首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
After the seminal work of Ebashi and coworkers which established the essential role of the intracellular Ca2+ concentration ([Ca2+]i) in the regulation of skeletal muscle contraction, we have witnessed an explosive elongation of the list of cell functions that are controlled by the [Ca2+]i. In numerous instances, release of intracellular Ca2+ stores plays important roles in Ca2+ signalling which displays significant variation in spatio-temporal pattern. There are two families of Ca2+ release channels, ryanodine receptors and inositol 1,4,5-trisphosphate (IP3) receptors. These Ca2+ release channels are structurally and functionally similar. In particular, the activity of both types of channels is regulated by the [Ca2+]i. The [Ca2+]i dependence of the Ca2+ release channel activity provides both types of channels with properties of a Ca2+ signal amplifier. This function of the ryanodine receptor is important in striated muscle excitation-contraction coupling, whereas that of the IP3 receptor seems to be the basis of the generation of Ca2+ waves. Thus the wide variety of Ca2+ signalling patterns seem to be critically dependent on the [Ca2+]i dependence of the Ca2+ release channels.  相似文献   

3.
The relative contribution of voltage-sensitive Ca2+ channels, Ca(2+)-ATPases, and Ca2+ release from intracellular stores to spontaneous oscillations in cytosolic free Ca2+ concentration ([Ca2+]i) observed in secretory cells is not well characterized owing to a lack of specific inhibitors for a novel thapsigargin (Tg)-insensitive Ca(2+)-ATPase expressed in these cells. We show that spontaneous [Ca2+]i oscillations in GH3 cells were unaffected by Ca2+ depletion in inositol-1,4,5-trisphosphate (IP3)-sensitive Ca2+ stores by the treatment of Tg, but could be initiated by application of caffeine. Moreover, we demonstrate for the first time that these spontaneous [Ca2+]i oscillations were highly temperature dependent. Decreasing the temperature from 22 to 17 degrees C resulted in an increase in the frequency, a reduction in the amplitude, and large inhibition of [Ca2+]i oscillations. Furthermore, the rate of ATP-dependent 45Ca2+ uptake into GH3-derived microsomes was greatly reduced at 17 degrees C. The effect of decreased temperatures on extracellular Ca2+ influx was minor because the frequency and amplitude of spontaneous action potentials, which activate L-type Ca2+ channels, was relatively unchanged at 17 degrees C. These results suggest that in GH3 secretory cells, Ca2+ influx via L-type Ca2+ channels initiates spontaneous [Ca2+]i oscillations, which are then maintained by the combined activity of Ca(2+)-ATPase and Ca(2+)-induced Ca2+ release from Tg/IP3-insensitive intracellular stores.  相似文献   

4.
The regulatory mechanism of Ca2+ influx into the cytosol from the extracellular space in non-excitable cells is not clear. The "capacitative calcium entry" (CCE) hypothesis suggested that Ca2+ influx is triggered by the IP(3)-mediated emptying of the intracellular Ca2+ stores. However, there is no clear evidence for CCE and its mechanism remains elusive. In the present work, we have provided the reported evidences to show that inhibition of IP(3)-dependent Ca2+ release does not affect Ca2+ influx, and the experimental protocols used to demonstrate CCE can stimulate Ca2+ influx by means other than emptying of the Ca2+ stores. In addition, we have presented the reports showing that IP(3)-mediated Ca2+ release is linked to a Ca2+ entry from the extracellular space, which does not increase cytosolic [Ca2+] prior to Ca2+ release. Based on these and other reports, we have provided a model of Ca2+ signaling in non-excitable cells, in which IP(3)-mediated emptying of the intracellular Ca2+ store triggers entry of Ca2+ directly into the store, through a plasma membrane TRPC channel. Thus, emptying and direct refilling of the Ca2+ stores are repeated in the presence of IP(3), giving rise to the transient phase of oscillatory Ca2+ release. Direct Ca2+ entry into the store is regulated by its filling status in a negative and positive manner through a Ca2+ -binding protein and Stim1/Orai complex, respectively. The sustained phase of Ca2+ influx is triggered by diacylglycerol (DAG) through the activation of another TRPC channel, independent of Ca2+ release. The plasma membrane IP(3) receptor (IP(3)R) plays an essential role in Ca2+ influx, by interacting with the DAG-activated TRPC, without the requirement of binding to IP(3).  相似文献   

5.
A Paramecium cell has a stereotypically patterned surface, with regularly arranged cilia, dense-core secretory vesicles and subplasmalemmal calcium stores. Less strikingly, there is also a patterning of molecules; for instance, some ion channels are restricted to certain regions of the cell surface. This design may explain very effective and selective responses, such as that to Ca(2+) upon stimulation. It enables the cell to respond to a Ca(2+) signal precisely secretion (exocytosis) or by changing its ciliary activity. These responses depend on the location and/or type of signal, even though these two target structures co-exist side-by-side, and normally only limited overlap occurs between the different functions. Furthermore, the patterning of exocytotic sites and the possibility of synchronous exocytosis induction in the sub-second time range have considerably facilitated analyses, and thus led to new concepts of exocytotic membrane fusion. It has been possible to dissect complicated events like overlapping Ca(2+) fluxes produced from external sources and from internal stores. Since molecular genetic approaches have become available for Paramecium, many different gene products have been identified only some of which are known from "higher" eukaryotes. Although a variety of basic cellular functions are briefly addressed to demonstrate the uniqueness of this unicellular organism, this article focuses on exocytosis regulation.  相似文献   

6.
Many physiological processes are controlled by a great diversity of Ca2+ signals that depend on Ca2+ entry into the cell and/or Ca2+ release from internal Ca2+ stores. Ca2+ mobilization from intracellular stores is gated by a family of messengers including inositol-1,4,5-trisphosphate (InsP3), cyclic ADP-ribose (cADPR), and nicotinic acid adenine dinucleotide phosphate (NAADP). There is increasing evidence for a novel intracellular Ca2+ release channel that may be targeted by NAADP and that displays properties distinctly different from the well-characterized InsP3 and ryanodine receptors. These channels appear to localize on a wider range of intracellular organelles, including the acidic Ca2+ stores. Activation of the NAADP-sensitive Ca2+ channels evokes complex changes in cytoplasmic Ca2+ levels by means of channel chatter with other intracellular Ca2+ channels. The recent demonstration of changes in intracellular NAADP levels in response to physiologically relevant extracellular stimuli highlights the significance of NAADP as an important regulator of intracellular Ca2+ signaling.  相似文献   

7.
Molecular properties of inositol 1,4,5-trisphosphate receptors.   总被引:15,自引:0,他引:15  
The receptors for the second messenger inositol 1,4,5-trisphosphate (IP3) constitute a family of Ca2+ channels responsible for the mobilization of intracellular Ca2+ stores. Three different gene products (types I-III) have been isolated, encoding polypeptides which assemble as large tetrameric structures. Recent molecular studies have advanced our knowledge about the structure, regulation and function of IP3 receptors. For example, several Ca(2+)-binding sites and a Ca(2+)-calmodulin-binding domain have been mapped within the type I IP3 receptor, and studies on purified cerebellar IP3 receptors propose a second Ca(2+)-independent calmodulin-binding domain. In addition, minimal requirements for the binding of immunophilins and the formation of tetramers have been identified. Overexpression of IP3 receptors has provided further clues to the regulation of individual IP3 receptor isoforms present within cells, and the role that they play in the generation of IP3-dependent Ca2+ signals. Inhibition of IP3 receptor function and expression, and analysis of mutant IP3 receptors, suggests that IP3 receptors are involved in such diverse cellular processes as proliferation and apoptosis and are thus, necessary for normal development. Our understanding of the complex spatial and temporal nature of cytosolic Ca2+ increases and the role that these Ca2+ signals play in cell function depend upon our knowledge of the structure and the regulation of IP3 receptors. This review focuses on the molecular properties of these ubiquitous intracellular Ca2+ channels.  相似文献   

8.
Messenger role of calcium in ciliary electromotor coupling: A reassessment   总被引:1,自引:0,他引:1  
Y. Mogami  J. Pernberg  H. Machemer   《Cell calcium》1990,11(10):665-673
Electrophysiological and cell reactivation studies in Paramecium and other ciliates have established that depolarizing stimulation opens voltage-sensitive ciliary Ca2+ channels leading to an elevation in intraciliary Ca2+, a rapid 'reversal' in sliding-microtubule based ciliary activity and backward swimming. Regulation of cilia by hyperpolarization modulates the pitch and rate of forward locomotion. The control of this predominant behaviour has been a matter of controversy because ciliary conductances do not change with negative shifts from the resting potential. Recordings of ciliary responses during electrophysiological manipulation of the Ca driving force in the ciliates Stylonychia and Didinium now suggests that a crucial step in hyperpolarization-induced ciliary activation (HCA) is a reduction in intraciliary Ca2+ from a resting steady-state level. The data are discussed with respect to previous hypotheses for the regulation of HCA.  相似文献   

9.
Calcium ions play a central role in the regulation of cellular activity. Calcium influx across the plasma membrane occurs through ion channels (voltage- and receptor-operated channels). Two intracellular channels responsible for releasing Ca2+ from the internal stores are ryanodine and IP3 receptors. Two mechanisms for Ca2+ extrusion have been identified in the sarcolemma (Ca2+ pump and Na+/Ca2+ exchanger) and one in the sarcoplasmic membrane (Ca2+ pump). Hierarchical organization of intracellular calcium signalling is presented. It is considered of opening of the single channels or of groups channels to give quarks and sparks. The methods for the determination of the intracellular Ca2+ concentration are discussed. The equation connecting [Ca2+]i with double wavelengths parameter R was obtained proceeding from three fluorescent forms of indo-1 (L, LM and LP). Using this equation permits improving calculation of [Ca2+]i.  相似文献   

10.
The phylum Apicomplexa comprises a large group of early branching eukaryotes that includes a number of human and animal parasites. Calcium controls a number of vital processes in apicomplexans including protein secretion, motility, and differentiation. Despite the importance of calcium as a second messenger, very little is known about the systems that control homeostasis or that regulate calcium signaling in parasites. The recent completion of many apicomplexan genomes provides new opportunity to define calcium response pathways in this group of parasites in comparison to model organisms. Whole-genome comparison between the apicomplexans Plasmodium spp., Cryptosporidium spp., and Toxoplasma gondii revealed the presence of several P-Type Ca2+ transporting ATPases including a single endoplasmic reticulum (ER)-type sarcoplasmic-endoplasmic reticulum Ca2+ ATPase, several Golgi-like Ca2+ ATPases, and a single Ca2+/H+ exchanger. Only T. gondii showed evidence of plasma membrane-type Ca2+ ATPases or voltage-gated calcium channels. Despite pharmacological evidence for IP3 and ryanodine-mediated calcium release, animal-type calcium channels were not readily identified in parasites, indicating they are more similar to plants. Downstream of calcium release, a variety of EF-hand-containing proteins regulate calcium responses. Our analyses detected a single conserved calmodulin (CaM) homologue, 3 distinct centrin (CETN)-caltractin-like proteins, one of which is shared with ciliates, and a variety of deep-branching, CaM-CETN-like proteins. Apicomplexans were also found to contain a wide array of calcium-dependent protein kinases (CDPKs), which are commonly found in plants. Toxoplasma gondii contains more than 20 CDPK or CDPK-related kinases, which likely regulate a variety of responses including secretion, motility, and differentiation. Genomic and phylogenetic comparisons revealed that apicomplexans contain a variety of unusual calcium response pathways that are distinct from those seen in vertebrates. Notably, plant-like pathways for calcium release channels and calcium-dependent kinases are found in apicomplexans. The experimental flexibility of T. gondii should allow direct experimental manipulation of these pathways to validate their biological roles. The central importance of calcium in signaling and development, and the novel characteristics of many of these systems, indicates that parasite calcium pathways may be exploited as new therapeutic targets for intervention.  相似文献   

11.
In many cell types, low concentrations of inositol 1,4,5-trisphosphate (IP3) release only a portion of the intracellular IP3-sensitive Ca2+ store, a phenomenon known as "quantal" Ca2+ release. It has been suggested that this effect is a result of reduced activity of the IP3- dependent Ca2+ channel with decreasing calcium concentration within the IP3-sensitive store ([Ca2+]s). To test this hypothesis, the properties of IP3-dependent Ca2+ release in single saponin-permeabilized HSY cells were studied by monitoring [Ca2+]s using the Ca(2+)-sensitive fluorescent dye mag-fura-2. In permeabilized cells, blockade of the sarco/ER Ca(2+)-ATPase pump in stores partially depleted by IP3 induced further Ca2+ release via an IP3-dependent route, indicating that Ca2+ entry via the sarco/ER Ca(2+)-ATPase pump had been balanced by Ca2+ loss via the IP3-sensitive channel before pump inhibition. IP3- dependent Mn2+ entry, monitored via quenching of luminal mag-fura-2 fluorescence, was readily apparent in filled stores but undetectable in Ca(2+)-depleted stores, indicating markedly reduced IP3-sensitive channel activity in the latter. Also consistent with reduced responsiveness of Ca(2+)-depleted stores to IP3, the initial rate of refilling of these stores was unaffected by the presence of 0.3 microM IP3, a concentration that was clearly effective in eliciting Ca2+ release from filled stores. Analysis of the rate of Ca2+ release at various IP3 concentrations indicated a significant shift of the IP3 dose response toward higher [IP3] with decreasing [Ca2+]s. We conclude that IP3-dependent Ca2+ release in HSY cells is a steady-state process wherein Ca2+ efflux via the IP3 receptor Ca2+ channel is regulated by [Ca2+]s, apparently via changes in the sensitivity of the channel to IP3.  相似文献   

12.
Prostaglandin E2 (PGE2) causes Ca2+ release from intracellular Ca2+ stores and stimulates phosphoinositide metabolism in bovine adrenal medullary cells. These results have been interpreted as PGE2 induces Ca2+ release from inositol trisphosphate (IP3)-sensitive stores. However, we have recently shown that pituitary adenylate cyclase-activating polypeptide (PACAP), bradykinin, and angiotensin II release Ca2+ from caffeine/ryanodine-sensitive stores, although they cause a concomitant increase of intracellular IP3. In light of these results, the mechanism of PGE2-induced Ca2+ release was investigated in the present study. PGE2 dose-dependently caused a transient but consistent Ca2+ release from internal Ca2+ stores. The PGE2-induced Ca2+ release was unaffected by cinnarizine, a blocker of IP3-induced Ca2+ release. By contrast, it was potently inhibited by prior application of caffeine and ryanodine. Although IP3 production in response to PGE2 was abolished by the phospholipase C inhibitor U-73122, Ca2+ release in response to PGE2 was unaffected by U-73122. The PGE2-induced Ca2+ release was unaffected by Rp-adenosine 3',5'-cyclic monophosphothioate, an inhibitor of protein kinase A, and forskolin, a cyclic AMP (cAMP)-elevating agent, did not cause Ca2+ release. The EP1 agonist 17-phenyl-trinorPGE2 and the EP1/EP3 agonist sulprostone mimicked the Ca(2+)-releasing effects of PGE2, whereas the EP2 agonist butaprost or the EP2/EP3 agonist misoprostol caused little or no Ca2+ release. The EP1 antagonist SC-51322 significantly suppressed the Ca2+ release response induced by PGE2, whereas the EP4 antagonist AH-23828B had little effect. These results suggest that PGE2, acting on EP1-like receptors, induces Ca2+ release from ryanodine/caffeine-sensitive stores through a mechanism independent of IP3 and cAMP and that PGE2 may share the same mechanism with PACAP and the other peptide ligands in causing Ca2+ release in bovine adrenal medullary cells.  相似文献   

13.
14.
H Sugawara  M Kurosaki  M Takata    T Kurosaki 《The EMBO journal》1997,16(11):3078-3088
Stimulation of B-cell antigen receptor (BCR) induces a rapid increase in cytoplasmic free calcium due to its release from intracellular stores and influx from the extracellular environment. Inositol 1,4,5-trisphosphate receptors (IP3Rs) are ligand-gated channels that release intracellular calcium stores in response to the second messenger, inositol 1,4,5-trisphosphate. Most hematopoietic cells, including B cells, express at least two of the three different types of IP3R. We demonstrate here that B cells in which a single type of IP3R has been deleted still mobilize calcium in response to BCR stimulation, whereas this calcium mobilization is abrogated in B cells lacking all three types of IP3R. Calcium mobilization by a transfected G protein-coupled receptor (muscarinic M1 receptor) was also abolished in only triple-deficient cells. Capacitative Ca2+ entry, stimulated by thapsigargin, remains unaffected by loss of all three types of IP3R. These data establish that IP3Rs are essential and functionally redundant mediators for both BCR- and muscarinic receptor-induced calcium mobilization, but not for thapsigargin-induced Ca2+ influx. We further show that the BCR-induced apoptosis is significantly inhibited by loss of all three types of IP3R, suggesting an important role for Ca2+ in the process of apoptosis.  相似文献   

15.
Physiologically, hormone induced release of Ca2+ from intracellular stores occurs in response to inositol 1,4,5-trisphosphate (IP?) binding to its receptors expressed on the membranes of intracellular organelles, mainly endoplasmic reticulum. These IP? receptors act as channels, releasing Ca2+ into the cytoplasmic space where it is responsible for regulating a host of distinct cellular processes. The depletion of intracellular Ca2+ stores leads to activation of store-operated Ca2+ channels on the plasma membrane which replenishes lost Ca2+ and sustain Ca2+ signalling. There are three isoforms of IP? receptor, each exhibiting distinctive properties, however, little is known about the role of each isoform in the activation of store-operated Ca2+ entry. Recent evidence suggest that at least in some cell types the endoplasmic reticulum is not a homogeneous Ca2+ store, and there might be a sub-compartment specifically linked to the activation of store-operated Ca2+ channels, and Ca2+ release activated Ca2+ (CRAC) channel in particular. Furthermore, this sub-compartment might express only certain types of IP? receptor but not the others. Here we show that H4IIE liver cells express all three types of IP? receptor, but only type 1 and to a lesser extent type 3, but not type 2, participate in the activation of CRAC current (I(CRAC)), while type 1 and type 2, but not type 3, participate in observed Ca2+ release in response to receptor stimulation. Presented results suggest that in H4IIE rat liver cells the sub-compartment of intracellular Ca2+ store linked to the activation of I(CRAC) predominantly expresses type 1 IP? receptors.  相似文献   

16.
We have previously visualized three Ca2+ transients, generated by release from intracellular stores, which are associated with cytokinesis during the early cell division cycles of zebrafish embryos: the furrow positioning, propagation and deepening transients. Here we demonstrate the requirement of the latter for furrow deepening, and identify the Ca2+ release channels responsible for generating the deepening transient. The introduction of the Ca2+ buffer 5,5'-dibromo-BAPTA, at an appropriate time to challenge only the deepening transient, resulted in the dissipation of this transient and an inhibition of furrow deepening. Introduction of antagonists of the inositol 1,4,5-trisphosphate (IP3) receptor (heparin and 2-aminoethoxydiphenylborate; 2-APB) at the appropriate time, blocked the furrow deepening transient and resulted in an inhibition of furrow deepening. In contrast, antagonists of the ryanodine receptor and the NAADP-sensitive channel had no effect on either the furrow deepening transient or on furrow deepening. In addition, microinjection of IP3 led to the release of calcium from IP3-sensitive stores, whereas the introduction of caffeine or cADPR failed to induce any increase in intracellular Ca2+. Our new data thus support the idea that Ca2+ released via IP3 receptors is essential for generating the furrow deepening transient and demonstrate a requirement for a localized cytosolic Ca2+ riseforthe furrow deepening process. We also present data to show that the endoplasmic reticulum and IP3 receptors are localized on either side of the cleavage furrow, thus providing the intracellular Ca2+ store and release mechanism for generating the deepening transient.  相似文献   

17.
2-Aminoethoxydiphenyl borate (2APB) is a membrane-permeable blocker of the inositol 1,4,5-trisphosphate (IP3)-induced Ca2+ release in bi-directional Ca2+ -flux conditions. We have now studied the effects of 2APB on the 45Ca2+ uptake into, and on the basal and IP(3)-stimulated unidirectional 45Ca2+ efflux from the non-mitochondrial Ca2+ stores in permeabilized A7r5 smooth-muscle cells. 2APB inhibited the IP3 -induced Ca2+ release, with a half maximal inhibition at 36 microM 2APB, without affecting [3H]IP3 binding to the receptor. This inhibition did not depend on the IP3, ATP or free Ca2+ concentration. The Ca2+ pumps of the non-mitochondrial Ca2+ stores were half-maximally inhibited at 91microM 2APB. Higher concentrations of 2APB increased the non-specific leak of Ca2+ from the stores. We conclude that 2APB can not be considered as a selective blocker of the IP3 -induced Ca2+ release. Our results can explain the various effects of 2APB observed in intact cells.  相似文献   

18.
A non-discharge mutant of Paramecium tetraurelia (nd12-35 degrees C, lacking exocytotic response upon stimulation with the nonpermeable polycationic secretagogue aminoethyldextran, AED), in the pawnA genetic context (d4-500r, lacking ciliary voltage-dependent Ca2+ influx), was shown to lack (45)Ca2+ entry from outside upon AED stimulation. In contrast, cells grown at 25 degrees C behave like the wildtype. To check the functional properties in more detail, fluorochrome-loaded 35 degrees C cells were stimulated, not only with AED (EC(100) = 10(-6) M in wildtype cells), but also with 4-chloro-meta-cresol, (4CmC, 0.5 mM), a permeable activator of ryanodine receptor-type Ca2+ release channels, usually at extracellular [Ca2+] of 50 microM, and eventually with a Ca2+ chelator added. We confirm that pwA-nd12(35 degrees C) cells lack any Ca2+ influx and any exocytosis of trichocysts in response to any stimulus. As we determined by x-ray microanalysis, total calcium content in alveolar sacs (subplasmalemmal stores) known to be mobilized upon exocytosis stimulation in wild-type cells, contain about the same total calcium in 35 degrees C as in 25 degrees C cells, and Ca2+ mobilization from alveoli by AED or 4CmC is also nearly the same. Due to the absence of any AED-induced Ca2+ influx in 35 degrees C cells and normal Ca2+ release from stores found by x-ray microanalysis one can exclude a "CICR"-type mechanism (Ca2+-induced Ca2+ release) and imply that normally a store-operated Ca2+ ("SOC") influx would occur (as in 25 degrees C cells). Furthermore, 35 degrees C cells display a significantly lower basal intracellular [Ca2+], so that any increase upon stimulation may be less expressed or even remain undetected. Under these conditions, any mobilization of Ca2+ from stores cannot compensate for the lack of Ca2+ influx, particularly since normally both components have to cooperate to achieve full exocytotic response. Also striking is our finding that 35 degrees C cells are unable to perform membrane fusion, as analyzed with the Ca2+ ionophore, A23187. These findings were corroborated by cryofixation and freeze-fracture analysis of trichocyst docking sites after AED or 4CmC stimulation, which also revealed no membrane fusion. In sum, in nd12 cells increased culture temperature entails multiple defects, notably insensitivity to any Ca2+ signal, which, moreover, cannot develop properly due to a lower basal [Ca2+] level and the lack of Ca2+ influx, despite normal store activation.  相似文献   

19.
Functional assays of intracellular Ca2+ channels, such as the inositol 1,4,5-trisphosphate receptor (IP3R), have generally used 45Ca2+-flux assays, fluorescent indicators loaded within either the cytosol or the endoplasmic reticulum (ER) of single cells, or electrophysiological analyses. None of these methods is readily applicable to rapid, high-throughput quantitative analyses. Here we provide a detailed protocol for high-throughput functional analysis of native and recombinant IP3Rs. A low-affinity Ca2+ indicator (mag-fluo-4) trapped within the ER of permeabilized cells is shown to report changes in luminal free Ca2+ concentration reliably. An automated fluorescence plate reader allows rapid measurement of Ca2+ release from intracellular stores mediated by IP3R. The method can be readily adapted to other cell types or to the analysis of other intracellular Ca2+ channels. This protocol can be completed in 2-3 h.  相似文献   

20.
A correlated electrophysiological and light microscopic evaluation of trichocyst exocytosis was carried out the Paramecium cells which possess extensive cortical Ca stores with footlike links to the plasmalemma. We used not only intra- but also extracellular recordings to account for polar arrangement of ion channels (while trichocysts can be released from all over the cell surface). With three widely different secretagogues, aminoethyldextran (AED), veratridine and caffeine, similar anterior Nain and posterior Kout currents (both known to be Ca(2+)-dependent) were observed. Direct de- or hyperpolarization induced by current injection failed to trigger exocytosis. For both, exocytotic membrane fusion and secretagogue-induced membrane currents, sensitivity to or availability of Ca2+ appears to be different. Current responses to AED were blocked by W7 or trifluoperazine, while exocytosis remained unaffected. Reducing [Ca2+]o to < or = 0.16 microM (i.e., resting [Ca2+]i) suppressed electrical membrane responses triggered with AED, while we had previously documented normal exocytotic membrane fusion. From this we conclude that the primary effect of AED (as of caffeine) is the mobilization of Ca2+ from the subplasmalemmal pools which not only activates exocytosis (abolished by iontophoretic EGTA injection) but secondarily also spatially segregated plasmalemmal Ca(2+)-dependent ion channels (indicative of subplasmalemmal [Ca2+]i increase, but irrelevant for Ca2+ mobilization). The 45Ca2+ influx previously observed during AED triggering may serve to refill depleted stores. Apart from the insensitivity of our system to depolarization, the mode of direct Ca2+ mobilization from stores by mechanical coupling to the cell membrane (without previous Ca(2+)-influx from outside) closely resembles the model currently discussed for skeletal muscle triads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号