首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

Plant cell cultivations are being considered as an alternative to agricultural processes for producing valuable phytochemicals. Since many of these products (secondary metabolites) are obtained by direct extraction from plants grown in natural habitat, several factors can alter their yield. The use of plant cell cultures has overcome several inconveniences for the production of these secondary metabolites. Organized cultures, and especially root cultures, can make a significant contribution in the production of secondary metabolites. Most of the research efforts that use differentiated cultures instead of cell suspension cultures have focused on transformed (hairy) roots. Agrobacterium rhizogenes causes hairy root disease in plants. The neoplastic (cancerous) roots produced by A. rhizogenes infection are characterized by high growth rate, genetic stability and growth in hormone free media. These genetically transformed root cultures can produce levels of secondary metabolites comparable to that of intact plants. Hairy root cultures offer promise for high production and productivity of valuable secondary metabolites (used as pharmaceuticals, pigments and flavors) in many plants. The main constraint for commercial exploitation of hairy root cultivations is the development and scaling up of appropriate reactor vessels (bioreactors) that permit the growth of interconnected tissues normally unevenly distributed throughout the vessel. Emphasis has focused on designing appropriate bioreactors suitable to culture the delicate and sensitive plant hairy roots. Recent reactors used for mass production of hairy roots can roughly be divided as liquid-phase, gas-phase, or hybrid reactors. The present review highlights the nature, applications, perspectives and scale up of hairy root cultures for the production of valuable secondary metabolites.  相似文献   

2.
3.

Hairy root cultures are often used to produce valuable metabolites. They are grown on sucrose-rich medium, which is highly susceptible to contamination. Trapa natans is a unique plant with photosynthesizing roots. It is a promising object to obtain photoautotrophic hairy root culture. Protocols for transformation of this species are yet unknown. We report that hairy roots can be induced in aquarium and in vitro cultures of T. natans by agrobacterium-mediated and biolistic transformation. 64 roots were induced by Agrobacterium rhizogenes strain 15834, two roots were obtained using strain K599. Strain A4 was not effective. Biolistics with either amplicons of rol genes and 1301 pCAMBIA plasmid carrying rol genes resulted in the formation of six roots. All these roots contained chloroplasts. This achievement opens a prospect for genetic transformation of T. natans and use of its green photosynthesizing hairy root cultures in production of bioactive substances and in phytoremediation.

  相似文献   

4.
5.
This review is concerned with the application of hairy roots, i.e. plant roots formed from plant cells after transformation by Agrobacterium rhizogenes for the production of bioactive compounds. Transformed root cultures have been established from numerous species of dicotyledonous plants. The plants, as well as the main products accumulated in hairy root cultures derived from these plants, are listed in this paper. Data are presented on novel compounds, hitherto detected only in transformed roots but not occurring in the corresponding intact plants. The possible use of hairy root cultures for the over-production of secondary metabolites and biotransformation of chemicals is discussed. In order to enhance the productivity of hairy root cultures, various methods have been derived, and optimized procedures are proposed. They include selection of high-producing clones, elicitation, composition of growth media, culture conditions and genetic approach. Hairy roots usually store secondary metabolites in vacuoles inside the cells. Therefore, several methods have been used to increase the amount of products released into the medium. Unfortunately, no general procedure is known that works in all cases, and the excretion behaviour of hairy root cultures varies from one species to another and even within one species from one clone to another. Special attention is given to the cultivation methods and bioreactor systems for hairy root cultures. Hairy roots are cultivated usually in shake flasks; however, shake flask culture is not suitable for the complex optimization and continuous control of the culture conditions. In this paper, we are going to present bioreactors proposed for the cultivation of hairy roots under more or less controlled conditions. Modifications of typical bacterial bioreactors, i.e. stirred tanks, airlift loop reactors and other constructions, are presented. A very special type of bioreactor providing good conditions for loose root mass multiplication without oxygen or substrate limitations, is the mist bioreactor. Nowadays, it is practically impossible to select the one best bioreactor type for hairy root culture.  相似文献   

6.
Hairy roots ofCatharanthus roseus obtained by co-cultivation of hypocotyl segments withAgrobacterium rhizogenes, and cultured in SH (Schenk and Hildebrandt) basal medium, formed two types of calli when subcultured in SH medium with 1 mg/1 -naphthaleneacetic acid and 0.1 mg/l kinetin. One of them, a compact callus, when re-subcultured in SH basal medium gave rise to hairy roots again. A rhizogenic cell suspension culture was established from this type of callus. When cultured in SH medium with growth regulators, the rhizogenic callus produced catharanthine at a level of 41% of the level in the initial hairy roots. Upon transfer to SH basal medium, regenerated hairy roots produced this alkaloid at the original level of 1.5 mg/g dry wt. Using this cell/hairy root interchange system a new management system for hairy root culture in bioreactors has been devised and examined involving production of biomass in the form of a cell suspension in medium supplemented with growth regulators, and catharanthine production by hairy roots regenerated from these cells in medium without growth regulators.Abbreviations NAA -naphthaleneacetic acid - SH Schenk and Hildebrandt - SHNK SH medium + 1 mg 1–1 NAA + 0.1 mg 1–1 kinetin  相似文献   

7.
Agrobacterium rhizogenes is the etiological agent for hairy-root disease (also known as root-mat disease). This bacterium induces the neoplastic growth of plant cells that differentiate to form “hairy roots.” Morphologically, A. rhizogenes-induced hairy roots are very similar in structure to wild-type roots with a few notable exceptions: Root hairs are longer, more numerous, and root systems are more branched and exhibit an agravitropic phenotype. Hairy roots are induced by the incorporation of a bacterial-derived segment of DNA transferred (T-DNA) into the chromosome of the plant cell. The expression of genes encoded within the T-DNA promotes the development and production of roots at the site of infection on most dicotyledonous plants. A key characteristic of hairy roots is their ability to grow quickly in the absence of exogenous plant growth regulators. As a result, hairy roots are widely used as a transgenic tool for the production of metabolites and for the study of gene function in plants. Researchers have utilized this tool to study root development and root–biotic interactions, to overexpress proteins and secondary metabolites, to detoxify environmental pollutants, and to increase drought tolerance. In this review, we provide an up-to-date overview of the current knowledge of how A. rhizogenes induces root formation, on the new uses for A. rhizogenes in tissue culture and composite plant production (wild-type shoots with transgenic roots), and the recent development of a disarmed version of A. rhizogenes for stable transgenic plant production.  相似文献   

8.
Fu CX  Xu YJ  Zhao DX  Ma FS 《Plant cell reports》2006,24(12):750-754
Saussurea involucrata is an important medicinal plant that produces a few bioactive secondary metabolites, such as hispidulin, rutin, and syringin. Previously, we established a hairy root culture system for this species through Agrobacterium-mediated transformation. The present study addressed the issue as how hairy root cultures perform in phenylpronoid accumulation. From the ethanolic extract of a hairy root culture established for Saussurea involucrata, syringin, rutin and hispidulin, were isolated and their chemical structures were confirmed by HPLC-ESI-MS. A quantitative study of the compounds showed great levels of syringin and hispidulin (being 43.5±1.13 and 0.34±0.023 mg g−1 dry weight, respectively), about 40 and 3 times, respectively, higher than those from wild plants. But, the levels of rutin from hairy roots were much lower (0.71±0.043 vs. 6.59±0.56 mg g−1 dry weight). Compared with untransformed root cultures, syringin and hispidulin levels were also higher. An experiment on culture media showed that MS was superior to others for phenylpropanoids accumulation in hairy roots, a 28-day culture produced 405 mg l−1 syringin.  相似文献   

9.
Plumbago europaea L. is the main source of plumbagin which is a well-known pharmacological active compound. In this investigation, genetically transformed roots of P. europaea were obtained by improving some factors affecting the efficiency of Agrobacterium rhizoigenes-mediated transformation such as explant type, A. rhizoigenes strain, bacterial infection period, co-cultivation period and acetosyringone concentration. The leaf, hypocotyl and stem explants from in vitro grown plantlets were infected with bacterial strains (A4, ATCC15834, MSU440 and A13). The highest transformation rate of 69.3% was achieved after 7–9 days by inoculating A. rhizogenes MSU440 strain onto the 3-week-old stem explants followed by a co-cultivation period of 2 days on a medium containing 100 μM acetosyringone. To investigate the existence of the rolB gene, polymerase chain reaction was carried out using specific primers. Effects of growth media (MS, 1/2 MS, MS-B5 and ½ MS-B5), different sucrose concentrations and illumination on biomass production and plumbagin biosynthesis in P. europaea hairy root cultures were analyzed using stem explants after infection with MSU440 strain. ½ MS-B5 liquid medium containing 30 g L−1 sucrose incubated in the dark resulted in the efficient biomass production of transformed hairy roots (12.5 g fresh weight, 1.8 g dry weight) with 3.2 mg g−1 DW plumbagin accumulation. This procedure provides a framework for large-scale cultivation of hairy roots for plumbagin production. This is the first report describing the establishment of P. europaea hairy root culture with special emphasis on plumbagin production.  相似文献   

10.
This article presents the abilities and efficiencies of five different strains of Agrobacterium rhizogenes (strain ATCC 31798, ATCC 43057, AR12, A4 and A13) to induce hairy roots on Solanum mammosum through genetic transformation. There is significant difference in the transformation efficiency (average number of days of hairy root induction) and transformation frequency for all strains of A. rhizogenes (P < 0.05). Both A. rhizogenes strain AR12 and A13 were able to induce hairy root at 6 days of co-cultivation, which were the fastest among those tested. However, the transformation frequencies of all five strains were below 30 %, with A. rhizogenes strain A4 and A13 showing the highest, which were 21.41 ± 10.60 % and 21.43 ± 8.13 % respectively. Subsequently, the cultures for five different hairy root lines generated by five different strains of bacteria were established. However, different hairy root lines showed different growth index under the same culture condition, with the hairy root lines induced by A. rhizogenes strain ATCC 31798 exhibited largest increase in fresh biomass at 45 days of culture under 16 h light/8 h dark photoperiod in half-strength MS medium. The slowest growing hairy root line, which was previously induced by A. rhizogenes strain A13, when cultured in optimized half-strength MS medium containing 1.5 times the standard amount of ammonium nitrate and potassium nitrate and 5 % (w/v) sucrose, had exhibited improvement in growth index, that is, the fresh biomass was almost double as compared to its initial growth in unmodified half-strength MS medium.  相似文献   

11.
 In comparison with the production of transgenic plants, the generation of hairy roots has the advantage that more independent transgenic lines can be produced in a shorter period of time. Therefore, we wanted to combine this approach with the promoter-trapping strategy to identify nematode-induced plant promoters. For the efficient production and culture of transgenic hairy root lines of Arabidopsis thaliana, the standard Agrobacterium rhizogenes transformation procedure was modified to avoid rapid callusing of the hairy roots. An average of 0.72 independent kanamycin-resistant (KmR) roots were obtained per leaf piece. However, a much lower frequency of reporter gene activation was obtained than expected from experiments with the same vectors in Agrobacterium tumefaciens: of more than 700 independent KmR hairy roots tested, only 8 were β-glucuronidase (GUS) positive. DNA hybridization was done on ten hairy root lines, of which one had a single truncated T-DNA and the others multiple copies of T-DNA that led to complex hybridization patterns. In a parallel analysis of A. thaliana plants transformed with the same vectors using A. tumefaciens, relatively simple T-DNA integration patterns were obtained. The low occurrence of GUS-positive hairy root lines in our experiments could be explained by the multiple T-DNA copies, especially in inverted array, that result in high frequencies of gene inactivation. Received: 11 August 1998 / Revision received: 17 February 1999 / Accepted: 18 March 1999  相似文献   

12.
The scopolamine-releasing hairy root clone DL47-1 of Duboisia leichhardtii was cultured in an Amberlite XAD-2 column-combined bioreactor system for continuous production of scopolamine. The medium used was continuously exchanged during culture to maintain the electrical conductivity of the medium constant. After culturing the hairy roots in the system for 11 weeks, 0.5 g/l of scopolamine was obtained in the column. When the roots were cultures in the reactor system containing polyurethane foam or stainless-steel mesh to support the hairy roots, scopolamine recovery was increased. Thereafter, a two-stage culture, the first stage in the medium for hairy root growth and the second stage in the medium for scopolamine release, was carried out in this system by using a turbine-blade reactor with stainless-steel mesh as a support. Under these conditions, 1.3 g/l of scopolamine was recovered during 11 weeks of culture in the medium for scopolamine release. This bioreactor system seems applicable for the production of various plant metabolites by cultures of hairy roots. Correspondence to: T. Muranaka  相似文献   

13.

Hazelnut (Corylus avellana L.), contains a valuable medicinal substance known as Paclitaxel®, which is one of the most effective anticancer drugs. The original plants produce negligible amount of paclitaxel; therefore, tissue culture techniques, especially hairy root culture, could be one of the most practical methods to enhance the amount of paclitaxel. The main goal of this study was to assess the induction of hairy roots in C. avellana. The effects of different strains of Agrobacterium rhizogenes including c58c1pRiA4, K599, and 15834, and six culture media, MS (Murashige and Skoog), half-strength MS, quarter-strength MS, WPM (woody plant media), half-strength WPM, and quarter-strength WPM, were evaluated. The results showed that the maximum amounts of the rooted explants were obtained with c58c1pRiA4 strain in quarter-strength WPM medium. The investigations of explant type (leafstalk, petiole, lamina, and stem) and different propagation media (quarter-strength WPM, half-strength MS, and half-strength SH ((Schenk and Hildebrandt) medium) showed that the leafstalk was the most optimal explant for hairy root induction, and half-strength SH was the best culture medium for growth of the hairy roots in liquid medium. HPLC analyses confirmed the presence of paclitaxel (3.2 μg g−1 (DW)) in hairy root extracts.

  相似文献   

14.
To evaluate the ability of Arabidopsis thaliana hairy roots to produce heterologous proteins, hypocotyls were transformed with Rhizobium rhizogenes harbouring a green fluorescent protein gene (gfp) fused to a plant signal peptide sequence. Hairy root transgenic lines were generated from wild-type or mutant genotypes. A line secreted GFP at 130 mg/l of culture medium. Unlike as was previously found with turnip hairy roots, a His-tag was still attached to approximately 50?% of the protein. Control of the pH and addition of a protease inhibitor to the culture medium resulted in up to 87?% of the GFP retaining the His-tag. A. thaliana hairy roots expressing the human serpina1 (α-1-antitrypsin) gene secreted the protein, which was visible on a PAGE gel. Protein activity in the culture medium was demonstrated using an elastase inhibition assay. A. thaliana hairy roots can now be considered for the production of heterologous proteins, making it possible to mine the numerous genetic resources for enhancing protein production and quality.  相似文献   

15.
16.
The promoter of the protoplast auxin-regulated (parAt) gene of tobacco, which is expressed throughout the tissues of hairy roots, can be useful for developing a bioconversion system with hairy roots. The parAt gene is shown to be expressed in roots of seedlings and in those of mature tobacco plants. The 5-upstream region of parAt was fused to the coding sequence of the ß-d-glucuronidase (GUS) gene to generate the parAt-GUS fusion gene, which was introduced into the binary vector for Agrobacterium. Hairy roots that carried the fusion gene were obtained (parAt-GUS/hairy root) by infecting tobacco plants with A. rhizogenes carrying the fusion gene in the binary vector. Biochemical analysis with 4-methylumbelliferyl ß-d-glucuronide (MUG), a substrate for GUS, showed that the level of GUS activity was tenfold higher than that of hairy roots carrying the reporter GUS gene, which is linked to the cauliflower mosaic virus 35S RNA promoter (35S-GUS/hairy root). We also examined the rate of conversion of MUG to 4-methylumbel-liferone (MU) by hairy roots when MUG was added to the culture medium of the parAt-GUS/hairy roots. The hairy roots converted MUG to MU at more than ten times as high efficiency as the 35S-GUS/hairy roots. In addition to tobacco, the parAt-GUS gene was similarly expressed in hairy roots from Atropa and Arabidopsis. These results suggest that the promoter of the parAt gene is a useful tool for conversion of various metabolites by hairy root cultures. Correspondence to: Y. Machida  相似文献   

17.
Transgenic hairy roots were induced from petiole and root segments of in vitro plant Aralia elata, a medicinal woody shrub, after co-cultivation with A. rhizogenes ATCC 15834. The percentage of putative hairy root induction from root segments was higher (26.7%) than petiole explants (10.0%). Hairy roots showed active production of lateral roots with vigorous elongation. Transgenic plants were regenerated from hairy roots via somatic embryogenesis. These plants had wrinkled leaves, short petioles and numerous lateral hairy roots. The RT-PCR analysis showed the expression of rol A, B, C, D, aux 1 and 2 genes differed between the transgenic lines. Endogenous IAA level was higher in transgenic than non-transgenic plants. Conclusively, transgenic hairy roots were developed for first time in A. elata and the transgenic hairy root lines showed distinct morphological growth pattern and gene expression.  相似文献   

18.
Summary Wounding of explanted Pinus nigra primary explants followed by infection with Agrobacterium rhizogenes wild strains 8196, 15834, or with the pRiA4abc transconjugant strain of A. tumefaciens (C58 chromosomal background) resulted in adventitious root induction. Roots were formed in 60–97% of explants (1–3 roots/explant) but without a hairy root phenotype. The presence of T-DNA of pRi8196 or pRiA4abc in regenerated roots was confirmed by the opine (mannopinic acid) content. Transformation response was influenced by the bacterial strain, age of explant and period of co-cultivation. Both the aggregate state (liquid) of medium and the season of the year (spring) had a positive effect on the root induction and their development. Histological analysis of the transformed roots showed that complete elements of primary and secondary root structures were present but roots were always triarch or tetrarch in the central cylinder as opposed to the primary roots of the untransformed seedling wich are diarch.  相似文献   

19.
Rhodiola quadrifida is a rare mountain medicinal plant whose root extracts are used in traditional Chinese medicine as a hemostatic, antitussive, and tonic in the treatment of gynecological diseases. The aim of the study was to obtain R. quadrifida cultures at different degrees of differentiation in vitro and compare their growth characteristics and the content of salidroside and rosavin. Hairy roots were obtained by incubating cotyledons and hypocotyls in a suspension of Agrobacterium rhizogenes strain A4. The presence of the rolB and rolC genes was proven by polymerase chain reaction. The obtained roots were cultivated in Murashige-Skoog medium (MS). Calluses were obtained from the hairy roots in MS medium with the addition of hormones: 3 mg/L 2,4 D and 0.5 mg/L BAP. The presence of the main secondary metabolites of R. quadrifida, salidroside and rosavin, in calluses and salidroside in hairy roots by HPLC/MS was confirmed. The content of salidroside in callus culture was significantly higher than in hairy roots, 0.158 and 0.047%, respectively. The content of rosavin in callus culture was 0.07%. The content of rosavin and salidroside in callus culture was close to the level of these substances in the rhizomes of R. quadrifida plants growing in vivo, making this culture promising for its possible biotechnological use.  相似文献   

20.
A system for genetic transformation of Coffea canephora by co-cultivation with Agrobacterium rhizogenes harbouring a binary vector has been developed. The objective of the present study was the genetic transformation and direct regeneration of transformants through secondary embryos bypassing an intervening hairy root stage. Transformants were obtained with a transformation efficiency up to 3% depending on the medium adjuvant used. A. rhizogenes strain A4 harbouring plasmid pCAMBIA 1301 with an intron uidA reporter and hygromycin phosphotransferase (hptII) marker gene was used for sonication-assisted transformation of Coffea canephora. The use of hygromycin in the secondary embryo induction medium allowed the selection of transgenic secondary embryos having Ri T-DNA along with the T-DNA from the pCAMBIA 1301 binary vector. In addition transgenic secondary embryos devoid of Ri-T-DNA but with stable integration of the T-DNA from the binary vector were obtained. The putative transformants were positive for the expression of the uidA gene. PCR and Southern blot analysis confirmed the independent, transgenic nature of the analysed plants and indicated single and multiple locus integrations. The study clearly demonstrates that A. rhizogenes can be used for delivering transgenes into tree species like Coffea using binary vectors with Agrobacterium tumefaciens T-DNA borders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号