首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report the proteomic analysis of the venom of the medically relevant snake, Cerastes cerastes, from Morocco, and the immunoreactivity profile of an experimental monospecific (CcMo_AV against Moroccan C. cerastes venom) and a commercial (Gamma-VIP against Tunisian C. cerastes and M. lebetina venoms) F(ab')(2) antivenoms towards geographic variants of C. cerastes and C. vipera venoms. The venom of C. cerastes is a low-complexity proteome composed of 25-30 toxins belonging to 6 protein families, mainly targetting the hemostatic system. This toxin arsenal explains the clinical picture observed in C. cerastes envenomings. Despite geographic compositional variation, the monospecific CcMo_AV and the Gamma-VIP divalent antivenom produced at Institut Pasteur de Tunis, showed similar immunocapturing capability towards Moroccan, Tunisian, and Egyptian C. cerastes venom proteins. Proteins partially escaping immunorecognition were all identified as PLA(2) molecules. Antivenomic analysis showed low degree of cross-reactivity of Moroccan CcMo_AV and Tunisian Gamma-VIP antivenoms towards C. vipera venom toxins. This study indicates that a more complete therapeutic cover could be achieved by including C. vipera venom in the formulation of venom immunization mixtures, thereby generating a pan-Cerastes antivenom.  相似文献   

2.
The protein composition of the crude venoms of the three most important vipers of Tunisia was analyzed by RP-HPLC, N-terminal sequence analysis, MALDI-TOF mass determination, and in-gel tryptic digestion followed by PMF and CID-MS/MS of selected peptide ions in a quadrupole-linear IT instrument. Our results show that the venom proteomes of Cerastes cerastes, Cerastes vipera, and Macrovipera lebetina are composed of proteins belonging to a few protein families. However, each venom showed distinct degree of protein composition complexity. The three venoms shared a number of protein classes though the relative occurrence of these toxins was different in each snake species. On the other hand, the venoms of the Cerastes species and Macrovipera lebetina each contained unique components. The comparative proteomic analysis of Tunisian snake venoms provides a comprehensible catalogue of secreted proteins, which may contribute to a deeper understanding of the biological effects of the venoms, and may also serve as a starting point for studying structure-function correlations of individual toxins.  相似文献   

3.
We used mtDNA sequences (cytochrome b and NADH dehydrogenase subunit 2) to reconstruct molecular phylogenies of Vipera sensu lato, Vipera sensu stricto, and Vipera aspis. Three major clades were identified within the Vipera s.l. group: (1) the European vipers, (2) the oriental vipers, consisting of Montivipera (Vipera 2) plus Macrovipera lebetina, and (3) a group of Asian and North African vipers consisting of Daboia russelii, V. palaestinae, and Macrovipera mauritanica. We also distinguished three clades within the monophyletic European Vipera group: V. ammodytes, V. aspis, and V. latastei, and Pelias with monophyly of Vipera 1 uncertain. Within V. aspis, the specimens collected in France formed the sister group of an Italian clade. The "neurotoxic" French population of V. aspis, which has a specific venom profile, separated from other French V. aspis early in the history of this group.  相似文献   

4.
In this work, we provide experimental arguments in favor of the fact that components from Macrovipera lebetina and Cerastes cerastes venoms bind to IGR39 melanoma cells but not to HT29D4 cells that derive from carcinoma adenome. Furthermore, Macrovipera lebetina and Cerastes cerastes venoms inhibit the adherence of IGR39 and HT 29-D4 to various extracellular matrix proteins. Macrovipera lebetina and Cerastes cerastes venoms did not inhibit the non specific adherence of IGR 39 cells to polylysine. In addition, binding of components from Cerastes cerastes venom to IGR39 cells is inhibited by GRGDS peptide and by monoclonal antibidy anti-av, while these two components have no effect on the adherence of IGR39 to Macrovipera lebetina venom.  相似文献   

5.
6.
This article covers the application of proteomic tools (‘venomics’, ‘antivenomics’ and ‘venom phenotyping’) to study the composition and natural history of snake venoms, and the cross-reactivity of antivenoms with homologous and heterologous venoms, to help address the neglected pathology of snake bite envenoming. The identification of evolutionary and immunological trends may help to replace the traditional geographic- and phylogenetic-driven hypotheses for antivenom production strategies with a more rational approach based on proteome phenotype and immunological profile similarities. Antivenomics and venom phenotyping may also contribute to expand the clinical range of currently existing antidotes.  相似文献   

7.
The toxicity and immunochemical properties of Tityus pachyurus Pocock scorpion venom was characterized, as well as the neutralization capacity against it by three anti-scorpion antivenoms (Alacramyn, Instituto Bioclón, México; Suero antiescorpiónico, Instituto Butantán, Sao Paulo, Brasil; and Suero antiescorpiónico, Centro de Biotecnología, Universidad Central de Venezuela, Caracas, Venezuela). The venom yield, obtained by manual milking, 680+/-20 microg venom, a 50% lethal dose in mice was 4.8 microg/kg (90 microg for an 18-20 g mouse). The most common symptoms of venom poisoning in mice were sialorrhea, respiratory distress, profuse sweating, ataxia, behavior alterations (restlessness, somnolence) and hyperglycemia at 3 and 24 hours after subcutaneous venom injection (0.5 LD50). The neutralizing capacity of Bioclón (México City) and Butantán (Sao Paulo) antivenoms (for a 50% effective dose) was 330 and 292 microg venom/ml antivenom, respectively. The Biotecnología (Caracas) antivenom did not neutralize the lethal effect of venom. By electrophoresis (SDS-PAGE) was demonstrated that the venom contains proteins from less than 14 kd to 97 kd. The Western blots indicated immunological reactivity of the three antivenoms with most of venom components, including proteins of low molecular mass (<14 kd). The results allow to conclude that T. pachyurus venom is neutralized efficiently by anti-scorpion antivenoms produced in México and Brasil.  相似文献   

8.
The parenteral administration of antivenoms is the cornerstone of snakebite envenoming therapy. Efforts are made to ensure that antivenoms of adequate efficacy and safety are available world-wide. We address the main issues to be considered for the development and manufacture of improved antivenoms. Those include: (a) A knowledge-based composition design of venom mixtures used for immunization, based on biochemical, immunological, toxicological, taxonomic, clinical and epidemiological data; (b) a careful selection and adequate management of animals used for immunization; (c) well-designed immunization protocols; (d) sound innovations in plasma fractionation protocols to improve recovery, tolerability and stability of antivenoms; (e) the use of recombinant toxins as immunogens to generate antivenoms and the synthesis of engineered antibodies to substitute for animal-derived antivenoms; (f) scientific studies of the contribution of existing manufacturing steps to the inactivation or removal of viruses and other zoonotic pathogens; (g) the introduction of novel quality control tests; (h) the development of in vitro assays in substitution of in vivo tests to assess antivenom potency; and (i) scientifically-sound pre-clinical and clinical assessments of antivenoms. These tasks demand cooperative efforts at all main stages of antivenom development and production, and need concerted international partnerships between key stakeholders.  相似文献   

9.
This article covers the application of proteomic tools ('venomics', 'antivenomics' and 'venom phenotyping') to study the composition and natural history of snake venoms, and the cross-reactivity of antivenoms with homologous and heterologous venoms, to help address the neglected pathology of snake bite envenoming. The identification of evolutionary and immunological trends may help to replace the traditional geographic- and phylogenetic-driven hypotheses for antivenom production strategies with a more rational approach based on proteome phenotype and immunological profile similarities. Antivenomics and venom phenotyping may also contribute to expand the clinical range of currently existing antidotes.  相似文献   

10.
Venomous snakebite is considered the single most important cause of human injury from venomous animals worldwide. Coagulopathy is one of the commonest important systemic clinical syndromes and can be complicated by serious and life-threatening haemorrhage. Venom-induced consumption coagulopathy (VICC) is the commonest coagulopathy resulting from snakebite and occurs in envenoming by Viperid snakes, certain elapids, including Australian elapids, and a few Colubrid (rear fang) snakes. Procoagulant toxins activate the clotting pathway, causing a broad range of factor deficiencies depending on the particular procoagulant toxin in the snake venom. Diagnosis and monitoring of coagulopathy is problematic, particularly in resource-poor countries where further research is required to develop more reliable, cheap clotting tests. MEDLINE and EMBASE up to September 2013 were searched to identify clinical studies of snake envenoming with VICC. The UniPort database was searched for coagulant snake toxins. Despite preclinical studies demonstrating antivenom binding toxins (efficacy), there was less evidence to support clinical effectiveness of antivenom for VICC. There were no placebo-controlled trials of antivenom for VICC. There were 25 randomised comparative trials of antivenom for VICC, which compared two different antivenoms (ten studies), three different antivenoms (four), two or three different doses or repeat doses of antivenom (five), heparin treatment and antivenom (five), and intravenous immunoglobulin treatment and antivenom (one). There were 13 studies that compared two groups in which there was no randomisation, including studies with historical controls. There have been numerous observational studies of antivenom in VICC but with no comparison group. Most of the controlled trials were small, did not use the same method for assessing coagulopathy, varied the dose of antivenom, and did not provide complete details of the study design (primary outcomes, randomisation, and allocation concealment). Non-randomised trials including comparison groups without antivenom showed that antivenom was effective for some snakes (e.g., Echis), but not others (e.g., Australasian elapids). Antivenom is the major treatment for VICC, but there is currently little high-quality evidence to support effectiveness. Antivenom is not risk free, and adverse reactions can be quite common and potentially severe. Studies of heparin did not demonstrate it improved outcomes in VICC. Fresh frozen plasma appeared to speed the recovery of coagulopathy and should be considered in bleeding patients.  相似文献   

11.
Ghazaryan  N.  Movsisyan  N.  Macedo  J. C.  Vaz  S.  Ayvazyan  N.  Pardo  L.  Logarinho  E. 《Molecular Biology》2021,55(3):405-412
Molecular Biology - Macrovipera lebetina obtusa (MLO) is a venomous snake endemic to Middle East. Here we describe the therapeutic potential of the MLO snake venom. In S-180 sarcoma-bearing mouse...  相似文献   

12.
Venoms of the redtail coral snake Micrurus mipartitus from Colombia and Costa Rica were analyzed by "venomics", a proteomic strategy to determine their composition. Proteins were separated by RP-HPLC, followed by SDS-PAGE, in-gel tryptic digestion, identification by MALDI or ESI tandem mass spectrometry, and assignment to known protein families by similarity. These analyses were complemented with a characterization of venom activities in vitro and in vivo. Proteins belonging to seven families were found in Colombian M. mipartitus venom, including abundant three-finger toxins (3FTx; ~60% of total proteins) and phospholipases A(2) (PLA(2); ~30%), with the remaining ~10% distributed among l-amino acid oxidase, P-III metalloproteinase, Kunitz-type inhibitor, serine proteinase, and C-type lectin-like families. The venoms of two M. mipartitus specimens from Costa Rica, also referred to as M. multifasciatus in some taxonomic classifications, were also analyzed. Both samples were highly similar to each other, and partially resembled the chromatographic and identity profiles of M. mipartitus from Colombia, although presenting a markedly higher proportion of 3FTxs (~83.0%) in relation to PLA(2)s (~8.2%), and a small amount of acetylcholinesterase, not detected in the venom from Colombia. An equine antivenom against the Central American coral snake, M. nigrocinctus, did not recognize venom components of M. mipartitus from Colombia or Costa Rica by enzyme-immunoassay. Four major components of Colombian M. mipartitus venom were isolated and partially characterized. Venomics of Micrurus species may provide a valuable platform for the rational design of immunizing cocktails to obtain polyspecific antivenoms for this highly diverse group of American elapids.  相似文献   

13.
The development of snake antivenoms more than a century ago should have heralded effective treatment of the scourge of snakebite envenoming in impoverished, mostly rural populations around the world. That snakebite still exists today, as a widely untreated illness that maims, kills and terrifies men, women and children in vulnerable communities, is a cruel anachronism. Antivenom can be an effective, safe and affordable treatment for snakebites, but apathy, inaction and the politicisation of public health have marginalised both the problem (making snakebite arguably the most neglected of all neglected tropical diseases) and its solution. For lack of any coordinated approach, provision of antivenoms has been pushed off the public health agenda, leading to an incongruous decline in demand for these crucial antidotes, excused and fed by new priorities, an absence of epidemiological data, and a poor regulatory framework. These factors facilitated the infiltration of poor quality products that degrade user confidence and undermine legitimate producers. The result is that tens of thousands are denied an essential life-saving medicine, allowing a toll of human suffering that is a summation of many individual catastrophes. No strategy has been developed to address this problem and to overcome the intransigence and inaction responsible for the global tragedy of snakebite. Attempts to engage with the broader public health community through the World Health Organisation (WHO), GAVI, and other agencies have failed. Consequently, the toxinology community has taken on a leadership role in a new approach, the Global Snakebite Initiative, which seeks to mobilise the resources, skills and experience of scientists and clinicians for whom venoms, toxins, antivenoms, snakes and snakebites are already fields of interest. Proteomics is one such discipline, which has embraced the potential of using venoms in bio-discovery and systems biology. The fields of venomics and antivenomics have recently evolved from this discipline, offering fresh hope for the victims of snakebites by providing an exciting insight into the complexities, nature, fundamental properties and significance of venom constituents. Such a rational approach brings with it the potential to design new immunising mixtures from which to raise potent antivenoms with wider therapeutic ranges. This addresses a major practical limitation in antivenom use recognised since the beginning of the 20th century: the restriction of therapeutic effectiveness to the specific venom immunogen used in production. Antivenomic techniques enable the interactions between venoms and antivenoms to be examined in detail, and if combined with functional assays of specific activity and followed up by clinical trials of effectiveness and safety, can be powerful tools with which to evaluate the suitability of current and new antivenoms for meeting urgent regional needs. We propose two mechanisms through which the Global Snakebite Initiative might seek to end the antivenom drought in Africa and Asia: first by establishing a multidisciplinary, multicentre, international collaboration to evaluate currently available antivenoms against the venoms of medically important snakes from specific nations in Africa and Asia using a combination of proteomic, antivenomic and WHO-endorsed preclinical assessment protocols, to provide a validated evidence base for either recommending or rejecting individual products; and secondly by bringing the power of proteomics to bear on the design of new immunising mixtures to raise Pan-African and Pan-Asian polyvalent antivenoms of improved potency and quality. These products will be subject to rigorous clinical assessment. We propose radically to change the basis upon which antivenoms are produced and supplied for the developing world. Donor funding and strategic public health alliances will be sought to make it possible not only to sustain the financial viability of antivenom production partnerships, but also to ensure that patients are relieved of the costs of antivenom so that poverty is no longer a barrier to the treatment of this important, but grossly neglected public health emergency.  相似文献   

14.
In Latin America, Bothrops snakes account for most snake bites in humans, and the recommended treatment is administration of multispecific Bothrops antivenom (SAB – soro antibotrópico). However, Bothrops snakes are very diverse with regard to their venom composition, which raises the issue of which venoms should be used as immunizing antigens for the production of pan-specific Bothrops antivenoms. In this study, we simultaneously compared the composition and reactivity with SAB of venoms collected from six species of snakes, distributed in pairs from three distinct phylogenetic clades: Bothrops, Bothropoides and Rhinocerophis. We also evaluated the neutralization of Bothrops atrox venom, which is the species responsible for most snake bites in the Amazon region, but not included in the immunization antigen mixture used to produce SAB. Using mass spectrometric and chromatographic approaches, we observed a lack of similarity in protein composition between the venoms from closely related snakes and a high similarity between the venoms of phylogenetically more distant snakes, suggesting little connection between taxonomic position and venom composition. P-III snake venom metalloproteinases (SVMPs) are the most antigenic toxins in the venoms of snakes from the Bothrops complex, whereas class P-I SVMPs, snake venom serine proteinases and phospholipases A2 reacted with antibodies in lower levels. Low molecular size toxins, such as disintegrins and bradykinin-potentiating peptides, were poorly antigenic. Toxins from the same protein family showed antigenic cross-reactivity among venoms from different species; SAB was efficient in neutralizing the B. atrox venom major toxins. Thus, we suggest that it is possible to obtain pan-specific effective antivenoms for Bothrops envenomations through immunization with venoms from only a few species of snakes, if these venoms contain protein classes that are representative of all species to which the antivenom is targeted.  相似文献   

15.
BackgroundSnakebite is a neglected tropical disease that causes high global rates of mortality and morbidity. Although snakebite can cause a variety of pathologies in victims, haemotoxic effects are particularly common and are typically characterised by haemorrhage and/or venom-induced consumption coagulopathy. Antivenoms are the mainstay therapeutic for treating the toxic effects of snakebite, but despite saving thousands of lives annually, these therapies are associated with limited cross-snake species efficacy due to venom variation, which ultimately restricts their therapeutic utility to particular geographical regions.Methodology/Principal findingsIn this study we explored the feasibility of generating globally effective pathology-specific antivenoms to counteract the haemotoxic signs of snakebite envenoming. Two different immunogen mixtures, consisting of seven and twelve haemotoxic venoms sourced from geographically diverse and/or medically important snakes, were used to raise ovine polyclonal antibodies, prior to characterisation of their immunological binding characteristics and in vitro neutralisation profiles against each of the venoms. Despite variability of the immunogen mixtures, both experimental antivenoms exhibited broadly comparable in vitro venom binding and neutralisation profiles against the individual venom immunogens in immunological and functional assays. However, in vivo assessments using a murine preclinical model of antivenom efficacy revealed substantial differences in venom neutralisation. The experimental antivenom generated from the seven venom immunogen mixture outperformed the comparator, by providing protective effects against venom lethality caused by seven of the eight geographically diverse venoms tested, including three distinct venoms that were not used as immunogens to generate this antivenom. These findings suggest that a core set of venom immunogens may be sufficient to stimulate antibodies capable of broadly neutralising a geographically diverse array of haemotoxic snake venoms, and that adding additional venom immunogens may impact negatively on the dose efficacy of the resulting antivenom.Conclusions/SignificanceAlthough selection of appropriate immunogens that encapsulate venom toxin diversity without diluting antivenom potency remains challenging and further optimisation is required, the findings from this pilot study suggest that the generation of pathology-specific antivenoms with global utility is likely to feasible, thereby highlighting their promise as future modular treatments for the world’s tropical snakebite victims.  相似文献   

16.
Integrins are essential protagonists in the complex multistep process of cancer progression and metastasis. We recently reported that lebectin, a novel C-type lectin from Macrovipera lebetina venom, displays an anti-integrin activity. In this study, we extend this observation to lebecetin, a second C-type lectin isolated from the same venom and previously reported as a potent inhibitor of platelet aggregation. Both venom lectins appear to exert their effect on cell adhesion, migration, invasion and proliferation by inhibiting alpha5beta1 and alphav-containing integrins. Moreover, the inhibition of alpha5beta1 and alphav integrins is likely due to the binding of venom peptides, as both lebectin and lebecetin co-immunoprecipitate with these integrins. Lebectin and lebecetin are thus the first examples of venom C-type lectins inhibiting an integrin other than the collagen receptor alpha2beta1.  相似文献   

17.
Bites and envenoming by the carpet viper Echis carinatus are common medical emergencies in parts of Nigeria, but the most effective use of the various commercially produced antivenoms in treatment has not been established. Pasteur Paris Echis monospecific and Behringwerke West and North Africa Bitis-Echis-Naja polyspecific antivenoms were compared in two groups of seven patients with incoagulable blood after E carinatus bites. In both groups spontaneous bleeding stopped within a few hours and local swelling subsided within two weeks after the initial antivenom injection. Pasteur antivenom (20-40 ml) restored blood coagulability within 12 hours in all cases, but 60--180 ml of Behringwerke antivenom was effective in only four cases. Persisting venom procoagulant activity was observed in the remaining three cases. Despite its potency in the mouse protection test, Behringwerke antivenom is unreliable and unpredictable in neutralising venom procoagulant in humans bitten by E carinatus.  相似文献   

18.
Proteomic analysis of wound exudates represents a valuable tool to investigate tissue pathology and to assess the therapeutic success of various interventions. In this study, the ability of horse-derived IgG and F(ab')(2) antivenoms to neutralize local pathological effects induced by the venom of the snake Bothrops asper in mouse muscle was investigated by the proteomic analysis of exudates collected in the vicinity of affected tissue. In experiments involving the incubation of venom and antivenom prior to injection in mice, hemorrhagic activity was completely abolished and local muscle-damaging activity was significantly reduced by the antivenoms. In these conditions, the relative amounts of several intracellular and extracellular matrix proteins were reduced by the action of antivenoms, whereas the relative amounts of various plasma proteins were not modified. Because not all intracellular proteins were reduced, it is likely that there is a residual cytotoxicity not neutralized by antivenoms. In experiments designed to more closely reproduce the actual circumstances of envenoming, that is, when antivenom is administered after envenomation, the number of proteins whose amounts in exudates were reduced by antivenoms decreased, underscoring the difficulty in neutralizing local pathology due to the very rapid onset of venom-induced pathology. In these experiments, IgG antivenom was more efficient than F(ab')(2) antivenom when administered after envenomation, probably as a consequence of differences in their pharmacokinetic profiles.  相似文献   

19.
Here, we report the purification and characterization of an acidic Asp49 phospholipase A2, named MVL-PLA2, with a molecular mass of 13,626.64 Da. The complete MVL-PLA2 cDNA was cloned from Macrovipera lebetina transmediterranea venom gland cDNA library. MVL-PLA2 possesses 122 amino acid residues, including 14 cysteines, and belongs to group II snake venom phospholipase A2 enzymes. MVL-PLA2 was not cytotoxic up to 2 μM and completely abolished cell adhesion and migration of various human tumor cells. Chemical modification with p-bromophenacyl bromide abolished the enzymatic activity of MVL-PLA2 without affecting its anti-tumor effect, suggesting the presence of ‘pharmacological sites’ distinct from the catalytic site in snake venom phospholipase A2. We demonstrated for the first time that the anti-tumor effect of MVL-PLA2 was mediated by α5β1 and αv-containing integrins. This finding may serve as starting point for structure–function relationship studies leading to design a new generation of specific anti-cancer drugs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号