首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Genomics》2021,113(4):2122-2133
This study aimed to investigate the function of OCT3/4 on tumor immune escape in bladder cancer. Initially, the expression of OCT3/4, TET1, NRF2 and MDM2 was quantified in tumor tissues and cells, followed by gain- or loss-of-function studies to define their roles in cell migration, invasion and apoptosis and tumorigenicity in nude mice. Bladder cancer presented with abundant expression levels of OCT3/4, TET1, NRF2 and MDM2. We found that OCT3/4 promoted TET1 expression via binding to its promoter and that TET1 recruited MLL protein to NRF2 promoter and upregulated its expression, while NRF2 enhanced MDM2 expression. Upregulated MDM2 accelerated tumor immune escape in bladder cancer in mice. OCT3/4 knockdown suppressed the cell migration and invasion while inducing apoptosis, and consequently prevented tumor growth and immune escape in mice. Collectively, OCT3/4 may promote the progression of tumor immune escape in bladder cancer through acting as a promoter of the TET1/NRF2/MDM2 axis.  相似文献   

2.
We previously reported that bone morphogenetic protein (BMP) signaling promotes tumorigenesis in gynecologic cancer cells. BMP2 enhances proliferation of ovarian and endometrial cancer cells via c-KIT induction, and triggers epithelial-mesenchymal transition (EMT) by SNAIL and/or SLUG induction, leading to increased cell migration. However, the downstream effectors of BMP signaling in gynecological cancer cells have not been clearly elucidated. In this study, we performed RNA-sequencing of Ishikawa endometrial and SKOV3 ovarian cancer cells after BMP2 stimulation, and identified TNFRSF12A, encoding fibroblast growth factor-inducible 14 (FN14) as a common BMP2-induced gene. FN14 knockdown suppressed BMP2-induced cell proliferation and migration, confirmed by MTS and scratch assays, respectively. In addition, FN14 silencing augmented chemosensitivity of SKOV3 cells. As a downstream effector of BMP signaling, FN14 modulated both c-KIT and SNAIL expression, which are important for growth and migration of ovarian and endometrial cancer cells. These results support the notion that the tumor promoting effects of BMP signaling in gynecological cancers are partially attributed to FN14 induction.  相似文献   

3.
4.
5.
In HER2-overexpressing mammary epithelial cells, transforming growth factor β (TGF-β) activated phosphatidylinositol-3 kinase (PI3K)/Akt and enhanced survival and migration. Treatment with TGF-β or expression of an activated TGF-β type I receptor (Alk5 with the mutation T204D [Alk5T204D]) induced phosphorylation of TACE/ADAM17 and its translocation to the cell surface, resulting in increased secretion of TGF-α, amphiregulin, and heregulin. In turn, these ligands enhanced the association of p85 with ErbB3 and activated PI3K/Akt. RNA interference of TACE or ErbB3 prevented TGF-β-induced activation of Akt and cell invasiveness. Treatment with TGF-β or expression of Alk5T204D in HER2-overexpressing cells reduced their sensitivity to the HER2 antibody trastuzumab. Inhibition of Alk5, PI3K, TACE, or ErbB3 restored sensitivity to trastuzumab. A gene signature induced by Alk5T204D expression correlated with poor clinical outcomes in patients with invasive breast cancer. These results suggest that by acting on ErbB ligand shedding, an excess of TGF-β may result in (i) conditioning of the tumor microenvironment with growth factors that can engage adjacent stromal and endothelial cells; (ii) potentiation of signaling downstream ErbB receptors, thus contributing to tumor progression and resistance to anti-HER2 therapies; and (iii) poor clinical outcomes in women with breast cancer.  相似文献   

6.
7.
8.
Resistance to fluoropyrimidine-based chemotherapy is the main reason for the failure of cancer treatment, and drug resistance is associated with an inability of tumor cells to undergo apoptosis in response to treatment. Alterations in the expression of epithelial cell adhesion molecule (EpCAM) affect the sensitivity or resistance of tumor cells to anticancer treatment and the activity of intracellular signaling pathways. However, the role of EpCAM in the induction of apoptosis in breast cancer cells remains unclear. Here, we investigated the effect of EpCAM gene knockdown on chemosensitivity to 5-fluorouracil (5-FU) in MCF-7 cells and explored the underlying mechanisms. Our results showed that knockdown of EpCAM promoted apoptosis, inhibited cell proliferation and caused cell-cycle arrest. EpCAM knockdown enhanced the cytotoxic effect of 5-FU, promoting apoptosis by downregulating the expression of the anti-apoptotic protein Bcl-2 and upregulating the expression of the pro-apoptotic proteins Bax, and caspase3 via the ERK1/2 and JNK MAPK signaling pathways in MCF-7 cells. These results indicate that knockdown of EpCAM may have a tumor suppressor effect and suggest EpCAM as a potential target for the treatment of breast cancer.  相似文献   

9.
Signet-ring cell carcinoma is one of the most malignant tumors, classified histologically as a poorly differentiated adenocarcinoma. The ErbB2/ErbB3 complex is often constitutively activated, which suggests that the ErbB2/ErbB3 signaling pathway may be important for malignancy of this tumor. However, the mechanism underlying this activation has not been understood. Here, we show that ErbB2 and Muc4 bind in signet ring carcinoma cells, which was not seen in highly differentiated adenocarcinoma cell lines. ErbB3 was suggested to be a substrate of ErbB2 because knockdown of ErbB2 resulted in less phosphorylation of ErbB3. Inhibition of expression of Muc4 at the cell surface by the treatment of the cells with benzyl-GalNac, an inhibitor of mucin secretion, blocked phosphorylation of ErbB3, suggesting that activity of ErbB2 depends on the expression of Muc4. These results supply the biochemical backgrounds in recent studies suggesting the contribution of Muc4 in the tumorigenesis.  相似文献   

10.
Xie H  Lin L  Tong L  Jiang Y  Zheng M  Chen Z  Jiang X  Zhang X  Ren X  Qu W  Yang Y  Wan H  Chen Y  Zuo J  Jiang H  Geng M  Ding J 《PloS one》2011,6(7):e21487
Despite the initial response to the reversible, ATP-competitive quinazoline inhibitors that target ErbB-family, such a subset of cancer patients almost invariably develop resistance. Recent studies have provided compelling evidence that irreversible ErbB inhibitors have the potential to override this resistance. Here, we found that AST1306, a novel anilino-quinazoline compound, inhibited the enzymatic activities of wild-type epidermal growth factor receptor (EGFR) and ErbB2 as well as EGFR resistant mutant in both cell-free and cell-based systems. Importantly, AST1306 functions as an irreversible inhibitor, most likely through covalent interaction with Cys797 and Cys805 in the catalytic domains of EGFR and ErbB2, respectively. Further studies showed that AST1306 inactivated pathways downstream of these receptors and thereby inhibited the proliferation of a panel of cancer cell lines. Although the activities of EGFR and ErbB2 were similarly sensitive to AST1306, ErbB2-overexpressing cell lines consistently exhibited more sensitivity to AST1306 antiproliferative effects. Consistent with this, knockdown of ErbB2, but not EGFR, decreased the sensitivity of SK-OV-3 cells to AST1306. In vivo, AST1306 potently suppressed tumor growth in ErbB2-overexpressing adenocarcinoma xenograft and FVB-2/N(neu) transgenic breast cancer mouse models, but weakly inhibited the growth of EGFR-overexpressing tumor xenografts. Tumor growth inhibition induced by a single dose of AST1306 in the SK-OV-3 xenograft model was accompanied by a rapid (within 2 h) and sustained (≥24 h) inhibition of both EGFR and ErbB2, consistent with an irreversible inhibition mechanism. Taken together, these results establish AST1306 as a selective, irreversible ErbB2 and EGFR inhibitor whose growth-inhibitory effects are more potent in ErbB2-overexpressing cells.  相似文献   

11.
We set out to study the key effectors of resistance and sensitivity to ErbB2 tyrosine kinase inhibitors, such as lapatinib in ErbB2-positive breast and lung cancers. A cell-based in vitro site-directed mutagenesis lapatinib resistance model identified several mutations, including the gatekeeper ErbB2 mutation ErbB2-T798I, as mediating resistance. ErbB2-T798I engineered cell models indeed show resistance to lapatinib but remain sensitive to the irreversible EGFR/ErbB2 inhibitor, PD168393, suggestive of potential alternative treatment strategies to overcome resistance. Gene expression profiling studies identified a select group of downstream targets regulated by ErbB2 signaling and define PHLDA1 as an immediately downregulated gene upon oncogenic ErbB2 signaling inhibition. We find significant down-regulation of PHLDA1 in primary breast cancer and PHLDA1 is statistically significantly less expressed in ErbB2 negative compared with ErbB2 positive tumors consistent with its regulation by ErbB2. Lastly, PHLDA1 overexpression blocks AKT signaling, inhibits cell growth and enhances lapatinib sensitivity further supporting an important negative growth regulator function. Our findings suggest that PHLDA1 might have key inhibitory functions in ErbB2 driven lung and breast cancer cells and a better understanding of its functions might point at novel therapeutic options. In summary, our studies define novel ways of modulating sensitivity and resistance to ErbB2 inhibition in ErbB2-dependent cancers.  相似文献   

12.

Background

ErbB2 Receptor Tyrosine Kinase 2 (ErbB2, HER2/Neu) is amplified in breast cancer and associated with poor prognosis. Growing evidence suggests interplay between ErbB2 and insulin-like growth factor (IGF) signaling. For example, ErbB2 inhibitors can block IGF-induced signaling while, conversely, IGF1R inhibitors can inhibit ErbB2 action. ErbB receptors can bind and phosphorylate insulin receptor substrates (IRS) and this may be critical for ErbB-mediated anti-estrogen resistance in breast cancer. Herein, we examined crosstalk between ErbB2 and IRSs using cancer cell lines and transgenic mouse models.

Methods

MMTV-ErbB2 and MMTV-IRS2 transgenic mice were crossed to create hemizygous MMTV-ErbB2/MMTV-IRS2 bigenic mice. Signaling crosstalk between ErbB2 and IRSs was examined in vitro by knockdown or overexpression followed by western blot analysis for downstream signaling intermediates and growth assays.

Results

A cross between MMTV-ErbB2 and MMTV-IRS2 mice demonstrated no enhancement of ErbB2 mediated mammary tumorigenesis or metastasis by elevated IRS2. Substantiating this, overexpression or knockdown of IRS1 or IRS2 in MMTV-ErbB2 mammary cancer cell lines had little effect upon ErbB2 signaling. Similar results were obtained in human mammary epithelial cells (MCF10A) and breast cancer cell lines.

Conclusion

Despite previous evidence suggesting that ErbB receptors can bind and activate IRSs, our findings indicate that ErbB2 does not cooperate with the IRS pathway in these models to promote mammary tumorigenesis.
  相似文献   

13.
14.
Ovarian cancer is the most lethal gynecologic cancer mainly due to spheroids organization of cancer cells that disseminate within the peritoneal cavity. We have investigated the molecular mechanisms by which ovarian cancer spheroids resist anoikis, choosing as models the 2 well-characterized human ovarian cancer cell lines IGROV1 and SKOV3. These cell lines have the propensity to float as clusters, and were isolated from tumor tissue and ascites, respectively. To form spheroids, IGROV1 and SKOV3 ovarian adenocarcinoma cells were maintained under anchorage-independent culture conditions, in which both lines survive at least a week. A short apoptotic period prior to a survival signaling commitment was observed for IGROV1 cells whereas SKOV3 cells entered G0/G1 phase of the cell cycle. This difference in behavior was due to different signals. With regard to SKOV3 cells, activation of p38 and an increase in p130/Rb occurred once anchorage-independent culture was established. Analyses of the survival signaling pathway switched on by IGROV1 cells showed that activation of ERK1/2 was required to evade apoptosis, an effect partly dependent on PKC activation and αv integrins. αv-integrin expression is essential for survival through activation of ERK1/2 phosphorylation.  相似文献   

15.

Background

Metastasis is an important step in tumor progression leading to a disseminated and often incurable disease. First steps of metastasis include down-regulation of cell adhesion molecules, alteration of cell polarity and reorganization of cytoskeleton, modifications associated with enhanced migratory properties and resistance of tumor cells to anoikis. Such modifications resemble Epithelial to Mesenchymal Transition (EMT). In breast cancer CD146 expression is associated with poor prognosis and enhanced motility.

Methodology/Principal Findings

On 4 different human breast cancer cell lines, we modified CD146 expression either with shRNA technology in CD146 positive cells or with stable transfection of CD146 in negative cells. Modifications in morphology, growth and migration were evaluated. Using Q-RT-PCR, we analyzed the expression of different EMT markers. We demonstrate that high levels of CD146 are associated with loss of cell-cell contacts, expression of EMT markers, increased cell motility and increased resistance to doxorubicin or docetaxel. Experimental modulation of CD146 expression induces changes consistent with the above described characteristics: morphology, motility, growth in anchorage independent conditions and Slug mRNA variations are strictly correlated with CD146 expression. These changes are associated with modifications of ER (estrogen receptor) and Erb receptors and are enhanced by simultaneous and opposite modulation of JAM-A, or exposure to heregulin, an erb-B4 ligand.

Conclusions

CD146 expression is associated with an EMT phenotype. Several molecules are affected by CD146 expression: direct or indirect signaling contributes to EMT by increasing Slug expression. CD146 may also interact with Erb signaling by modifying cell surface expression of ErbB3 and ErbB4 and increased resistance to chemotherapy. Antagonistic effects of JAM-A, a tight junction-associated protein, on CD146 promigratory effects underline the complexity of the adhesion molecules network in tumor cell migration and metastasis.  相似文献   

16.
17.
18.
19.
20.
摘要 目的:探讨狐猴酪氨酸激酶2(LMTK2)基因沉默对人上皮性卵巢癌(EOC)细胞生长和转移的抑制作用及其可能的机制。方法:通过RT-qPCR和Western-blot检测了人正常卵巢上皮细胞IOSE80和人上皮性卵巢癌细胞系(SKOV3、ES2、OVCAR-3和HEY)中LMTK2的表达,使用Lipofectamine 3000转染试剂将LMTK2的短发夹RNA(shRNA)、阴性对照shRNA、LMTK2过表达重组pcDNA3.1质粒或阴性对照质粒转染到SKOV3细胞中,并分为LMTK2-shRNA组、NC-shRNA组、LMTK2-pcDNA3.1组或NC-pcDNA3.1组。另外,使用PI3K/Akt抑制剂LY294002处理SKOV3细胞1 h。通过CCK-8法测定细胞增殖,Annexin V-FITC/PI染色法测定细胞凋亡,划痕实验评价细胞迁移,Transwell实验评价细胞侵袭。对BALB/c雌性裸鼠皮下注射转染NC-shRNA或LMTK2-shRNA的SKOV3细胞建立体内移植瘤模型,并记录接种28 d内的肿瘤体积。结果:与人正常卵巢上皮细胞IOSE80相比,卵巢癌细胞系(SKOV3、ES2、OVCAR-3和HEY)中LMTK2的mRNA和蛋白表达水平均显著升高,其中SKOV3的LMTK2 mRNA和蛋白表达水平最高(P<0.05)。与NC-shRNA组相比,LMTK2-shRNA组SKOV3细胞活力、相对迁移面积、侵袭细胞数均显著降低,而细胞凋亡率显著升高(P<0.05)。此外,与NC-shRNA组相比,LMTK2-shRNA组SKOV3细胞中Bax的蛋白表达水平显著升高,而Bcl-2、MMP2、MMP9、p-Akt的蛋白表达水平显著降低(P<0.05)。LY294002处理逆转了上调LMTK2对SKOV3细胞生长和转移的影响(P<0.05)。在接种第21天和28天时,与NC-shRNA组相比,LMTK2-shRNA组裸鼠的肿瘤体积显著降低(P<0.05)。结论:LMTK2基因沉默通过抑制PI3K/Akt信号通路降低了人上皮性卵巢癌细胞的生长和转移能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号