首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The cryopreservation of embryos is a technology developed for long-term genetic preservation. However, high sensitivity to low temperatures due to a large number of intracellular lipids within ruminant embryos compromises the success of this technique. The aim of this study was to examine the effects of using of lipolytic chemical agent forskolin, during in vitro producing of buffalo and bovine embryos on lipid contents, cryotolerance and subsequent developmental competence of these embryos. Buffalo and bovine oocytes were collected by the aspiration technique from follicles and submitted for in vitro fertilisation; the embryos were later divided into four experiments. Experiment 1, buffalo and bovine embryos were pre-treated in the presence and absence of 10 μM forskolin for 24 h. Lipid contents were determined by Nile red staining and confocal microscopy. We found that 10 μM forskolin was capable to reduce lipid contents within developing embryos in both of species (P < 0.01). Lipid contents within Day 2 embryos exhibited greater fluorescence intensity than did Day 7 embryos in both animal species. The purpose of Experiment 2 was to investigate the adverse effects of 10 μM forskolin on embryo development. In Experiments 3 and 4, Day 2 (4- to 8-cell stage) and Day 7 (blastocyst stage) embryos were pre-treated with 10 μM forskolin for 24 h and further cryopreserved with a controlled-rate freezing technique. The successful cryopreservation was determined by post-thawed embryonic development in vitro. The results showed that the blastocyst rate of the 4–8 cell stage in the forskolin-treated group had increased in both species, while the hatching and hatched blastocyst rates of forskolin-treated day 7 bovine embryos were significantly higher than those of the non-treated group (52.1% vs. 39.4%; P < 0.05). However, delipidation with forskolin did not affect the developmental rate of the day 7 buffalo embryos (P = 0.73). Our studies showed that delipidation by forskolin treatment increased the survival rate of cryopreservation in buffalo and bovine in vitro produced embryos.  相似文献   

2.
This study examined the effect of different methods of cryopreservation on the cytoskeletal integrity of camel embryos. A total of 32 embryos were recovered on Days 6 and 7 after ovulation and measured before being frozen using either a conventional slow-cooling technique (n=12: six Day 6 and six Day 7 embryos) or vitrification (n=12: four Day 6 and eight Day 7). The remaining 8 'control' embryos (four Day 6 and four Day 7) were not cryopreserved but instead incubated in holding medium for 30 min. After thawing, warming or incubation, the embryos were stained with 4,6-diamino-2-phenylindole dihydrochloride (DAPI) to identify dead cells. Subsequently, the embryos were fixed in 4% paraformaldehyde, permeabilized and labelled with Alexa Fluor 488-Phalloidin to enable assessment of cytoskeleton integrity. Vitrified-warmed embryos contained a significantly higher percentage of dead cells than either conventionally frozen embryos or controls (P<0.05). Although the proportion of dead cells in conventionally frozen embryos tended to be higher than in controls, the difference was not significant (P> or =0.07). Whereas embryo size did not affect the number of dead cells in conventionally frozen embryos, vitrified-warmed embryos >300 microm in diameter had a significantly higher percentage of dead cells than embryos < or =300 microm (P=0.01). Cytoskeleton integrity was also affected by both freezing method and embryo diameter. All 8 control embryos had a Grade I cytoskeleton, compared with only 2/24 (8.3%) frozen or vitrified embryos. Of the 8 slow-frozen or vitrified embryos with a Grade III cytoskeleton post-thaw, 7 had been vitrified and 6 were larger (Day 7) embryos. These results indicate that while both slow-freezing and vitrification of camel embryos lead to cytoskeleton disruption and cell death, embryo quality is better preserved by slow-freezing.  相似文献   

3.
When embryos are cultured individually or in small groups, blastocyst yield efficiency and quality are usually reduced. The aim of this work was to investigate the effect of supplementation of the embryo culture medium (CM) with several growth factors (GFs) on embryo development and apoptosis rate when a reduced number of embryos were in vitro cultured. Two experimental studies (ES) were carried out. In ES 1, five treatments were tested to study the effect of GF on embryo development: Control (∼30 to 50 embryos cultured in 500 μl of CM); Control 5 (Five embryos cultured in 50 μl microdrops of CM), without addition of GF in either of the two control groups; epidermal GF (EGF); IGF-I; and transforming GF-α (TGF-α) (Five embryos were cultured in 50 μl microdrops of CM with 10 ng/ml EGF, 10 ng/ml IGF-I or 10 ng/ml TGF-α, respectively). In ES 2, following the results obtained in ES 1, four different treatments were tested to study their effect on embryo development and quality (number of cells per blastocyst and apoptotic rate): Control; Control 5; EGF, all three similar to ES 1; EGF + IGF-I group (five embryos cultured in 50 μl microdrops of CM with 10 ng/ml EGF and 10 ng/ml IGF-I). In both ESs, it was observed that a higher proportion of embryos cultured in larger groups achieved blastocyst stage than embryos cultured in reduced groups (22.6% v. 14.0%, 12.6% and 5.3% for Control v. Control 5, IGF-I, TGF-α groups in ES 1, and 24.9% v. 17.1% and 19.0% for Control v. Control 5 and EGF in ES 2, respectively; P < 0.05), with the exception of embryos cultured in medium supplemented with EGF (18.5%) or with EGF + IGF-I (23.5%), in ES 1 and ES 2, respectively. With regard to blastocyst quality, embryos cultured in reduced groups and supplemented with EGF, alone or combined with IGF-I, presented lower apoptosis rates than embryos cultured in reduced groups without GF supplementation (11.6% and 10.5% v. 21.9% for EGF, EGF + IGF-I and Control 5 groups, respectively; P < 0.05). The experimental group did not affect the total number of cells per blastocyst. In conclusion, this study showed that supplementation of the CM with EGF and IGF could partially avoid the deleterious effect of in vitro culture of small groups of bovine embryos, increasing blastocyst rates and decreasing apoptosis rates of these blastocysts.  相似文献   

4.
The aim of this study was to examine the effects of modifications to a standard slow freezing protocol on the viability of in vitro produced bovine embryos. Bovine oocytes were matured, fertilized with frozen-thawed semen, and presumptive zygotes cultured in defined two-step culture media. The standard freezing medium was 1.5M ethylene glycol (EG), 0.1M sucrose, 10% fetal bovine serum (FBS) in Dulbecco's phosphate buffered saline (D-PBS). A preliminary trial showed that in vitro produced embryos cryopreserved in this medium had a survival rate of 74.6% at 24h and 53.5% at 48 h post-thaw. Experiment 1 studied the effects of omitting the sucrose supplement or replacing it with 0.1M xylose. In Experiment 2, the effects of partial (0%, 25% or 50%) or total (100%) replacement of sodium chloride with choline chloride in the cryopreservation medium were examined (the medium with 100% replacement was designated CJ1). The effects of replacing the 10% FBS with 0.4% BSA or 0.4% lipid-rich BSA (Albumax I) in CJ1 was studied in Experiment 3. In Experiment 4, pregnancy/calving rates following the post-thaw transfer of in vitro produced embryos cryopreserved in the standard freezing medium were compared with those of in vitro and in vivo produced embryos cryopreserved in the improved medium (Albumax I in CJ1). Supplementation of the cryopreservation medium with 0.1M sucrose resulted in higher post-thaw survival rates at 24 h (71.3% versus 53.5 and 51.7%; P<0.05), 48 h (51.1% versus 45.3 and 40.2%), and 72 h (34.0% versus 24.4 and 23.0%) than 0.1M xylose or no supplement, respectively, in Experiment 1. Experiment 2 showed that embryos cryopreserved in the standard medium had poorer survival rates at 24 h (72.8% versus 86.5%; P<0.05), 48 h (53.1% versus 66.3%) or 72 h (28.4% versus 44.9%) than those frozen in CJ1. The post-thaw survival rate of embryos frozen in medium supplemented with Albumax I was better than that for the FBS or BSA supplements at 24h (92.0% versus 90.7 and 87.3%), 48 h (87.3% versus 76.9 and 70.9%; P<0.05), and 72 h (70.4% versus 49.1 and 46 4%; P<0.05; Experiment 3). In Experiment 4, in vitro produced embryos cryopreserved in CJ1 medium supplemented with Albumax I resulted in higher pregnancy rates at Day 35 (31.9% versus 22.9%) and Day 60 (24.1% versus 14.3%) of gestation, and calving rates (22.6% versus 10.0%; P<0.05) than similar embryos frozen in the standard medium. However, in vivo produced embryos cryopreserved in Albumax I in CJ1 resulted in higher pregnancy rates at Day 35 (50.7%; P<0.05) and Day 60 (45.1%; P<0.05) of gestation, and calving rate (43.7%; P<0.05). It was concluded that modification of the freezing medium by addition of lipid-rich BSA and replacing sodium chloride with choline chloride improves the post-thaw survival of in vitro produced embryos, and their viability post-transfer.  相似文献   

5.
Oviductal fluid (OVF) was harvested chronically from 5 sows beginning on Day 1 of the estrous cycle (Day 0 of estrous cycle = day of detected estrus) and used for embryo culture (Day 3 OVF only). Two experiments were conducted to investigate in vitro development of 1-cell and 2-cell porcine embryos in a modified Kreb's Ringer bicarbonate medium (culture medium, CM), early luteal phase OVF or CM supplemented with OVF (CM-OVF, 25% OVF v/v in CM) with or without transfer to fresh CM. In Experiment 1, 1-cell and 2-cell embryos were harvested from sows (n = 7) approximately 44 h after detected estrus. In Experiment 2, 1-cell embryos were collected from 5 sows treated with altrenogest and gonadotropins, approximately 50 h after injection of human chorionic gonadotropin. The volume of OVF (ml) declined progressively throughout the 4 days of collection (24 h, 8.44 +/- 0.28; 48 h, 6.88 +/- 1.78; 72 h, 4.96 +/- 0.35; 96 h, 4.64 +/- 0.25 after onset of estrus; p less than .01). In both experiments, development to blastocyst stage was lowest among embryos cultured in OVF and highest among those cultured in CM-OVF (Experiment 1: CM, 27.3; OVF, 10; CM-OVF, 63.6; Experiment 2: CM, 26.7; OVF, 0; CM-OVF, 82.4; % blastocyst formation).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The ability of embryos to successfully survive cryopreservation is dependent on both morphological and developmental characteristics. Domestic cat oocytes matured in vitro exhibit alterations in nuclear and cytoplasmic maturation that may affect developmental competence, particularly after cryopreservation. In Experiment 1, we evaluated the developmental competence of in vitro produced (IVM/IVF) cat embryos after cryopreservation on Days 2, 4 or 5 of IVC. In Experiment 2, in vivo viability was examined by transfer of cryopreserved embryos into recipient queens. Oocytes recovered from minced ovaries were cultured in TCM-199 with hCG/eCG and EGF at 38 degrees C in 5% O(2), 5% CO(2), 90% N(2) for 24h. In Experiment 1, after IVM/IVF, on Day 2 (n=56), Day 4 (n=48) and Day 5 (n=42) of IVC, embryos were equilibrated for 10 min at 22 degrees C in HEPES (15m M) Tyrode's (HeTy) with 1.4M propylene glycol (PG), 0.125 M sucrose (S), 10% dextran and 10% FBS, loaded into 0.25 ml straws, cooled at 2.0 degrees C/min to -6.0 degrees C and held for 10 min. After seeding, cooling resumed at 0.3 degrees C/min to -30 degrees C and after a 10 min hold, straws were plunged into liquid nitrogen (LN(2)). Straws were thawed in air for 2 min and cryoprotectant was removed by a five-step rinse consisting of 3 min each in HeTY with 0.95 M PG/0.25 M S; 0.95 M PG/0.125 M S; 0.45 M PG/0.125 M S; 0 PG/0.125 M S; 0 PG/0.0625 M S. Contemporary IVM/IVF embryos were used as nonfrozen controls (Day 2, n=14; Day 4, n=26; Day 5, n=35). After 8 days of IVC, the number of embryos developing to blastocysts was recorded and blastocyst cell numbers were counted after staining with Hoechst 33342. In Experiment 1, developmental stage did not affect the survival rate after thawing (Day 2=79%, Day 4=90%, Day 5=98%) and was not different from that of controls (Day 2=89%, Day 4=88%, Day 5=96%). Blastocyst development was similar among days both after cryopreservation (Day 2=59%, Day 4=54%, Day 5=63%) and in controls (Day 2=55%, Day 4=54%, Day 5=58%). Mean (+/-S.D.) cell number of blastocysts was slightly lower (NS) in cryopreserved embryos (Day 2=152+/-19, Day 4=124+/-20, Day 5=121+/-24) than in controls (Day 2=141+/-25, Day 4=169+/-21, Day 5=172+/-19). In Experiment 2, embryos frozen on Day 2 (n=68), Day 4 (n=49) or Day 5 (n=73) were thawed and cultured for 3, 1, or 0 days before transfer by laparotomy to 5 (mean=12.6+/-2.4), 4 (mean=12.2+/-3.7) and 6 (mean=12.0+/-1.6) recipients, respectively. Four recipients were pregnant on Day 21; two from embryos frozen on Day 4 and two from Day 5. Two live kittens were born at 66 days, a third kitten died during parturition at 64 days and a fourth pregnancy aborted by Day 45. In summary, we have shown that a controlled rate cryopreservation technique can be successfully applied to cat embryos produced by IVM/IVF. In vitro development to the blastocyst stage was not affected by the age of embryos at cryopreservation. The births of live kittens after ET of cryopreserved embryos is additional validation of progress toward applying assisted reproductive technology to preservation of endangered felids.  相似文献   

7.
Progesterone enhances in vitro development of bovine embryos   总被引:1,自引:0,他引:1  
Increased pregnancy rates in cattle given progesterone (P4) prior to 5 d after breeding have recently been reported. The objective was to determine if this increase in pregnancy rate could be attributed to a direct positive effect of P4 on the developing embryo. In Experiment 1, 280 bovine oocytes were inseminated in vitro and at Day 3 (insemination = Day 0), good quality 8 cell embryos (n = 206) were randomly allocated to be cultured in either CR1aa+serum with 0 or ∼15 ng/mL (n = 102 and n = 104, respectively). In Experiment 2, 881 bovine oocytes were used; on Day 3, good quality 8 cell embryos (n = 511) were randomly allocated to either the control (CR1aa+FCS, n = 168), vehicle (CR1aa + FCS + ethanol, n = 170), or P4 treatment (CR1aa + FCS + ∼15 ng/mL P4 in ethanol, n = 173). On Day 7, in both experiments, there were increased numbers of blastocysts developing in the P4 group (Experiment 1, 59% and Experiment 2, 71%) compared to the vehicle (Experiment 2, 53%) or control (40 and 62% in Experiments 1 and 2, respectively). The addition of P4 (8%) stimulated the rate of embryo development (early blastocysts or more advanced stages on Day 6) compared to vehicle (3%) and control (0%) and the P4 group had more hatched or hatching blastocysts (33%) on Day 9 compared to the control or vehicle group (21 or 22%). Additionally, the P4 group had greater embryo diameter and significantly more Grade 1 blastocysts on Day 7. In conclusion, P4 had a direct, positive effect on developing bovine embryos cultured in vitro.  相似文献   

8.
The objective of this study was to evaluate the in vitro development of frozen-thawed bovine embryos held at room temperature or refrigerated for 2, 6 or 12 h prior to freezing. After recovery, embryos were randomly assigned to be placed in holding media for 2 h (n=131), 6 h (n=136) or 12h (n=133) prior to freezing. Approximately one-half of the embryos were refrigerated (5 degrees C; n=203) while the remaining half were held at room temperature (22 degrees C; n = 197) until freezing. Embryos were frozen in 10% ethylene glycol and stored in liquid nitrogen. After thawing, embryos were cultured for 72 h in Ham's F-10 media supplemented with 4% fetal bovine serum. Embryos were evaluated for quality and stage of development prior to freezing and after culture. At the end of culture, it was determined if each embryo had developed beyond the stage recorded prior to freezing and if the embryo had hatched from the zona pellucida. The percentage of embryos that developed during culture was greater (P < 0.001) for Grade 1 (81%) than for either Grade 2 (65%) or Grade 3 (48%) embryos. Likewise, a greater proportion (P < 0.001) of Grade 1 embryos developed to hatched blastocysts (60%) than either Grade 2 (40%) or Grade 3 (24%) embryos. The holding temperature from collection to freezing did not influence embryo development, regardless of the interval from embryo collection to freezing. The proportion of embryos that developed to expanded blastocysts and hatched was greater (P < 0.005) for embryos held 2 h prior to freezing (64%) than for embryos held for 12 h (33%). Hatching rate of embryos held 6 h prior to freezing (54%) tended (P < 0.08) to be lower than the hatching percentage for embryos held for 2 h. Thus, post-thaw embryonic development was impaired the longer embryos were held prior to freezing and temperature during the interval from collection to freezing did not affect post-thaw development.  相似文献   

9.
The use of heat-stable plant proteins in an ethylene glycol-based solution for the vitrification of in vitro-derived embryos was examined. Day 7, 8 and 9 bovine in vitro matured, fertilized and cultured (IVMFC), full and expanded blastocysts were vitrified in solutions composed of 40% ethylene glycol (EG) plus 0.3 M sucrose supplemented with 20% Ficoll and 0.3% BSA (VF-1), 25 mg/ml heat-stable plant proteins (HSPP; VF-2), or with no supplement (VF-3). In Experiment 1, embryos were expelled from the straw after thawing, and EG was diluted from embryos with 0.5 M sucrose. There were no differences in post-thaw embryo survival rates or in hatching/hatched rates after 24 h of culture between the VF-1, VF-2 and VF-3 solutions (40.1, 54.1 and 50.8% and 10.7, 16.4 and 17.5%, respectively). Transfer of 12 frozen/thawed embryos to 6 recipients (2 recipients per treatment) resulted in 2 pregnancies from the VF-2 group and 1 pregnancy from the VF-3 group. In Experiment 2, EG was diluted from embryos after thawing within the straw with 0.5 M sucrose. There were no differences in post-thaw survival or hatching/hatched rates after 24 h of culture (19.0, 13.6 and 23.8% and 9.5, 9.0 and 14.4% for VF-1, VF-2 and VF-3, respectively). Transfer of 6 frozen/thawed embryos to 3 recipients (1 recipient per treatment) resulted in no pregnancies. The post-thaw histology of Day 7, 8 and 9 IVMFC blastocysts showed typical ultrastructure with well preserved cell-to-cell contacts. There were no major differences in the fine structure of blastocysts regardless of treatment. The use of HSPP at a concentration of 25 mg/ml in the vitrification medium did not affect the post-thaw embryo survival over that of no protein supplementation. The presence of macro molecules in a 40% EG/sucrose vitrification solution also did not improve post-thaw viability of IVMFC-derived blastocysts.  相似文献   

10.
The objective was to evaluate pregnancy outcomes and birth rate of in vivo derived vs. in vitro produced ovine embryos submitted to different cryopreservation methods. A total of 197 in vivo and 240 in vitro produced embryos were cryopreserved either by conventional freezing, or by vitrification with Cryotop or Spatula MVD methods on Day 6 after insemination/fertilization. After thawing/warming and transfer, embryo survival rate on Day 30 of gestation was affected by the source of the embryos (in vivo 53.3%, in vitro 20.8%; P < 0.05) and by the method of cryopreservation (conventional freezing 26.5%, Cryotop 52.0%, Spatula MVD 22.2%; P < 0.05). For in vivo derived embryos, survival rate after embryo transfer was 45.6% for conventional freezing, 67.1% for Cryotop, and 40.4% for Spatula MVD. For in vitro produced embryos, survival rate was 7.3% for conventional freezing, 38.7% for Cryotop, and 11.4% for Spatula MVD. Fetal loss from Day 30 to birth showed a tendency to be greater for in vitro (15.0%) rather than for in vivo produced embryos (5.7%), and was not affected by the cryopreservation method. Gestation length, weight at birth and lamb survival rate after birth were not affected by the source of the embryo, the cryopreservation method or stage of development (average: 150.5 ± 1.8 days; 4232.8 ± 102.8 g; 85.4%; respectively). This study demonstrates that embryo survival and birth rate of both in vivo and in vitro produced ovine embryos are improved by vitrification with the minimum volume Cryotop method.  相似文献   

11.
The objective was to evaluate supplementation of fetal calf serum (FCS) and phenazine ethosulfate (PES), a metabolic regulator that inhibits fatty acid synthesis, in culture media during in vitro production (IVP) of bovine embryos. Taking oocyte fertilization (n = 4,320) as Day 0, four concentrations of FCS (0, 2.5, 5, and 10%) and three periods of exposure to PES (without addition—Control; after 60 h—PES Day 2.5 of embryo culture; and after 96 h—PES Day 4) were evaluated. Increasing FCS concentration in the culture media enhanced lipid accumulation (P < 0.05), increased apoptosis in fresh (2.5%: 19.1 ± 1.8 vs 10%: 28.4 ± 2.3, P < 0.05; mean ± SEM) and vitrified (2.5%: 42.8 ± 2.7 vs 10%: 69.2 ± 3.4, P < 0.05) blastocysts, and reduced blastocoele re-expansion after vitrification (2.5%: 81.6 ± 2.5 vs 10%: 67.3 ± 3.5, P < 0.05). The addition of PES in culture media, either from Days 2.5 or 4, reduced lipid accumulation (P < 0.05) and increased blastocoele re-expansion after vitrification (Control: 72.0 ± 3.0 vs PES Day 2.5: 79.9 ± 2.8 or PES Day 4: 86.2 ± 2.4, P < 0.05). However, just the use of PES from D4 reduced apoptosis in vitrified blastocysts (Control: 52.0 ± 3.0 vs PES Day 4: 39.2 ± 2.4, P < 0.05). Independent of FCS withdrawal or PES addition to culture media, the in vivo control group had lesser lipid accumulation, a lower apoptosis rate, and greater cryotolerance (P < 0.05). The increased lipid content was moderately correlated with apoptosis in vitrified blastocysts (r = 0.64, P = 0.01). In contrast, the increased apoptosis in fresh blastocysts was strongly correlated with apoptosis in vitrified blastocysts (r = 0.94, P < 0.0001). Therefore, using only 2.5% FCS and the addition of PES from Day 4, increased the survival of IVP embryos after vitrification. Moreover, embryo quality, represented by the fresh apoptosis rate, was better than lipid content for predicting embryo survival after vitrification.  相似文献   

12.
13.
Prostaglandin E2 secretion by oviductal transport-stage equine embryos.   总被引:1,自引:0,他引:1  
This study was conducted to identify embryonic products whose secretion was temporally associated with the oviductal transport period of the mare. Chemicals secreted by oviductal-transport-stage equine embryos were identified by incubating Day 6 or Day 7 early uterine embryos with 35S-methionine/cysteine, 3H-progesterone, or 3H-arachidonic acid for 24 h, and subsequently identifying radioactively labeled proteins (SDS-PAGE; n = 3 embryos), steroids (HPLC; n = 3 embryos), or prostaglandins (HPLC; n = 3 embryos) in the culture medium. Early uterine embryos secreted 116.1 +/- 45.5 pg of prostaglandin (PG) E2/embryo, 1.0 +/- 0.2 pg of 17 alpha-hydroxy progesterone/embryo, 4.8 +/- 0.6 pg of androstenedione/embryo, and 11.5 +/- 4.5 pg of PGF2 alpha/embryo. They did not secrete detectable quantities of protein, testosterone, or estradiol-17 beta. A second experiment was conducted to measure temporal changes in embryonic PGE2 secretion during the oviductal and early uterine period. Day 3, Day 4, Day 5, and Day 6 embryos (n = 8 embryos/day) were incubated with 3H-arachidonic acid for 24 h, and the concentration of 3H-PGE2 in the culture medium was subsequently measured by HPLC. Embryos did not secrete detectable amounts of PGE2 prior to the expected time of oviductal transport (Day 3 and Day 4). They secreted 5.7 +/- 1.0 pg of PGE2/embryo immediately before and during the expected time of oviductal transport (Day 5), and they secreted significantly of PGE2/embryo immediately before and during the expected time of oviductal transport (Day 5), and they secreted significantly (p less than 0.01) higher amounts (42.0 +/- 11.5 pg) of PGE2/embryo immediately after uterine entry (Day 6).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Culture of bovine embryos with insulin-like growth factor-1 (IGF-1) can improve development to the blastocyst stage and embryo survival following transfer to heat-stressed, lactating dairy cows. Two experiments were conducted to determine whether IGF-1 could improve embryo survival and development at Day 14 after ovulation. In Experiment 1, non-lactating Holstein cows (n=58) were selected as recipients following synchronization for timed-embryo transfer. Embryos were produced in vitro and cultured with or without 100ng/mL IGF-1. At Day 7 after expected ovulation (Day 0), groups of 7-12 embryos were randomly transferred to each recipient. Embryos were recovered at Day 14. Embryo length and the presence or absence of an embryonic disc was recorded. Recovered embryos were cultured individually for 24h to determine interferon-tau (IFN-tau) secretion. There was no effect of IGF-1 on embryo recovery rate, embryo length or IFN-tau secretion. In Experiment 2, non-lactating (n=56) and lactating (n=35) Holstein cows were selected as recipients following synchronization for timed-embryo transfer. Embryos were produced as described in Experiment 1. At Day 7 after expected ovulation (Day 0), a single embryo was randomly transferred to each recipient. Embryos were recovered at Day 14. Embryo length and IFN-tau secretion were determined as in Experiment 1. Recovery rate at Day 14 tended (P=0.1) to be higher for recipients that received IGF-1 treated embryos compared to control embryos (43.2% versus 26.1%, respectively). There was no effect of IGF-1 on embryo length or IFN-tau secretion. In conclusion, results suggest that exposure to IGF-1 through Days 7-8 of development does not enhance capacity of embryos to prevent luteolysis. Results of the single embryo-transfer experiment suggested that IGF-1 treatment might affect embryo survival post-transfer as early as Day 14 after ovulation. Further experimentation is warranted to verify this finding.  相似文献   

15.
With the aim of developing a serum-free, cell-free culture system for embryo development, in vitro-matured (IVM) and -fertilized (IVF) bovine oocytes were cultured in TCM 199 with the following supplements: 1) BSA alone (10 mg/ml); 2) BSA with ITS (5 mug/ml insulin, 5 mug/ml transferrin and 5 ng/ml selenium; BSAITS medium); 3) estrous cow serum alone (ECS; 10%); or 4) ECS with BOEC (bovine oviduct epithelial cells) (Experiment 1). In Experiment 2, embryos were cultured in BSAITS medium with or without feeding with fresh medium on Day 4 (day of insemination = Day 0). Embryos were evaluated on Day 2 for first cleavage, on Day 7 for morulae and blastocysts, and on Day 8 for blastocysts. Blastocysts from Experiment 1 were frozen in 10% glycerol in PBS, thawed and further cultured in ECS medium with BOEC for 48 h, and evaluated for formation of a distinct blastocoel, or expansion and hatching of blastocysts. In vivo-developed, Grade-1 and Grade-2, 7-d-old embryos served as control for the freezing, thawing and subsequent culture procedures. The percentage of first cleavage did not differ between the treatments (74 to 79% in Experiment 1 and 80 to 83% in Experiment 2). The percentage of blastocysts developed in BSAITS medium did not differ from that in ECS medium whether BOEC were present or not. However, medium with BSA alone had fewer blastocysts than any other culture system (P<0.05). Feeding embryos with fresh BSAITS medium on Day 4 did not lead to any further increase in the proportion of blastocysts. The culture systems had a significant effect on the post-thaw viability of blastocysts developed in them (P<0.001). Blastocysts developed in BSAITS medium had better (P<0.05) viability (14/38) than those from medium with ECS alone (1/27) or with ECS and BOEC (3/37). The post-thaw survival of control embryos was 80% (n=30). One of the three transfers of BSAITS-treated, frozen-thawed blastocysts resulted in a pregnancy. The results indicate that a serum-free, cell-free culture system can support the development of IVM-IVF bovine oocytes up to the blastocyst stage with better viability than a complex co-culture system.  相似文献   

16.
This study evaluates a new synthetic substitute (CRYO3, Ref. 5617, Stem Alpha, France) for animal-based products in bovine embryo cryopreservation solutions. During the experiment, fetal calf serum (FCS) and bovine serum albumin (BSA) were used as references. A combination of a thermodynamic approach using differential scanning calorimetry and a biological approach using in vitro-produced bovine embryo slow-freezing was used to characterize cryopreservation solutions containing CRYO3, FCS and BSA. The CRYO3 and fetal calf serum (FCS) slow-freezing solutions were made from Dulbecco's phosphate-buffered saline containing 1.5 m ethylene glycol, 0.1 m sucrose and 20% (v.v−1) of CRYO3 or FCS. The bovine serum albumin (BSA) solution was made by adding 0.1 m sucrose to a commercial solution containing 1.5 m ethylene glycol and 4 g L−1 BSA. These solutions were evaluated using three characteristics: the end of melting temperature, the enthalpy of crystallization (thermodynamic approach) and the embryo survival and hatching rates after in vitro culture (biological approach). The CRYO3 and FCS solutions had similar thermodynamic properties. In contrast, the thermodynamic characteristics of the BSA solution were different from those of the FCS and CRYO3 solutions. Nevertheless, the embryo survival and hatching rates obtained with the BSA and FCS solutions were not different. Similar biological properties can thus be obtained with slow freezing solutions that have different physical properties within a defined range. The embryo survival rate after 48 h of in vitro culture obtained with the CRYO3 solution (81.5%) was higher than that obtained with the BSA (42.2%, P = 0.000 12) and FCS solutions (58%, P = 0.016). Similarly, the embryo hatching rate after 72 h of in vitro culture was higher with the CRYO3 solution (61.1%) than with the BSA (31.1%, P = 0.0055) and FCS solutions (36%, P = 0.018). We conclude that CRYO3 can be used as a chemically defined substitute for animal-based products in in vitro-produced bovine embryo cryopreservation solutions.  相似文献   

17.
Timed embryo transfer (TET) using in vitro produced (IVP) embryos without estrus detection can be used to reduce adverse effects of heat stress on fertility. One limitation is the poor survival of IVP embryos after cryopreservation. Objectives of this study were to confirm beneficial effects of TET on pregnancy rate during heat stress as compared to timed artificial insemination (TAI), and to determine if cryopreservation by vitrification could improve survival of IVP embryos transferred to dairy cattle under heat stress conditions. For vitrified embryos (TET-V), a three-step pre-equilibration procedure was used to vitrify excellent and good quality Day 7 IVP Holstein blastocysts. For fresh IVP embryos (TET-F), Holstein oocytes were matured and fertilized; resultant embryos were cultured in modified KSOM for 7 days using the same method as for production of vitrified embryos. Excellent and good quality blastocysts on Day 7 were transported to the cooperating dairy in a portable incubator. Nonpregnant, lactating Holsteins (n = 155) were treated with GnRH (100 microg, i.m., Day 0), followed 7 days later by prostaglandin F2alpha (PGF2alpha, 25 mg, i.m.) and GnRH (100 microg) on Day 9. Cows in the TAI treatment (n = 68) were inseminated the next day (Day 10) with semen from a single bull that also was used to produce embryos. Cows in the other treatments (n = 33 for TET-F; n = 54 for TET-V) received an embryo on Day 17 (i.e. Day 7 after anticipated ovulation and Day 8 after second GnRH treatment). The proportion of cows that responded to synchronization based on plasma progesterone concentrations on Day 10 and Day 17 was 67.7%. Pregnancy rate for all cows on Day 45 was higher (P < 0.05) in the TET-F treatment than for the TAI and TET-V treatments (19.0 +/- 5.0,6.2 +/- 3.6, and 6.5 +/- 4.1%). For cows responding to synchronization, pregnancy rate was also higher (P < 0.05) for TET-F than for other treatments (26.7 +/- 6.4, 5.0 +/- 4.3, and 7.4 +/- 4.7%). In the TET-F treatment group, cows producing more milk had lower (P < 0.05) pregnancy rates than cows producing less milk. In conclusion, ET of fresh IVP embryos can improve pregnancy rate under heat stress conditions, but pregnancy rate following transfer of vitrified embryos was no better than that following TAI.  相似文献   

18.
The objectives of this study were to examine the effect of culture system on bovine blastocyst formation rates and quality. Presumptive IVM/IVF bovine zygotes were cultured either in vitro in synthetic oviduct fluid (SOF, 25 embryos/25 microL in 5% CO2, 5% O2, 90% N2 at 39 degrees C) or in vivo in the ewe oviduct (approximately 100 embryos per oviduct). The recovery rate after in vivo culture was 53% (813/1,530). The blastocyst rate on Day 7 was significantly higher for the in vitro system (28%, 362/1,278 vs 17%, 37/813; P< 0.0001). However, after culture in vitro for a further 24 h, there was no difference in Day 8 yields (36%, 457/1,278 vs 32%, 258/813, for in vitro and in vivo culture, respectively). There was no difference in blastocyst cell number between treatments (Day 7: 96 vs 103; Day 8: 78 vs 85 for in vitro and in vivo culture, respectively). Irrespective of culture system, Day 7 blastocysts had a significantly higher cell number than those appearing on Day 8. There was no difference in pregnancy rate at Day 35 after fresh transfer of a single Day 7 blastocyst (37.5%, 21/56 vs 45.3%/, 24/53 for in vitro and in vivo culture, respectively). After cryopreservation by freezing in 10% glycerol, VS3a vitrification or solid surface vitrification, the survival of in vitro cultured embryos was significantly lower than survival of embryos cultured in the ewe oviduct or those produced by superovulation of donors. In conclusion, these findings demonstrate that while bovine zygotes cultured in vitro are capable of rates of development similar to those of their in vivo cultured counterparts (in terms of Day 8 blastocyst yield, cell number and early pregnancy rate), there are significant differences in embryo cryosurvival. This suggests that current in vitro culture systems need to be improved to optimize embryo quality and pregnancy rates.  相似文献   

19.
This study determined if lengthening the superstimulation protocol from 4 to 7 days would result in an increase in the superovulatory response with no adverse effects on oocyte/embryo competence in beef cows. Follicular ablation was performed, a progesterone-releasing intravaginal device (PRID) was inserted, and cows were assigned to one of two treatment groups 5 to 8 days after ovulation: Control (4 days of follicle stimulating hormone (FSH)) or Long (7 days of FSH; n = 12 per group). The FSH treatments were initiated 1.5 days later (Day 0). A dose of 400 mg NIH-FSH-P1 (Folltropin-V) was distributed equally over 8 (Control) or 14 (Long) im injections at 12-h intervals. Prostaglandin F2α (PGF) was administered twice, 12 h apart, on Day 2 (Control) or Day 5 (Long), and PRID were removed 12 h after the second PGF. Both groups were given 25 mg pLH (lutropin-V) im 24 h after PRID removal and AI was done 12 and 24 h later. Ova/embryos were collected 7 days after the pLH injection. The mean (± SEM) number of ≥ 9 mm follicles at the time of first AI did not differ (P = 0.24) between groups, but more ovulations (30.9 ± 3.9 vs. 18.3 ± 2.9, P = 0.01) and CL (27.2 ± 2.1 vs. 20.8 ± 2.2, P = 0.04) occurred in the Long group. A higher proportion of the ≥ 9 mm follicles ovulated between 12 and 36 h after pLH in the Long group (93 vs. 69%; P = 0.001). Although numerically higher in the Long group, mean numbers of total ova/embryos, fertilized ova, transferable or freezable embryos did not differ. In conclusion, a lengthened superstimulatory treatment protocol resulted in more follicles acquiring the capacity to ovulate with an increased number of ovulations, and without a decrease in oocyte/embryo competence.  相似文献   

20.
The objective of this study was to determine the effects of in vitro embryo production on physical development and levels of expression of mRNAs for insulin-like growth factor (IGF) ligands (IGF1, IGF2), their receptors (IGF1R, IGF2R), and IGF binding protein-2 (IGFBP2) in bovine fetuses during early gestation. In vivo embryos were recovered from superovulated Holstein cows. For production of embryos in vitro, Holstein oocytes were matured, fertilized, and subsequently cultured in M199 with 10% serum to 168 hpi. On Day 70 of gestation, fetuses (in vivo, n = 14; in vitro, n = 13) were recovered, serum samples collected, and physical measurements recorded. Semi-quantitative RT-PCR assays were used to determine the levels of expression of mRNAs for IGF1, IGF2, IGF1R, and IGF2R in fetal liver and skeletal muscle. Western blots were used to assess levels of IGFBP2 in fetal serum. Fetal body weight did not differ with treatment; however, production of embryos in vitro was associated with decreased crown-nose length and a tendency for increased paired kidney weight, which became significant when expressed on a per bodyweight basis. There was no effect of treatment on levels of IGFBP2 in fetal serum. Levels of IGF1 mRNA in fetal liver were decreased (P < 0.001) in the in vitro group. Levels of IGF2R mRNA in both liver and skeletal muscle were also decreased (P < 0.01) in fetuses from the in vitro group. In summary, fetuses at Day 70 of gestation from embryos produced in vitro had shortened crown-nose length and increased kidney weight on a per bodyweight basis, as well as decreased expression of mRNAs for IGF1 in liver and IGF2R in both liver and skeletal muscle, compared with fetuses from embryos produced in vivo. In conclusion, in vitro embryo culture was associated with subtle changes in fetal development as well as altered expression of both imprinted and non-imprinted genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号