首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell adhesion molecules mediate cell-cell and cell-extracellular matrix adhesions, and coordination between these molecules is essential for tissue formation and morphogenesis. Crosstalk between integrins and cadherins may result from a physical response to integrin-mediated adhesion, complex cell differentiation processes, or direct signaling pathways linking the two adhesion systems. Nectins have recently been shown to regulate the organization of cadherins into adherens junctions and the formation of tight junctions by several processes. Furthermore, protocadherins can interact with extracellular matrix proteins or function by regulating classical cadherins.  相似文献   

2.
Nectins and cadherins, members of cell adhesion molecules (CAMs), are the primary mediators for various types of cell-cell junctions. Here, intermolecular force microscopy (IFM) with force sensitivity at sub-picoNewtons is used to characterize the extracellular trans-interactions between paired nectins and paired cadherins at the single molecule level. Three and four different bound states between paired nectins and paired cadherins are, respectively, identified and characterized based on bond strength distributions where each bound state has a unique lifetime and bond length. The results indicate that multiple domains of nectins act uncooperatively, as a zipper-like multiply bonded system whereas those of cadherins act cooperatively, as a parallel-like multiply bonded system, consistent with a "fork initiation and zipper" hypothesis for the formation of cell-cell adhesion. The observed dynamic properties among multiple bonds are expected to be advantageous such that nectins search adaptively in the cell-cell exploratory recognition process while cadherins slowly stabilize in the cell-cell zippering process.  相似文献   

3.
Role of N-cadherin in bone formation   总被引:2,自引:0,他引:2  
Cell-cell adhesion mediated by cadherins is essential for the function of bone forming cells during osteogenesis. Here, the evidence that N-cadherin is an important regulator of osteoblast differentiation and osteogenesis is reviewed. Osteoblasts express a limited number of cadherins, including the classic N-cadherin. The expression profile of N-cadherin in osteoblasts during bone formation in vivo and in vitro suggests a role of this molecule in osteogenesis. Functional studies using neutralizing antibodies or antisense oligonucleotides indicate that N-cadherin is involved in the control the expression of osteoblast marker gene expression and differentiation. Cleavage of N-cadherin during osteoblast apoptosis also suggests a role of N-cadherin-mediated-cell-cell adhesion in osteoblast survival. Hormonal and local factors that regulate osteoblast function also regulate N-cadherin expression and subsequent cell-cell adhesion associated with osteoblast differentiation or survival. Signaling mechanisms involved in N-cadherin-mediated cell-cell adhesion and osteoblast gene expression have also been identified. Alterations of N-cadherin expression are associated with abnormal osteoblast differentiation and osteogenesis in pathological conditions. These findings indicate that N-cadherin plays a role in normal and pathological bone formation and provide some insight into the process involved in N-cadherin-mediated cell-cell adhesion and differentiation in osteoblasts.  相似文献   

4.
Cadherins are transmembrane receptors that mediate cell-cell adhesion. They play an essential role in embryonic development and maintenance of tissue architecture. The Rho family small GTPases regulate actin cytoskeletal dynamics in different cell types. The function of two family members, Rho and Rac, is required for the stability of cadherins at cell-cell contacts. Consistent with the published data we have found that Rac is activated upon induction of intercellular adhesion in epithelial cells. This activation is dependent on functional cadherins (Nakagawa, M., Fukata, M., Yamaga, M., Itoh, N., and Kaibuchi, K. (2001) J. Cell Sci. 114, 1829-1838; Noren, N. K., Niessen, C. M., Gumbiner, B. M., and Burridge, K. (2001) J. Biol. Chem. 276, 3305-3308). Here we show for the first time that clustering of cadherins using antibody-coated beads is sufficient to promote Rac activation. In the presence of Latrunculin B, Rac can be partially activated by antibody-clustered cadherins. These results suggest that actin polymerization is not required for initial Rac activation. Contrary to what has been described before, phosphatidylinositol 3-kinases are not involved in Rac activation following cell-cell adhesion in keratinocytes. Interestingly, inhibition of epidermal growth factor receptor signaling efficiently blocks the increased Rac-GTP levels observed after contact formation. We conclude that cadherin-dependent adhesion can activate Rac via epidermal growth factor receptor signaling.  相似文献   

5.
Cadherins are a group of functionally related glycoproteins responsible for the Ca2+-dependent cell-cell adhesion mechanism. They are divided into subclasses, such as E-, P- and N-cadherin, which are distinct in immunological specificities and tissue distribution. Cell aggregation experiments suggest that these molecules have subclass specificities in cell-cell binding and are involved in selective cell adhesions. Analysis of amino acid sequences deduced from the nucleotide sequences of cDNAs encoding cadherins demonstrated that they are integral membrane proteins and share common sequences throughout their entire length; average similarity in the sequences among them is in a range of 50–60%. This result provided evidence that cadherins constitute a gene family which encodes adhesion molecules with different specificities. We also showed that, when cells with little cadherin activity were transfected with cadherin cDNAs, they acquired the cadherin-mediated adhesion properties.  相似文献   

6.
Cadherins, a family of transmembrane cell-cell adhesion receptors, require interactions with the cytoskeleton for normal function. To assess the mechanisms of these interactions, we studied the effect of exogenous expression of a mutant N-cadherin, cN390 delta; on epithelial cell-cell adhesion. The intracellular domain of cN390 delta was intact but its extracellular domain was largely deleted so that this molecule was not functional for cell adhesion. cDNA of cN390 delta was attached to the metallothionein promoter, and introduced into the keratinocyte line PAM212 expressing endogenous E- and P-cadherin. When the expression of cN390 delta was induced by Zn2+, cadherin-dependent adhesion of the transfected cells was inhibited, resulting in the dispersion of cell colonies, although their contacts were maintained under high cell density conditions. In these cultures, cN390 delta was expressed not only on the free surfaces of the cells but also at cell-cell junctions. The endogenous cadherins were concentrated at cell-cell junctions under normal conditions. As a result of cN390 delta expression, however, the endogenous cadherins localizing at the cell-cell junctions were largely diminished, suggesting that these molecules were replaced by the mutant molecules at these sites. As a control, we transfected the same cell line with cDNA of a truncated form of N-cadherin cadherin whose intracellular C terminus had been deleted leaving the extracellular domain intact. This molecule had no effect on cell-cell adhesion, nor did it localize to cell-cell contact sites. We also found that the association of the endogenous cadherins with alpha- and beta-catenins and plakoglobin was not affected by the expression of cN390 delta, which also formed a complex with these molecules, suggesting that no competition occurred between the endogenous and exogenous cadherins for these cytoplasmic proteins. These and other additional results suggest that the nonfunctional cadherins whose intracellular domain is intact occupy the sites where the endogenous cadherins should localize, through interactions with the cytoskeleton, and inhibit the cadherin adhesion system.  相似文献   

7.
Proper embryonic development is guaranteed under conditions of regulated cell-cell and cell-matrix adhesion. The cells of an embryo have to be able to distinguish their neighbours as being alike or different. Cadherins, single-pass transmembrane, Ca(2+)-dependent adhesion molecules that mainly interact in a homophilic manner, are major contributors to cell-cell adhesion. Cadherins play pivotal roles in important morphogenetic and differentiation processes during development, and in maintaining tissue integrity and homeostasis. Changes in cadherin expression throughout development enable differentiation and the formation of various organs. In addition to these functions, cadherins have strong implications in tumourigenesis, since frequently tumour cells show deregulated cadherin expression and inappropriate switching among family members. In this review, I focus on E- and N-cadherin, giving an overview of their structure, cellular function, importance during development, role in cancer, and of the complexity of Ecadherin gene regulation.  相似文献   

8.
Classical cadherins form parallel cis-dimers that emanate from a single cell surface. It is thought that the cis-dimeric form is active in cell-cell adhesion, whereas cadherin monomers are likely to be inactive. Currently, cis-dimers have been shown to exist only between cadherins of the same type. Here, we show the specific formation of cis-heterodimers between N- and R-cadherins. E-cadherin cannot participate in these complexes. Cells coexpressing N- and R-cadherins show homophilic adhesion in which these proteins coassociate at cell-cell interfaces. We performed site- directed mutagenesis studies, the results of which support the strand dimer model for cis-dimerization. Furthermore, we show that when N- and R-cadherins are coexpressed in neurons in vitro, the two cadherins colocalize at certain neural synapses, implying biological relevance for these complexes. The present study provides a novel paradigm for cadherin interaction whereby selective cis-heterodimer formation may generate new functional units to mediate cell-cell adhesion.  相似文献   

9.
Cadherins play an important role in specific cell-cell adhesion events. Their expression appears to be tightly regulated during development and each tissue or cell type shows a characteristic pattern of cadherin molecules. Inappropriate regulation of their expression levels or functionality has been observed in human malignancies, in many cases leading to aggravated cancer cell invasion and metastasis. The cadherins form a superfamily with at least six subfamilies, which can be distinguished on the basis of protein domain composition, genomic structure, and phylogenetic analysis of the protein sequences. These subfamilies comprise classical or type-I cadherins, atypical or type-II cadherins, desmocollins, desmogleins, protocadherins and Flamingo cadherins. In addition, several cadherins clearly occupy isolated positions in the cadherin superfamily (cadherin-13, -15, -16, -17, Dachsous, RET, FAT, MEGF1 and most invertebrate cadherins). We suggest a different evolutionary origin of the protocadherin and Flamingo cadherin genes versus the genes encoding desmogleins, desmocollins, classical cadherins, and atypical cadherins. The present phylogenetic analysis may accelerate the functional investigation of the whole cadherin superfamily by allowing focused research of prototype cadherins within each subfamily.  相似文献   

10.
Pan-cadherin antibodies recognize the conserved C-terminal region of the family of cell-cell adhesion molecules, cadherins, and have a broad spectrum of reactivity to the molecules. In the present study, by immunohistochemistry using an anti-pan cadherin monoclonal antibody (mAb), expression dynamics of cadherins in epidermal tissues were analyzed during metamorphosis of Xenopus laevis. At early stages of development, the anti-pan cadherin mAb detected signals at cell-cell boundaries and in the cytoplasm of both trunk and tail epidermal cells. During metamorphosis, the immunoreactivity decreased in the trunk skin tissue but remained in the tail. At the climax stage, immunoreactivity was observed only in the regressing tail epidermis. The signals disappeared completely from the trunk epidermis, which had already transformed into adult-type tissue. This observation was confirmed by western blot analysis. A specific band was detected in the larval skin, but not in the adult lysate, at approximately 135 kDa in molecular size, corresponding to the molecular mass of cadherins. This different immunoreactivity in larvae and adults was observed in the epidermis of the skin, but not in any other tissues examined, that is, brain, kidney and liver. The immunoreactivity seen in larval epidermal cells was drastically downregulated by thyroid hormone treatment in vitro. These changes of immunoreactivity were specific for the C-terminal region of cadherins, suggesting intracellular alteration of the molecules during metamorphosis, and the anti-pan cadherin mAb can be a marker for larval-type epidermal cells that is applicable to analysis of Xenopus metamorphosis.  相似文献   

11.
Plasticity of cadherin-catenin expression in the melanocyte lineage   总被引:6,自引:0,他引:6  
Cadherins are calcium-dependent cell adhesion receptors with strong morphoregulatory functions. To mediate functional adhesion, cadherins must interact with actin cytoskeleton. Catenins are cytoplasmic proteins that mediate the interactions between cadherins and the cytoskeleton. In addition to their role in cell-cell adhesion, catenins also participate in signaling pathways that regulate cell growth and differentiation. Cadherins and catenins appear to be involved in melanocyte development and transformation. Here, we investigated the function of cadherin-catenin complexes in the normal development and transformation of melanocytes by studying the patterns of expression of the cell-cell adhesion molecules, E-, N- and P-cadherin, and the expression of their cytoplasmic partners, alpha-, beta- and gamma-catenin during murine development. Similar analyses were performed in vitro using murine melanoblast, melanocyte, and melanoma cell lines in the presence and absence of keratinocytes, the cells with which melanocytes interact in vivo. Overall, the results suggest that the expression of cadherins and catenins is very plastic and depends on their environment as well as the transformation status of the cells. This plasticity is important in fundamental cellular mechanisms associated with normal and pathological ontogenesis, as well as with tumorigenesis.  相似文献   

12.
The cadherins: cell-cell adhesion molecules controlling animal morphogenesis   总被引:129,自引:0,他引:129  
Cadherins are a family of glycoproteins involved in the Ca2+-dependent cell-cell adhesion mechanism which is detected in most kinds of tissues. Inhibition of the cadherin activity with antibodies induces dissociation of cell layers, indicating a fundamental importance of these molecules in maintaining the multicellular structure. Cadherins are divided into subclasses, including E-, N- and P-cadherins. While all subclasses are similar in molecular weight, Ca2+- and protease-sensitivity, each subclass is characterized by a unique tissue distribution pattern and immunological specificity. Analysis of amino acid sequences deduced from cDNA encoding these molecules showed that they are integral membrane proteins of 723-748 amino acids long and share common sequences; similarity in the sequences between subclasses is in a range of 50-60% when compared within a single animal species. L cells, with very little endogenous cadherin activity, transfected with the cadherin cDNA acquired high cadherin-mediated aggregating activity. Their colony morphology was altered by the ectopic expression of cadherins from the dispersed type to the compact type, providing direct evidence for a key role of cadherins in cell-cell adhesion. It has been suggested that cadherins bind cells by their homophilic interactions at the extracellular domain and are associated with actin bundles at the cytoplasmic domain. It appears that each cadherin subclass has binding specificity and this molecular family is involved in selective cell-cell adhesion. In development, the expression of each cadherin subclass is spatiotemporally regulated and associated with a variety of morphogenetic events; e.g. the termination or initiation of expression of a cadherin subclass in a given cell collective is correlated with its segregation from or connection with other cell collectives. Antibodies to cadherins were shown to perturb the morphogenesis of some embryonic organs in vitro. These observations suggest that cadherins play a crucial role in construction of tissues and the whole animal body.  相似文献   

13.
Dissolution of cell-cell adhesive contacts and increased cell-extracellular matrix adhesion are hallmarks of the migratory and invasive phenotype of cancer cells. These changes are facilitated by growth factor binding to receptor protein tyrosine kinases (RTKs). In normal cells, cell-cell adhesion molecules (CAMs), including some receptor protein tyrosine phosphatases (RPTPs), antagonize RTK signaling by promoting adhesion over migration. In cancer, RTK signaling is constitutive due to mutated or amplified RTKs, which leads to growth factor independence or autonomy. An alternative route for a tumor cell to achieve autonomy is to inactivate cell-cell CAMs such as RPTPs. RPTPs directly mediate cell adhesion and regulate both cadherin-dependent adhesion and signaling. In addition, RPTPs antagonize RTK signaling by dephosphorylating molecules activated following ligand binding. Both RPTPs and cadherins are downregulated in tumor cells by cleavage at the cell surface. This results in shedding of the extracellular, adhesive segment and displacement of the intracellular segment, altering its subcellular localization and access to substrates or binding partners. In this commentary we discuss the signals that are altered following RPTP and cadherin cleavage to promote cell migration. Tumor cells both step on the gas (RTKs) and disconnect the brakes (RPTPs and cadherins) during their invasive and metastatic journey.Key words: receptor protein tyrosine kinase, receptor-like protein tyrosine phosphatase, cadherins, cell adhesion, signal transduction, phospholipase C gamma, protein kinase C, catenins, IQGAP1 protein, regulated intramembrane proteolysis  相似文献   

14.
We investigated the focal adhesion proteins paxillin and Fak, and the cell-cell adhesion protein cadherin in developing zebrafish (Danio rerio) embryos. Cadherins are expressed in presomitic mesoderm where they delineate cells. The initiation of somite formation coincides with an increase in the phosphorylation of Fak, and the accumulation of Fak, phosphorylated Fak, paxillin, and fibronectin at nascent somite boundaries. In the notochord, cadherins are expressed on cells during intercalation, and phosphorylated Fak accumulates in circumferential rings where the notochord cells contact laminin in the perichordal sheath. Subsequently, changes in the orientations of collagen fibers in the sheath suggest that Fak-mediated adhesion allows longitudinal expansion of the notochord, but not lateral expansion, resulting in notochord elongation. Novel observations showed that focal adhesion kinase and paxillin concentrate at sites of cell-cell adhesion in the epithelial enveloping layer and may associate with actin cytoskeleton at epithelial junctions containing cadherins. Fak is phosphorylated at these epithelial junctions but is not phosphorylated on Tyr397, implicating a noncanonical mechanism of regulation. These data suggest that Fak and paxillin may function in the integration of cadherin-based and integrin-based cell adhesion during the morphogenesis of the early zebrafish embryo.  相似文献   

15.
Desmosomes are prominent cell-cell adhesive junctions found in a variety of epithelial tissues, including the oral epithelium. The transmembrane core of the desmosome is composed of the desmosomal cadherins that interact extracellularly to mediate cell-cell adhesion. The cytoplasmic domain of desmosomal cadherins interact with plaque proteins that in turn interact with the keratin intermediate filament cytoskeleton. Plakophilin 1 is a major desmosomal plaque component that functions to recruit intermediate filaments to sites of cell-cell contact via interactions with desmoplakin. Decreased assembly of desmosomes has been reported in several epithelial cancers. We examined plakophilin-1 expression in an esophageal squamous cell carcinoma tissue microarray and found that plakophilin-1 expression inversely correlates with tumor grade. In addition, we sought to investigate the effect of plakophilin-1 expression on desmosome assembly and cell motility in oral squamous cell carcinoma cell lines. Cell lines expressing altered levels of plakophilin-1 were generated and the ability of these cells to recruit desmoplakin to sites of cell-cell contact was examined. Our results show that decreased expression of plakophilin-1 results in decreased desmosome assembly and increased cell motility and invasion. These data lead us to propose that loss of plakophilin-1 expression during head and neck squamous cell carcinoma (HNSCC) progression may contribute to an invasive phenotype.  相似文献   

16.
Desmosomes are prominent cell-cell adhesive junctions found in a variety of epithelial tissues, including the oral epithelium. The transmembrane core of the desmosome is composed of the desmosomal cadherins that interact extracellularly to mediate cell-cell adhesion. The cytoplasmic domain of desmosomal cadherins interact with plaque proteins that in turn interact with the keratin intermediate filament cytoskeleton. Plakophilin 1 is a major desmosomal plaque component that functions to recruit intermediate filaments to sites of cell-cell contact via interactions with desmoplakin. Decreased assembly of desmosomes has been reported in several epithelial cancers. We examined plakophilin-1 expression in an esophageal squamous cell carcinoma tissue microarray and found that plakophilin-1 expression inversely correlates with tumor grade. In addition, we sought to investigate the effect of plakophilin-1 expression on desmosome assembly and cell motility in oral squamous cell carcinoma cell lines. Cell lines expressing altered levels of plakophilin-1 were generated and the ability of these cells to recruit desmoplakin to sites of cell-cell contact was examined. Our results show that decreased expression of plakophilin-1 results in decreased desmosome assembly and increased cell motility and invasion. These data lead us to propose that loss of plakophilin-1 expression during head and neck squamous cell carcinoma (HNSCC) progression may contribute to an invasive phenotype.  相似文献   

17.
We isolated a mouse monoclonal antibody that disrupts Ca2+-dependent cell-cell adhesion of amphibian (Xenopus laevis) cells. When added to culture medium, the monoclonal antibody completely disrupted cell-cell adhesion of amphibian cells in monolayer culture and specifically inhibited Ca2+-dependent cell-cell adhesion of dissociated cells in reaggregation experiments. The monoclonal antibody recognized a 140 kDa cell surface glycoprotein antigenically different from the previously reported Ca2+-dependent cell-cell adhesion molecules (cadherins).  相似文献   

18.
Integrins and other cell adhesion molecules   总被引:146,自引:0,他引:146  
S M Albelda  C A Buck 《FASEB journal》1990,4(11):2868-2880
Cell-cell and cell-substratum interactions are mediated through several different families of receptors. In addition to targeting cell adhesion to specific extracellular matrix proteins and ligands on adjacent cells, these receptors influence many diverse processes including cellular growth, differentiation, junction formation, and polarity. Several families of adhesion receptors have been identified. These include: 1) the integrins, heterodimeric molecules that function both as cell-substratum and cell-cell adhesion receptors; 2) the adhesion molecules of the immunoglobulin superfamily, which are involved in cell-cell adhesion and especially important during embryo-genesis, wound healing, and the inflammatory response; 3) the cadherins, developmentally regulated, calcium-dependent homophilic cell-cell adhesion proteins; 4) the LEC-CAMs, cell adhesion molecules with lectin-like domains that mediate white blood cell/endothelial cell adhesion; and 5) homing receptors that target lymphocytes to specific lymphoid tissue. In this review we summarize recent data describing the structure and function of some of these cell adhesion molecules (with special emphasis on the integrin family) and discuss the possible role of these molecules in development, inflammation, wound healing, coagulation, and tumor metastasis.  相似文献   

19.
Cadherins and their connections: adhesion junctions have broader functions.   总被引:31,自引:0,他引:31  
Cadherins - a family of cell-cell adhesion molecules - are linked to the actin cytoskeleton via intervening proteins. Recent results address molecular explanations for observed cadherin behavior, point to signals that regulate adhesion by modulating elements of the cadherin-associated complex, challenge the belief that different cadherins generally cannot cross-adhere, and highlight instructive roles for cadherins in cell signaling and differentiation.  相似文献   

20.
Cadherin cell adhesion molecules are major determinants of tissue patterning which function in cooperation with the actin cytoskeleton. In the context of stable adhesion, cadherin/catenin complexes are often envisaged to passively scaffold onto cortical actin filaments. However, cadherins also form dynamic adhesive contacts during wound healing and morphogenesis. Here actin polymerization has been proposed to drive cell surfaces together, although F-actin reorganization also occurs as cell contacts mature. The interaction between cadherins and actin is therefore likely to depend on the functional state of adhesion. We sought to analyze the relationship between cadherin homophilic binding and cytoskeletal activity during early cadherin adhesive contacts. Dissecting the specific effect of cadherin ligation alone on actin regulation is difficult in native cell-cell contacts, due to the range of juxtacrine signals that can arise when two cell surfaces adhere. We therefore activated homophilic ligation using a specific functional recombinant protein. We report the first evidence that E-cadherin associates with the Arp2/3 complex actin nucleator and demonstrate that cadherin binding can exert an active, instructive influence on cells to mark sites for actin assembly at the cell surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号