold increase over those incubated on the medium supplemented with 2.25 μM TDZ and 2.2 μM BA. Adult leaf explants grown on medium containing 2.25 μM TDZ and 2.2 μM BA medium produced 12 shoots per explant, while those grown on medium containing 4.5 μM TDZ produced 5 shoots per explant. Shoot organogenesis was observed in roots of intact seedlings pre-cultured on plain medium lacking nutrients (PM) or woody plant medium (WPM) salts and then grown on WPM salts supplemented with 4.4 μM BA, 0.29 μM gibberrelic acid (GA3), and 57.0 μM indoleacetic acid (IAA). The number of shoots formed on each seedling root system was ten fold higher when the pre-culture was in WPM medium indicating a promoting effect of mineral nutrients in the pre-culture medium. Somatic embryogenesis was induced in both juvenile and adult leaf explants in 65 and 78% of the explants, respectively, in MS-based medium supplemented with 2.0 μM N-(2-Chloro-4-pyridyl)-N 1-phenylurea (CPPU), 0.53 μM NAA and varying concentrations of BA. There was an interaction effect between MS salt strength and BA concentration. The most effective medium for inducing somatic embryogenesis in juvenile explants contained half strength MS salts and 2.2 μM BA and full strength MS salts and 13.2 μM BA for adult explants.  相似文献   

5.
In vitro regeneration from leaf, cotyledon and hypocotyl explants of six cultivars belonging to three species of Capsicum was achieved by direct organogenesis. The cultivar Umorok showed the best response while Meiteimorok, Haomorok, Mashingkha and Uchithi showed intermediate response and the cultivar Chiengpi was the least responsive. Leaf and cotyledon explants regenerated more shoots than hypocotyl explants and the maximum number of shoots were produced on Murashige and Skoog (1962) medium containing 8.8 μM 6-benzylaminopurine (BAP) with 11.4 μM indole-3-acetic acid (IAA). Elongation of shoot buds derived from different explants was achieved on medium containing 2.8 μM IAA and the elongated shoots were rooted on medium containing 2.8 or 5.7 μM IAA and 2.4 or 4.9 μM indole-3-butyric acid (IBA). Four-week old rooted plantlets were hardened and transplanted to the soil. The plantlets showed 90 % survival during transplantation.  相似文献   

6.
In vitro plantlet regeneration systems for the seed geranium (Pelargonium x hortorum Bailey) using cotyledon, hypocotyl and root explants were optimized by studying the influence of seedling age, growth regulators and excision orientation on organogenesis. Indole-3-acetic acid combined with zeatin yielded the highest rate of shoot production on cotyledon explants (0.2–2 shoots per explant). More shoots were produced on explants cut from the most basal region of cotyledons from 2 to 4-day-old seedlings than from older seedlings or more distal cut sites. Hypocotyl explants produced the highest number of shoots, up to 40 shoots per explant, on indole-3-acetic acid (2.8–5.6 mM) + zeatin (4.6 mM) or thidiazuron (4.5 mM). Maximum shoot formation (0.3–1.4 shoots per explant) on root explants occurred when they were cultured on medium containing zeatin. Regenerated shoots rooted best on a basal medium containing no growth regulators. There were substantial differences among cultivars in shoot formation from each of the explant systems.Abbreviations BA 6-benzylaminopurine - 2,4-d 2,4-dichlorophenoxyacetic acid - IAA indole-3-acetic acid - NAA naphthaleneacetic acid - TDZ thidiazuron  相似文献   

7.
Mulwa RM  Bhalla PL 《Plant cell reports》2006,25(12):1281-1286
The macadamia tree, an Australian native, is highly valued for its nuts. Macadamia improvement programs so far have relied on conventional breeding and selection. The production of improved cultivars required to meet future demands could be accelerated by the application of modern biotechnological techniques, but this requires an efficient and reproducible regeneration system that has not yet been established for macadamia. We report here shoot regeneration from immature cotyledon explants of macadamia. Adventitious buds were induced on the cotyledon explants from fruits collected at 140 and 190 days after full bloom (DAFB) on MS medium supplemented with either 10 or 15 μM TDZ. The addition of 2% coconut milk (CM) to 10 μM TDZ containing media resulted in enhanced adventitious bud induction from 190 DAFB explants. Further shoot development from the induced buds was depressed in media containing TDZ + CM; the addition of 0.001 μM IAA to this combination doubled shoot development, from 1.9–3.9 shoots per explant. The transfer of bud clumps to media supplemented with 8.8 μM BA alone or in combination with either 0.14 μM GA3 or 0.001 μM IAA significantly increased shoot production from the previously induced explants by 1.5–2 times of that observed in TDZ + CM medium. Histological examinations revealed that shoot regeneration was primarily by organogenesis originating from cells on or just below the cut surfaces of explants.  相似文献   

8.
Efficient plant regeneration was achieved from callus derived from immature-cotyledon explants of oleaster (Elaeagnus angustifolia L.). Calli were obtained on MS media containing 3% sucrose and different concentrations of TDZ. The highest rate of green, compact and nodular callus was formed on MS medium supplemented with 1 mg/l of TDZ. Shoot organogenesis was achieved when the callus was transferred onto MS media containing 3% sucrose and BA alone (05–4 mg/l) or BA (0.5 and 1 mg/l) combined with NAA or IAA (0.5 and 1 mg/l). Maximum organogenesis was obtained with 1 mg/l BA in combination with 0.5 mg/l NAA. Rooting of the shoots was achieved on MS medium supplemented with 0.2 mg/l IBA. Regenerated plantlets were acclimatized and successfully transplanted to soil.  相似文献   

9.
Summary Prolific shoot regeneration was achieved in mungbean Vigna radiata (L.) Wilczek from 3-d-old in vitro cotyledonary node and hypocotyl explants from seedlings derived from mature seeds on Murashige and Skoog (MS) medium supplemented with thidiazuron (TDZ) (0.9 μM). An initial exposure to TDZ for 20 d and three successive transfers to fresh medium with reduced thidiazuron levels (0.09 μM) resulted in the regeneration of 104 shoots/explant from the cotyledon and 30 shoots/explant from the hypocotyl. Thidiazuron-associated abnormalities such as short compact shoots, fasciation and leaf growth in the form of rosettes were observed in shoots regenerated from hypocotyl explants. Both axillary and adventitious shoot formation from the explants were confirmed by histology. Through repectitive cycles of regeneration in the presence of TDZ, the number of shoots that could be obtained from the two explant classes within 80 d was significantly higher than with previous reports in mungbean  相似文献   

10.

Snapdragon (Antirrhinum majus L.) is a popular ornamental and model plant species, and the recently released reference genome could greatly boost its utilization in fundamental research. However, the lack of an efficient genetic transformation system is still a major limiting factor for its full application in genetic and molecular studies. In this study, a simple method for quick regeneration and efficient Agrobacterium-mediated transformation of snapdragon was developed. Cotyledon petiole and hypocotyl explants derived from two-week-old seedlings were cultured on MS media supplemented with 2 mg/L zeatin (ZT), 0.2 mg/L 1-naphthaleneacetic acid (NAA), and 2 mg/L AgNO3, and adventitious shoots were regenerated through organogenesis with an average regeneration of 48.00% and 41.33%, respectively. By contrast, the regeneration frequency was only 22.67% for cotyledon petiole and 25.67% for hypocotyl explants in the absence of AgNO3. Moreover, the application of AgNO3 promoted indirect shoot organogenesis, while direct shoot organogenesis occurred in the absence of AgNO3 from both hypocotyl or cotyledon petiole explants. Agrobacterium-mediated genetic transformation systems were developed with this high-efficient regeneration system. The transformation efficiency has been improved from 0 to 1% through the direct shoot organogenesis to 3 to 4% via the indirect shoot organogenesis. This efficient regeneration and genetic transformation method could be important for future use of snapdragon as a model plant to address some fundamental questions which are hard to be solved by using other model plant species, and to accelerate the breeding process through CRISPR/Cas9 genome editing.

  相似文献   

11.
Embelia ribes, an important vulnerable medicinal liana, was regenerated through organogenesis and embryogenesis using leaf explants. Leaf explants produced organogenic calluses on MS medium supplemented with 1.0 mg l−1 2,4-dichlorophenoxy acetic acid (2,4-D) and 0.5 mg l−1 6-benzylaminopurine. Shoot regeneration was obtained from organogenic calluses on MS medium containing different concentrations of thidiazuron (TDZ) and indole-3-acetic acid (IAA). The frequency of shoot bud organogenesis was highest (23.9 shoots/explant) in MS medium containing 0.5 mg l−1 TDZ and 0.1 mg l−1 IAA. The best result for induction of embryogenic callus was noticed in the combination of 2.0 mg l−1 TDZ and 0.5 mg l−1 2,4-D. This callus, maintained in the same medium, showed the highest differentiation of embryos (56.5%) after 6 wk of culture. Embryos were transferred to MS medium supplemented with different concentrations of TDZ, and this facilitated conversion of embryos into plants. After 6 wk of subculture, MS medium with 0.05 mg l−1 TDZ favored the highest percentage (52.2%) embryo conversion. As per the present protocol, 52.2% of the embryos underwent conversion, and a mean number of 29.5 shoots per culture was obtained. Shoots developed from both types of calluses were rooted on half-strength MS basal medium supplemented with 1.0 mg l−1 indole-3-butyric acid. HPLC-UV assay demonstrated the highest embelin content (5.33% w/w) in the embryogenic callus cultures. Embelin was isolated from embryogenic callus and was identified using IR and 1H NMR studies.  相似文献   

12.
Summary An efficient regeneration system was developed by culturing immature cotyledons and embryo axes of Arachis hypogaea L. cv. Georgia Green on Murashige and Skoog basal medium (MS) supplemented with various concentrations of thidiazuron (TDZ; 1, 5, 10, and 15 μM). Highly morphogenic callus was produced from 100% of the explants comprising the cotyledon with attached embryo axis when cultured in the dark on 10 μM TDZ. Upon excision and continued culture in the dark on 10 μM TDZ, morphogenic callus grew repetitively during monthly subcultures and retained its regeneration potential. For organogenesis, a gradual reduction in TDZ concentration and exposure to light were necessary before transfer to MS basal medium. Inclusion of indole-3-butyric acid in liquid MS medium favored rooting of recovered shoots. A distinct feature of this investigation is the induction of highly morphogenic callus by TDZ and regeneration of morphologically normal, fertile peanut plants after 8 months of callus subculture.  相似文献   

13.
A rapid plantlet regeneration system for Perilla frutescens was established from cotyledon and hypocotyl explants. A maximum of 91.06 % cotyledon and 76.4 % hypocotyl explants could directly produce shoots (3.09 ± 0.18 shoots per explants) on Murashige and Skoog (MS) medium. The optimum hormone combinations were 4.44 μM 6-benzylaminopurine (BA) for cotyledon and 2.22 μM BA + 2.85 μM indole-3-acetic acid (IAA) for hypocotyls. Rooting was induced on half-strength hormone-free MS medium. After transplantation to soil, approximate 80 % of the regenerated plantlets could survive, flower and fruit. Moreover, some morphological abnormalities were found among the regenerated plants.  相似文献   

14.
Summary An efficient in vitro propagation system was developed for Arnebia euchroma, an important Chinese traditional medicinal plant. The present study utilized thidiazuron (TDZ) for the induction of shoot organogenesis on cotyledon and hypocotyl explants. The maximal number of shoots was obtained on the modified Linsmaier and Skoog (LS) medium supplemented with 1.0 mgl−1 (4.5 μM) TDZ for 12d on cotyledon explants (8.6 shoots per cotyledon explant). Other cytokinins (kinetin and 6-benzyladenine) and auxin (α-naphthaleneacetic acid) were not efficient in inducing regeneration on cotyledon explants. Browning of the basal portion of the subcultured shoots could be significantly reduced when they were cultured on the modified LS medium supplemented with 100 mgl−1 (33.3 μM) polyvinylpyrrolidone. Well-developed shoots formed roots on the same medium containing 1.0 mgl−1 (4.9 μM) indole-3-butyric acid. The efficient regeneration protocol reported here provides an important means of micropropagation of this plant. Furthermore, this protocol is essential to future genetic improvement of plants via transformation protocols.  相似文献   

15.
Callus was produced on cotyledon, shoot tip, hypocotyl and root explants of twoCorchorus species on several media. Cytokinin was necessary for callus production on cotyledon explants. BothC.olitorius genotypes produced most callus on media with zeatin and either NAA or IAA, and theC.capsularis genotype produced most callus on media with IAA and either zeatin or BA. High frequencies of regenerated shoots were obtained from shoot tip explants of both species, from the apical meristem and from callus. Media with 2.0 mg 1−1 BA were superior for both species, and media with zeatin were equally good forC.capsularis only. More regeneration was obtained for all genotypes after subculture of callus on media with 2.0 mg 1−1 zeatin. Cotyledon callus produced less regeneration, also with differences between genotypes; explants of both genotypes ofC.olitorius produced regeneration on a medium with NAA and zeatin, and theC.capsularis genotype produced regeneration on a medium with IAA and BA. Limited regeneration from root explant callus was obtained forC.capsularis only on medium with BA and IAA. Regeneration was not obtained from hypocotyl callus. Further regeneration of shoots of both species was obtained from secondary callus after subculture, and from nodal segments of regenerated shoots and of seedling shoots cultured on basic MS medium without growth hormones. Roots were produced on about 80% of all shoots after transference to medium with 0.2 mg 1−1 IBA, and rooted plantlets survived and flowered normally after transference to compost.  相似文献   

16.
Hypocotyl, cotyledon and cotyledonary node explants of Calendula officinalis L were cultured on Murashige and Skoog (MS) media supplemented with various concentrations of thidiazuron (TDZ), kinetin (KIN), -naphthaleneacetic acid (NAA) and indole-3-butyric acid (IBA) to induce adventitious shoot regeneration and micropropagation. The highest frequency of adventitious shoot regeneration was achieved from hypocotyl and cotyledon explants on MS media supplemented with 0.75 mg dm–3 TDZ and either 0.25 or 0.50 mg dm–3 IBA. Efficient in vitro clonal propagation was also induced from cotyledonary nodes on a range of media supplemented with 0.75 mg dm–3 TDZ and 0.05 mg dm–3 NAA or 2 mg dm–3 KIN and 1 mg dm–3 NAA. Regenerated shoots were excised and rooted in MS medium supplemented with 1 mg dm–3 NAA. The rooted plantlets were finally transferred to pots.  相似文献   

17.
Yang  J.  Hu  Z.  Guo  G.Q.  Zheng  G.C. 《Plant Cell, Tissue and Organ Culture》2001,66(1):35-39
An effective protocol has been developed for plant regeneration from cotyledon explants of Swainsona salsula Taubert (Saline swainsona), a medicinal and agronomic shrub. Adventitious shoots were obtained from 83.2% of cotyledon explants from 3-day seedlings cultured on Murashige and Skoog (MS) medium containing 2.0 mg l−1 thidiazuron (TDZ), with an average of 9.3 shoots per explant. Individual elongated shoots were rooted on half strength MS medium supplemented with 2.0 mg l−1 indole-3-butyric acid (IBA), with 59.3% success. Regenerated plants with well developed shoots and roots were successfully transferred to soil, without detectable variants. Histological observation revealed that shoots developed from cotyledon explants via organogenesis, with little callus. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
Two plant regeneration methods applicable to Leucaenaleucocephala were developed. In the first method, involvingorganogenesis via callus formation, cotyledon, hypocotyl and root segments wereinitiated on MS medium containing different concentrations ofN6-benzyladenine (BA), 2,4-dichlorophenoxyacetic acid (2,4-D), andnaphthaleneacetic acid (NAA). Both compact (type I) and friable (type II) calliwere obtained from the cotyledon and hypocotyl explants treated with differentconcentrations of the growth regulators. Shoots were generated only from thefriable calli formed from the cotyledon explants. The calli formed from thehypocotyl explants did not generate shoots and the root explants died withoutforming callus. Cotyledon explants from 3–4 day old seedlings showedmaximum callus induction compared to those from older seedlings. In a secondmethod involving direct organogenesis, excised cotyledons were cultured on 1/2MS medium containing 10–35 mg l–1N6-benzyladenine (BA) for 7–14 days. Transfer of thecotyledonsto regeneration medium containing low BA resulted in callus formation andsubsequent shoot regeneration from the base of the excised cotyledon explants,with up to 100% frequency. Regenerated shoots rooted best on a basal mediumcontaining no growth regulators.  相似文献   

19.
Summary Modes of regeneration from hypocotyl explants were studied in Pelargonium × hortorum ‘Scarlet Orbit,’ and three wild relatives, P. zonale, P. alchemilloides, and P. inquinans, on different cytokinin treatments [1 μM thidiazuron (TDZ), 4 μM TDZ, or 8 μM N6-benzylaminopurine (BA) and 1 μM indole-3-acetic acid (IAA)]. P. × hortorum ‘Scarlet Orbit’ and P. zonale showed similar high numbers of easily detached, embryo-like structures in response to 1 μM TDZ; P. alchemilloides and P. inquinans showed weak embryogenic responses to all treatments. To revisit whether P. × hortorum produces somatic embryos, and to examine modes of regeneration in the wild species, the histology of regenerating structures on hypocotyl explants in 1 μM TDZ was examined. Both P. × hortorum and P. zonale produced embryo-like structures from single cell derivatives of epidermal cells. Globular-shaped structures transitioned into heart-shaped structures that had loose attachments to explant surfaces and no vascular connection to the explant. Roots with direct vascular connections to the rest of the embryo-like structures were never observed; root organogenesis appeared to be secondary. We propose that P. × hortorum and P. zonale exhibit partial somatic embryogenesis, in which all of the criteria for somatic embryos are met except formation of a root pole. In both species, explants forming embryo-like structures could also undergo shoot organogenesis, where shoots exhibited a broad base of attachment to the explant and a vascular connection to vascular nodules within the explant. Epidermally derived embryo-like structures were not observed in P. alchemilloides or P. inquinans in response to 1 μM TDZ. Shoot organogenesis occurred in P. alchemilloides but not in P. inquinans.  相似文献   

20.
In this communication we report shoot organogenesis from hypocotyl explants in cumin (Cuminum cyminum) genotype RZ-19 by the use of thidiazuron (TDZ). Various levels of TDZ were incorporated in MS basal medium to induce regeneration. Regeneration was achieved with a frequency up to 30% on 0.5 and 0.1 mg l?1 concentration of TDZ. Shoots once produced could be multiplied on 0.5 mg l?1 kinetin (KN) at the rate of approximately 8 shoots per regenerated shoot. These multiplied shoots could go through 3–4 multiplication cycles after which they root on 1.0 mg l?1 IAA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号