首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gold nanoparticles grown in situ from printed seed particles on a glass substrate have been fabricated into a biosensor array. The light-scattering properties of the resulting surfaces show sensitivity to changes in the local refractive index. Each array spot is functionalized with fibrinogen or bovine serum albumin and scattered radiation is used to monitor the refractive index change on label-free binding of the antibodies to their antigens from whole blood antiserum. Data were collected real-time and the association rate constants for the specific antibody-antigen binding were derived from a kinetic analysis. The minimum antibody concentration detection sensitivity is of 100 nM.  相似文献   

2.
A highly specific in situ amplification strategy was designed for ultrasensitive detection of thrombin by combining the layer-by-layer (LBL) assembled amplification with alkaline phosphatase (ALP) and gold nanoparticles (Au) mediated silver deposition. High-density carboxyl functionalized graphene oxide (FGO) was introduced as a nanocarrier for LBL assembling of alkaline phosphatase decorated gold nanoparticles (ALP-Au), which was further adopted to label thrombin aptamer II. After sandwich-type reaction, numerous ALP were captured onto the aptasensor surface and catalyzed the hydrolysis of ascorbic acid 2-phosphate (AAP), which in situ generated ascorbic acid (AA), reducing Ag(+) to Ag nanoparticles (AgNPs) for electrochemical readout. Inspiringly, the in situ amplification strategy with ethanolamine as an effective blocking agent showed remarkable amplification efficiency, very little nonspecific adsorption, and low background signal, which was favorable to enhance the sensitivity of aptasensor. Our novel dramatic signal amplification strategy, with a detection limit of 2.7fM, showed about 2-3 orders of magnitude improvement in the sensitivity for thrombin detection compared to other universal enzyme-based electrochemical assay.  相似文献   

3.
In this article, a supersandwich-type electrochemical biosensor for sequence-specific DNA detection is described. In design, single-strand DNA labeled with methylene blue (MB) was used as signal probe, and auxiliary probe was designed to hybridize with two different regions of signal probe. The biosensor construction contained three steps: (i) capture DNA labeled with thiol was immobilized on the surface of gold nanoparticles decorated reduced graphene oxide (Au NPs/rGO); (ii) the sandwich structure formation contained “capture–target–signal probe”; and (iii) auxiliary probe was introduced to produce long concatamers containing signal molecule MB. Differential pulse voltammetry (DPV) was used to monitor the DNA hybridization event using peak current changes of MB in phosphate-buffered saline (PBS) containing 1.0 M NaClO4. Under optimal conditions, the peak currents of MB were linear with the logarithm of the concentration of target DNA in the range of 0.1 μM to 0.1 fM with a detection limit of 35 aM (signal/noise = 3). In addition, this biosensor exhibited good selectivity even for single-base mismatched target DNA detection.  相似文献   

4.
A simple electrochemical sensor for sensitive and selective DNA detection was constructed based on gold nanorods (Au NRs) decorated graphene oxide (GO) sheets. The high-quality Au NRs–GO nanocomposite was synthesized via the electrostatic self-assembly technique, which is considered a potential sensing platform. Differential pulse voltammetry was used to monitor the DNA hybridization event using methylene blue as an electrochemical indicator. Under optimal conditions, the peak currents of methylene blue were linear with the logarithm of the concentrations of complementary DNA from 1.0 × 10−9 to 1.0 × 10−14 M with a detection limit of 3.5 × 10−15 M (signal/noise = 3). Moreover, the prepared electrochemical sensor can effectively distinguish complementary DNA sequences in the presence of a large amount of single-base mismatched DNA (1000:1), indicating that the biosensor has high selectivity.  相似文献   

5.
In this article, a novel, label-free, and inherent electroactive redox immunosensor for carcinoembryonic antigen (CEA) based on gold nanoparticles (AuNPs) and Nile blue A (NB) hybridized electrochemically reduced graphene oxide (NB–ERGO) is proposed. The composite of NB–graphene oxide (NB–GO) was prepared by π–π stacking interaction. Then, chronoamperometry was adopted to simultaneously reduce HAuCl4 and nanocomposites of NB–GO for synthesizing AuNPs/NB–ERGO. The immunosensor was fabricated by capturing CEA antibody (anti-CEA) at this nanocomposite modified electrode. The immunosensor determination was based on the fact that, due to the formation of antigen–antibody immunocomplex, the decreased response currents of NB were directly proportional to the concentrations of CEA. Under optimal conditions, the linear range of the proposed immunosensor was estimated to be from 0.001 to 40 ng ml−1 and the detection limit was estimated to be 0.00045 ng ml−1. The proposed immunosensor was used to determine CEA in clinical serum samples with satisfactory results. The proposed method may provide promising potential application in clinical immunoassays with the properties of facile procedure, stability, high sensitivity, and selectivity.  相似文献   

6.
A label-free amperometric immunosensor for fast and sensitive assay of human serum chorionic gonadotropin (hCG) is presented. hCG was immobilized on nanoporous gold (NPG) foils and using hydroquinone (HQ) redox species as indicator. The variation of amperometric response to the concentration of hCG, the target antigen, was evaluated by cyclic voltammetry in phosphate-buffered solution. Taking advantage of dual-amplification effects of the NPG foils and graphene sheets (GSs), the immunosensor exhibited a specific response to hCG in the range of 0.5–40.00 ng ml−1 with a detection limit of 0.034 ng ml−1 under optimal conditions. It was demonstrated that our proposed method possesses good accuracy, acceptable precision, and reproducibility. The NPG showed a better sensitizing effect and stability as immobilization matrices.  相似文献   

7.
Li R  Wu D  Li H  Xu C  Wang H  Zhao Y  Cai Y  Wei Q  Du B 《Analytical biochemistry》2011,(2):196-201
Identifying a good transgenic event from the pool of putative transgenics is crucial for further characterization. In transgenic plants, the transgene can integrate in either single or multiple locations by disrupting the endogenes and/or in heterochromatin regions causing the positional effect. Apart from this, to protect the unauthorized use of transgenic plants, the signature of transgene integration for every commercial transgenic event needs to be characterized. Here we show an affinity-based genome walking method, named locus-finding (LF) PCR (polymerase chain reaction), to determine the transgene flanking sequences of rice plants transformed by Agrobacterium tumefaciens. LF PCR includes a primary PCR by a degenerated primer and transfer DNA (T-DNA)-specific primer, a nested PCR, and a method of enriching the desired amplicons by using a biotin-tagged primer that is complementary to the T-DNA. This enrichment technique separates the single strands of desired amplicons from the off-target amplicons, reducing the template complexity by several orders of magnitude. We analyzed eight transgenic rice plants and found the transgene integration loci in three different chromosomes. The characteristic illegitimate recombination of the Agrobacterium sp. was also observed from the sequenced integration loci. We believe that the LF PCR should be an indispensable technique in transgenic analysis.  相似文献   

8.
Water‐soluble graphene oxide (GO) with a two‐dimensional layered nanostructure was synthesized and used as a quencher to construct a highly sensitive and selective fluorescence resonance energy transfer (FRET) aptasensor for sensing Immunoglobulin E (IgE). The fluorescein isothiocyanate (FITC)‐labeled aptamer could be adsorbed stably onto the surface of GO via π → π stacking interaction, which led to the occurrence of FRET from FITC to GO, and the fluorescence of FITC‐labeled aptamer was quenched by GO via energy transfer. In the presence of IgE, the fluorescence was recovered due to a higher affinity between the aptamer and IgE compared with interactions between GO and the aptamer, leading to a high signal‐to‐background ratio. The fluorescence intensity of the aptamer increased in proportion to the amount of IgE in the sample,so that IgE could be detected with a linear range of 60–225 pM and a detection limit of 22 pM. The assay was highly selective because the aptamer was unaffected by the presence of immunoglobulin G (IgG), human serum albumin (HSA) and bovine serum albumin (BSA). The practical application of the proposed aptasensor was successfully carried out for the determination of IgE in human serum samples. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Neurogenin3 (ngn3), as a marker for pancreatic endocrine precursor cells and an essential ingredient in the development of islet cells, was quantitatively detected for the first time. Based on a non-cross-linking specific interaction mechanism, a label-free colorimetric immunoassay for the synthetic peptide fragment of ngn3 (SKQRRSRRKKAND) using glutathione (-Glu-Cys-Gly, GSH) functionalized gold nanoparticles (GNPs) is reported. The anti-ngn3 antibody conjugated GNPs (GNP-Ab) was formed through electrostatic interaction upon the addition of anti-ngn3 antibody to the GSH-modified GNPs solution. Monobinding of the positively charged ngn3 to the negatively charged GNP-Ab will minimize the electrostatic repulsion between nanoparticles by neutralizing the surface charge, and then agglomeration is induced by an increasing salt concentration. Under the optimal conditions, the assay showed a linear response range of 50-300 ng/mL for the peptide with a detection limit being 20 ng/mL. The preliminary study on ngn3 opens up an innovative insight to detect short synthetic peptide fragment of antigen, and may own an opportunity for practical applications in clinical diagnosis and therapeutics.  相似文献   

10.
In this paper, a novel and ultrasensitive electrochemiluminescent sensor employing a solvothermal‐synthesized CdS nanorod‐modified pencil graphite electrode (CdS/PGE) for the determination of chlorogenic acid (CA) is fabricated. In the first step, the PGE surface is modified using CdS nanorods. In the next step, the developed electrode is used to detect CA using a electrochemiluminescent (ECL) technique, in which potassium persulfate (K2S2O8) served as a co‐reactant. The possible ECL mechanism is investigated, and the influences of pH and cyclic voltammetric scanning rate on the signal response are studied. The ECL intensity decreases quantitatively in relation to the concentration of the target molecule. Under optimized conditions, the linear correlation between the quenched ECL intensity and the logarithm of CA concentration is observed in the range from 2 × 10?9 to 8 × 10?7 mol L?1 with a limit of detection of 1 × 10?9 mol L?1. This proposed method is applied to the analysis of CA in honeysuckle flower, giving recoveries of 99‐107%. The experimental results demonstrate that this ECL sensor shows good stability and reproducibility.  相似文献   

11.
We have designed a simple and novel electrochemical biosensor based on glassy carbon electrode (GCE) for DNA detection. GCE was modified with reduced graphene oxide (RGO) and gold nanoparticles (AuNPs) by the electrochemical method, which is helpful for immobilization of thiolated bioreceptors. The electrode modification processes were characterized by scanning electron microscopy (SEM) and electrochemical methods. Then a single-stranded DNA (ssDNA) probe for BRCA1 5382 insC mutation detection was immobilized on the modified electrode for a specific time. The experimental conditions, such as probe immobilization time and target DNA (complementary DNA) hybridization time and temperature with probe DNA, were optimized using electrochemical methods. The electrochemical response for DNA hybridization and synthesis was measured using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) methods. The calibration graph contains two linear ranges; the first part is in the range of 3.0 × 10−20 to 1.0 × 10−12 M, and the second segment part is in the range of 1.0 × 10−12 to 1.0 × 10−7 M. The biosensor showed excellent selectivity for the detection of the complementary sequences from noncomplementary sequences, so it can be used for detection of breast cancer.  相似文献   

12.
An N‐butylamine functionalized graphene oxide nanolayer was synthesized and characterized by ultraviolet (UV)–visible spectrometry, Fourier transform infrared spectroscopy, X‐ray photoelectron spectroscopy, and transmission electron microscopy. Detection of iron(III) based on photoluminescence spectroscopy was investigated. The N‐butylamine functionalized graphene oxide was shown to specifically interact with iron (III), compared with other cationic trace elements including potassium (I), sodium (I), calcium (II), chromium (III), zinc (II), cobalt (II), copper (II), magnesium (II), manganese (II), and molybdenum (VI). The quenching effect of iron (III) on the luminescence emission of N‐butylamine functionalized graphene oxide layer was used to detect iron (III). The limit of detection (2.8 × 10?6 M) and limit of quantitation (2.9 × 10?5 M) were obtained under optimal conditions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Highly sensitive label-free detection of kanamycin is achieved with an aptamer sensor based on a conducting polymer/gold self-assembled nanocomposite. The sensor probe is fabricated by covalently immobilizing an in vitro selected DNA aptamer for kanamycin onto gold nanoparticle (AuNP)-comprised conducting polymer, poly-[2, 5-di-(2-thienyl)-1H-pyrrole-1-(p-benzoic acid)] (poly-DPB). The self-assembling of DPB on AuNP is investigated by TEM and UV-vis spectroscopy and the modification of the aptamer sensor is characterized using XPS and electrochemical impedance spectroscopy. The probe is applied to detect kanamycin by using voltammetric techniques. The sensor shows a pair of redox peaks around 0.26/ 0.08 V (vs. Ag/AgCl) for kanamycin captured by the aptamer-immobilized probe. The parameters that can affect the response, such as aptamer concentration, incubation time, temperature, and pH are optimized. The calibration plot shows a linear range from 0.05 μM to 9.0 μM kanamycin with a detection limit of 9.4±0.4 nM. The proposed aptamer sensor is examined with a real sample.  相似文献   

14.
In this contribution, a simple, rapid, colorimeteric and selective assay for lysine was achieved by a controllable end-to-end assembly of gold nanorods (AuNRs) in the presence of Eu(3+) and lysine. This one-pot end-to-end assembly of 11-mercaptoundecanoic acid (MUA) modified AuNRs was occurred in Britton-Robinson buffer of pH 6.0, which involves the coordination binding between Eu(3+) and COO(-) groups as well as the electrostatic interaction of the COO(-) groups of MUA with the -NH(3)(+) group of lysine. As monitored by absorption spectra, scanning electron microscopic (SEM) images and dynamic light scattering (DLS) measurement, the end-to-end chain assembly results in large red-shift in the longitudinal plasmon resonance absorption (LPRA), giving red-to-blue color change of AuNRs. Importantly, it was found that the red-shift of LPRA is linearly proportional to the concentrations of lysine in the range of 5.0×10(-6)-1.0×10(-3)M with the limit of detection (LOD) being 1.6×10(-6)M (3σ/k). This red-shift of LPRA is highly selective, making it possible to develop a rapid, selective and visual assay for lysine in food samples.  相似文献   

15.
A label-free fluorescent DNA sensor for the detection of lead ions (Pb2+) based on lead(II)-stabilized G-quadruplex formation is proposed in this article. A guanine (G)-rich oligonucleotide, T30695, was used as a recognition probe, and a DNA intercalator, SYBR Green I (SG), was used as a signal reporter. In the absence of Pb2+, the SG intercalated with the single-stranded random-coil T30695 and emitted strong fluorescence. While in the presence of Pb2+, the random-coil T30695 would fold into a G-quadruplex structure and the SG could barely show weak fluorescence, and the fluorescence intensity was inversely proportional to the involving amount of Pb2+. Based on this, a selective lead ion sensor with a limit of detection of 3.79 ppb (parts per billion) and a detection range from 0 to 600 ppb was constructed. Because detection for real samples was also demonstrated to be reliable, this simple, low-cost, sensitive, and selective sensor holds good potential for Pb2+ detection in real environmental samples.  相似文献   

16.
Water safety is one of the most pervasive problems afflicting people throughout the world. Microcystin, a hepatotoxin produced by cyanobacteria, poses a growing and serious threat of water safety. According to World Health Organization (WHO), the limit of content of microcystin-LR (MC-LR) in drinking water is as low as 1μg/L; it is thus necessary to explore a sensitive method for the trace detection of microcystins (MCs). Based on the observation of gold nanoparticles (Au NPs) induced graphene oxide (GO) fluorescence quenching, a reliable biosensor was developed here for microcystins detection. MCs could be attached on Au NPs through the interaction with single strand-DNA (ss-DNA) modified on Au NPs, which formed Au-DNA-MCs complexes. These MCs in the complexes could be immunologically recognized by the antibodies adsorbed on GO sheets, as a result, Au NPs were close enough to quench the photoluminescence of GO by the fluorescence resonance energy transfer (FRET). The fluorescence intensity decreased with the increase of MCs as more Au NPs linked onto GO surface. The limit of detection was 0.5 and 0.3μg/L for microcystin-LR and microcystin-RR (MC-RR), respectively, which satisfies the strictest standard of WHO. Well defined results were also obtained in natural lake water and the specificity experiment. The antibody used here could recognize Adda group, the conservative part of MCs, which allowed the biosensor to detect both single toxin and the total content of MCs existing in the water sample.  相似文献   

17.
A novel system for the detection of DNA hybridization in a homogeneous format is developed. This method is based on fluorescence quenching by gold nanoparticles used as both nanoscaffolds for the immobilization of capture sequences and nanoquenchers of fluorophores attached to detection sequences. The oligonucleotide-functionalized gold nanoparticles are synthesized by derivatizing the colloidal gold solution with 5'-thiolated 12-base oligonucleotides. Introduction of sequence-specific target DNAs (24 bases) into the mixture containing dye-tagged detection sequences and oligonucleotide-functionalized gold nanoparticles results in the quenching of carboxytetramethylrhodamine-labeled DNA fluorescence because DNA hybridization occurs and brings fluorophores into close proximity with oligonucleotide-functionalized gold nanoparticles. The quenching efficiency of fluorescence increases with the target DNA concentration and provides a quantitative measurement of sequence-specific DNA in sample. A linearity is obtained within the range from 1.4 to 92 nM. The target sequence is detected down to 2 nM. This new system not only overcomes many of the drawbacks inherent in radioisotopic measurement or enzyme-linked assay but also avoids the requirement for the stem-loop structure compared with conventional molecular beacons. Furthermore, the background signal that is defined as fluorescence quenching arising from electrostatic attraction between positively charged fluorophores and negatively charged gold nanoparticles is comparatively low due to electrostatic repulsion between negatively charged oligonucleotides. In addition, this is a homogeneous assay that can offer the potential to be monitored in real time, be amenable to automation, eliminate washing steps, and reduce the risk of contamination.  相似文献   

18.
A highly efficient enzyme-based screen printed electrode (SPE) was obtained by using covalent attachment between 1-pyrenebutanoic acid, succinimidyl ester (PASE) adsorbing on the graphene oxide (GO) sheets and amines of tyrosinase-protected gold nanoparticles (Tyr-Au). Herein, the bi-functional molecule PASE was assembled onto GO sheets. Subsequently, the Tyr-Au was immobilized on the PASE-GO sheets forming a biocompatible nanocomposite, which was further coated onto the working electrode surface of the SPE. The characterization of obtained nanocomposite and modified SPE surface was investigated by atomic force microscopy (AFM), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Attributing to the synergistic effect of GO-Au integration and the good biocompatibility of the hybrid-material, the fabricated disposable biosensor (Tyr-Au/PASE-GO/SPE) exhibited a rapid amperometric response (less than 6s) with a high sensitivity and good storage stability for monitoring catechol. This method shows a good linearity in the range from 8.3×10(-8) to 2.3×10(-5) M for catechol with a squared correlation coefficient of 0.9980, a quantitation limit of 8.2×10(-8) M (S/N=10) and a detection limit of 2.4×10(-8) M (S/N=3). The Michaelis-Menten constant was measured to be 0.027 mM. This disposable tyrosinase biosensor could offer a great potential for rapid, cost-effective and on-field analysis of phenolic compounds.  相似文献   

19.
20.
Interest in using nanoporous materials for sensing applications has increased. The present study reports a method of preparing well-ordered nanoporous gold arrays using a porous silicon (PSi) template. Gold nanolayer could be electrodeposited on the surface of the PSi template at low electrolysis currents in low concentration of chloroauric acid (HAuCl4) solution. Surface morphology characterizations and optical measurements revealed that a PSi-templated nanoporous gold (Au–PSi) array well replicated the nanoporous structure and retained the optical properties of PSi. Fourier transform reflectometric interference spectra showed that a characteristic blue-shifted effective optical thickness (EOT) was observed due to the low refractive index of the gold film. An optical DNA biosensor was then fabricated via the self-assembly of single-stranded DNA (ssDNA) with a specific sequence on the surface of Au–PSi. The attachment of ssDNA and its hybridization with target oligonucleotides (ODNs) persistently caused the blue shift of the EOT. Consequently, a relationship between the EOT shift and the ODN concentration was established. The mechanism of the optical response caused by DNA hybridization on the Au–PSi surface was qualitatively explained by the electromagnetic theory and electrochemical impedance spectroscopy (EIS). The lowest detection limit for target ODNs was estimated at around 10−14 mol L−1, when the baseline noise, a variation in the value of EOT is around 5 nm. The fabricated Au–PSi based optical biosensor has potential use in the discovery of new ODN drugs because it will be able to detect the binding event between ODNs and the target DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号