首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Protein phosphatase-1 and 2A, accounting for all the hepatic activity regulating phosphorylase, were assayed in streptozotocin-induced (8 weeks) diabetic Wistar rats. Cytosolic protein phosphatase-1 and 2A were distinguished by chromatography on heparin-Sepharose and by inhibition with inhibitor-2. Approx. 25-35% increases in type-1 phosphorylase phosphatase activity measured in cytosols were registered in diabetic rats when compared with control and 24 h fasting animals. The enrichment of protein phosphatase-1 in the cytosol of streptozotocin-treated rat livers could not be attributed to the reduced glycogen content with the onset of diabetes, since this elevated level of type-1 phosphatase was not observed in fasting rats with low glycogen content. The translocation of type-1 phosphatase from the particulate fraction into the cytosol was also recorded in trypsin-treated samples of diabetic rat livers. The apparent molecular weight of type-1 phosphatase in the cytosol of control and fasted rats was 160,000 as judged by gel filtration. The type-1 phosphatase activity that was released from the particulate fraction by streptozotocin-induced diabetes identified a further enzyme species (Mr 110,000) in the cytosol. Our data imply that the higher levels of cytosolic protein phosphatase-1 in diabetic rat liver could be a consequence of the dissociation of the catalytic subunit of protein phosphatase-1 and the glycogen-binding subunit in rat livers.  相似文献   

2.

Background

Insulin resistance and early type-2 diabetes are highly prevalent. However, it is unknown whether Intralipid® and sevoflurane protect the early diabetic heart against ischemia-reperfusion injury.

Methods

Early type-2 diabetic hearts from Sprague-Dawley rats fed for 6 weeks with fructose were exposed to 15 min of ischemia and 30 min of reperfusion. Intralipid® (1%) was administered at the onset of reperfusion. Peri-ischemic sevoflurane (2 vol.-%) served as alternative protection strategy. Recovery of left ventricular function was recorded and the activation of Akt and ERK 1/2 was monitored. Mitochondrial function was assessed by high-resolution respirometry and mitochondrial ROS production was measured by Amplex Red and aconitase activity assays. Acylcarnitine tissue content was measured and concentration-response curves of complex IV inhibition by palmitoylcarnitine were obtained.

Results

Intralipid® did not exert protection in early diabetic hearts, while sevoflurane improved functional recovery. Sevoflurane protection was abolished by concomitant administration of the ROS scavenger N-2-mercaptopropionyl glycine. Sevoflurane, but not Intralipid® produced protective ROS during reperfusion, which activated Akt. Intralipid® failed to inhibit respiratory complex IV, while sevoflurane inhibited complex I. Early diabetic hearts exhibited reduced carnitine-palmitoyl-transferase-1 activity, but palmitoylcarnitine could not rescue protection and enhance postischemic functional recovery. Cardiac mitochondria from early diabetic rats exhibited an increased content of subunit IV-2 of respiratory complex IV and of uncoupling protein-3.

Conclusions

Early type-2 diabetic hearts lose complex IV-mediated protection by Intralipid® potentially due to a switch in complex IV subunit expression and increased mitochondrial uncoupling, but are amenable to complex I-mediated sevoflurane protection.  相似文献   

3.
High fat diet feeding results in hyperglycemia and insulin resistance, which is a major pathological feature of type-2 diabetes mellitus. The use of oral hypoglycaemic drugs is limited due to its deleterious side effects and there is a need to find more efficacious agents for diabetes management. Hence, it is of interest to show the mechanism of action of β-Caryophyllene on insulin signalling molecules in gastrocnemius muscle of high fat diet - induced type-2 diabetic rats. An oral effective dose of with β-Caryophyllene (200 mg/kg b.wt) was given for 30 days to high fat diet (comprising 2% cholesterol, 1% cholic acid, 30% coconut oil, 67% conventional rat feed) and fructose fed type-2 diabetic rats to find out whether β-Caryophyllene regulates IRS-1/Akt pathway of insulin signalling. The data shows that, β-Caryophyllene treatment significantly increased the mRNA and protein expression of insulin receptor (IR) in diabetic rats whereas there is no significant difference in mRNA expression of insulin receptor-substrate-1 (IRS-1) was observed among groups. The Akt mRNAand GLUT-4mRNA and protein level were also improved in gastrocnemius muscle of type-2 diabetic rats. Thus, we concluded that β-Caryophyllene could be used as potential phyto medicine for type-2 diabetes management.  相似文献   

4.
Hyperglycemia causes protein glycosylation, oxidation and alterations in enzyme activities, which are the underlying causes of diabetic complications. This study was undertaken to test the role of vitamin E treatment on Ca2+-ATPase activity, protein glycosylation and lipid peroxidation in the brain of streptozotocin (STZ)-induced diabetic rats. Male rats weighing about 250-300 g were rendered diabetic by a single STZ injection of 50 mg/kg via the tail vein. Both the diabetic and non-diabetic rats were fed a vitamin E supplemented diet (500 IU/kg/day). Ca2+-ATPase activity was significantly reduced at week 10 of diabetes compared to the control group (p < 0.05), with 0.225+/-0.021 U/I (mean +/- S.E.M.) in the control group and 0.072 +/- 0.008 U/l (mean +/- S.E.M.) in the diabetic group. Vitamin E treatment prevented the enzyme activity from decreasing. The activities observed were 0.226 +/- 0.020 U/l and 0.172 +/- 0.011 U/I (mean +/- S.E.M.) in the vitamin E-treated control and diabetic group, respectively. STZ-induced diabetes resulted in an increased protein glycosylation and lipid peroxidation. Vitamin E treatment led to a significant inhibition in blood glucose, protein glycosylation and lipid peroxidation, which in turn prevented abnormal activity of the enzyme in the brain. This study indicates that vitamin E supplementation may reduce complications of diabetes in the brain.  相似文献   

5.
HY Xue  YN Lu  XM Fang  YP Xu  GZ Gao  LJ Jin 《Molecular biology reports》2012,39(10):9311-9318
In this study, we determined the neuroprotective effect of aucubin on diabetes and diabetic encephalopathy. With the exception of the control group, all rats received intraperitoneal injections of streptozotocin (STZ; 60?mg/kg) to induce type 1 diabetes mellitus (DM). Aucubin (1, 5, 10?mg/kg ip) was used after induction of DM (immediately) and diabetic encephalopathy (65?days after the induction of diabetes). The diabetic encephalopathy treatment groups were divided into short-term and long-term treatment groups. Treatment responses to all parameters were examined (body weight, plasma glucose, Y-maze error rates and proportion of apoptotic cells). In diabetic rats, aucubin controlled blood glucose levels effectively, prevented complications, and improved the quality of life of diabetic rats. In diabetic encephalopathy, aucubin significantly rescued neurons in the hippocampal CA1 subfield and reduced working errors during behavioral testing. The significant neuroprotective effect of aucubin could be seen not only in the short term (15?days) but also in the long term (45?days), which was a highly encouraging finding. These data suggest that aucubin may be a potential neuroprotective agent.  相似文献   

6.
In diabetes mellitus (DM) and its complications the functional activity of hormonal signaling systems and their sensitivity to the regulatory action of hormones are changed. We studied the activity of receptor forms of guanylyl cyclase (rGC) sensitive to natriuretic peptides ANP and CNP in the tissues of female rats with 240 day neonatal streptozotocin DM and the effects of intranasal administration of insulin and serotonin (6 weeks, daily dose for rat is 0.48 IU insulin or 20 μg serotonin). In diabetic rats, the increase of the basal rGC activity in the myocardium and its decrease in the uterus and ovaries were found, while in the brain, there were no differences from the control. The treatment of diabetic rats with insulin led to a decrease of the basal rGC activity in the myocardium and its restoration to a normal level in the ovaries. The administration of serotonin produced a less pronounced decrease in the basal enzyme activity in the myocardium compared to insulin and an insignificant increase in the brain. In the myocardium of diabetic rats, the guanylyl cyclase (GC)-stimulating effect of ANP was attenuated, whereas the CNP effect was enhanced; in the ovaries, the GC-stimulating effect of CNP and, to a lesser degree, the effect of ANP were decreased. In the uterus and brain of a diabetic rats, the rGC sensitivity to hormones was practically did not change. The administration of insulin to diabetic rats induces an increase of GC effect of ANP in the myocardium to its values in control and a decrease of CNP effect, as well as partially restored GC effect of CNP in the ovaries under the influence of CNP. The administration of serotonin somewhat enhanced effect of natriuretic peptides in the brain of both control and diabetic animals. Thus, in the neonatal model of type-2 DM in the myocardium and the tissues of the reproductive systems of rats, the functioning of natriuretic peptide-sensitive rGC is changed. The treatment of animals by insulin substantially restores rGC activity, while the intranasal serotonin administration has a little effect.  相似文献   

7.
Diabetes affects a variety of tissues including the central nervous system; moreover, some evidence indicates that memory and learning processes are disrupted. Also, oxidative stress triggers alterations in different tissues including the brain. Recent studies indicate mitochondria dysfunction is a pivotal factor for neuron damage. Therefore, we studied mitochondrial activity in three brain regions at early type I—diabetes induction. Isolated mitochondria from normal hippocampus, cortex and cerebellum revealed different rates of oxygen consumption, but similar respiratory controls. Oxygen consumption in basal state 4 significantly increased in the mitochondria from all three brain regions from diabetic rats. No relevant differences were observed in the activity of respiratory complexes, but hippocampal mitochondrial membrane potential was reduced. However, ATP content, mitochondrial cytochrome c, and protein levels of β-tubulin III, synaptophysin, and glutamine synthase were similar in brain regions from normal and diabetic rats. In addition, no differences in total glutathione levels were observed between normal and diabetic rat brain regions. Our results indicated that different regions of the brain have specific metabolic responses. The changes in mitochondrial activity we observed at early diabetes induction did not appear to cause metabolic alterations, but they might appear at later stages. Longer-term streptozotocin treatment studies must be done to elucidate the impact of hyperglycemia in brain metabolism and the function of specific brain regions.  相似文献   

8.
The effect of oral administration of sodium orthovanadate (SOV) and Trigonella foenum graecum seed powder (TSP), a medicinal plant used extensively in Asia, on the mitochondrial metabolism in the alloxan diabetic rats has been investigated. Rats were injected with alloxan monohydrate (20 mg/100 g body wt) or vehicle (Na-acetate buffer), the former were treated with either 2 IU insulin i.p., 0.6 mg/ml SOV ad libitum, 5% TSP ad libitum, and a combination of 0.2% SOV and 5% TSP ad libitum for 21 days. Selected rate-limiting enzymes of the tricarboxylic acid cycle, hydrogen shuttle system, ketone body metabolism, amino acid metabolism and urea cycle were measured in the mitochondrial and cytosolic fractions of liver, kidney and brain tissues of the experimental rats. Majority of the mitochondrial enzymes in the tissues of the diabetic rats had significantly higher activities compared to the control rats. Similarly, the activities of mitochondrial and cytosolic aminotransferases and arginase were significantly higher in liver and kidney tissues of the diabetic rats. The separate administrations of SOV and TSP to diabetic rats were able to restore the activities of these enzymes to control values. The lower dose of SOV (0.2%) administered in combination with TSP to diabetic rats lowered the enzyme activities more significantly than when given in a higher dose (0.6%) separately. This is the first report of the effective combined action of oral SOV and TSP in ameliorating the altered mitochondrial enzyme activities during experimental type-1 diabetes. Our novel combined oral administration of SOV and TSP to diabetic rats thus conclusively proves as a possible method to minimize potential vanadate toxicity without compromising its positive effects in the therapy of experimental type-1 diabetes.  相似文献   

9.
The prevalence of type-2 diabetes is rapidly increasing. Currently, exenatide is the first medicine which mimics incretin. However, it requires subcutaneous injection twice a day, an inconvenient way for patients. In this study, we identified a novel peptide with similar pharmacology to exenatide in rodents as GLP-1 receptor agonist which consists of 17 amino acids (17P). It promotes Ins-1 cell proliferation and insulin secretion and lowers blood glucose of diabetic rats. 17P was synthetized by solid-phase peptide synthesis. Interactions between GLP-1 receptor and 17P were studied by Bio-layer interferometry. Ins-1 cell proliferation was studied by MTT assay. ELISA was used to study Ins-1 cell insulin secretion. In vivo tests were performed with male Wistar rats. We used high fat diet and STZ injection to induce a type-2 diabetic rats model. Then, those rats were randomized to different test groups, and administered exenatide, 17P and saline water injection, to evaluate different responses. Based on HPLC (high performance liquid chromatography) and MS (mass spectrometry), 17P synthesis was successful. Bio-layer interferometry data showed a close interaction between GLP-1 receptor and 17P. 17P treatment of Ins-1 cells for 24 h could promote cell proliferation and insulin secretion in a dose-dependent manner. Administration of 17P in HF-STZ male Wistar rats demonstrated that 17P could lower the level of blood glucose and stabilize the body weight of the diabetic rats. All 17P treatments were similar to treatment with exenatide. In vitro and in vivo studies demonstrated that 17P could relieve symptoms of type-2 diabetes. Therefore, 17P could be developed as a promising type-2 diabetes therapeutic drug.  相似文献   

10.
Changes in the protein levels and activity of Ca2+/Calmodulin dependent protein kinase II (CaM kinase II) level were studied in cytosolic and particulate fractions from cerebral hemisphere, cerebellum, brain stem, thalamus and hypothalamus regions of rat brain after 4 and 12 weeks of induction of diabetes. Streptozotocin induced diabetes, resulted in pronounced increase of CaM kinase II activity as determined by the kinase activity assay. The total amount of enzyme protein (alpha-subunit specific) also showed increase as revealed by western blotting. Parallel studies were also made in age matched control rats and insulin treated diabetic rats. The increase in CaM kinase II activity was more pronounced in the 12 weeks diabetic group. Insulin treatment of diabetic rats, resulted in recovery of enzyme activity near to control values from majority of the brain regions studied. The expression of alpha-subunit specific CaM kinase II correlates with the enzyme activity in the diabetic rat brain.  相似文献   

11.
研究生长抑素神经元在糖尿病大鼠模型额叶表达的变化。SD大鼠腹腔注射链脲佐菌素建立速发型糖尿病大鼠模型,4周时运用原位杂交组织化学方法检测大鼠额叶生长抑素mRNA阳性神经元的变化,并与正常大鼠比较。糖尿病大鼠成模4周时大脑额叶生长抑素mRNA阳性神经元显著减少,其单位面积内的阳性细胞数、阳性细胞的光密度及阳性细胞平均细胞面积均比正常大鼠相同区域减少,两者差异有显著性意义(P<0.01)。本研究表明糖尿病大鼠额叶生长抑素神经元mRNA表达的减少,可能是糖尿病患者发生痴呆等糖尿慢性脑病的相关因素之一。  相似文献   

12.
Diabetic encephalopathy is one of the most common complications of diabetes. Inflammatory events during diabetes may be an important mechanism of diabetic encephalopathy. Inflammasome is a multiprotein complex consisting of Nod-like receptor proteins (NLRPs), apoptosis-associated speck-like protein (ASC), and caspase 1 or 5, which functions to switch on the inflammatory process and the release of inflammatory factors. The present study hypothesized that the formation and activation of NLRP1 inflammasome turns on neuroinflammation and neuron injury during hyperglycemia. The results demonstrated that the levels of interleukin-1 beta (IL-1β) were increased in the cortex of streptozocin (STZ)-induced diabetic rats. The levels of mature IL-1β and IL-18 were also elevated in culture medium of neurons treated with high glucose (50 mM). The expression of three essential components of the NLRP1 inflammasome complex, namely, NLRP1, ASC, and caspase 1, was also upregulated in vivo and in vitro under high glucose. Silencing the ASC gene prevented the caspase-1 activation, and inhibiting caspase 1 activity blocked hyperglycemia-induced release of inflammatory factors and neuron injury. Moreover, we found that pannexin 1 mediated the actvitation of NLRP1 inflammasome under high glucose. These results suggest that hyperglycemia induces neuroinflammation through activation of NLRP1 inflammasome, which represents a novel mechanism of diabetes-associated neuron injury.  相似文献   

13.
Abstract: Diabetic encephalopathy, characterized by structural, electrophysiological, neurochemical, and cognitive abnormalities, is observed in insulin-dependent diabetes mellitus (IDDM) and non-IDDM (NIDDM). Identification of early biochemical lesions potentially may provide clues pointing to its pathogenesis. Insulin-like growth factors (IGFs) are neurotrophic factors that recently have been implicated in the pathogenesis of diabetic neuropathy. Because IGF-II is the predominant IGF in adult brain, we tested the hypothesis that IGF-II gene expression is decreased in the CNS in both IDDM and NIDDM. Brain and spinal cord were isolated from streptozotocin-diabetic rats, a model of IDDM with weight loss and impaired insulin production. IGF-II mRNA content was measured by northern and slot blots. After 2 weeks of diabetes, IGF-II mRNA content per milligram of tissue wet weight, as well as per unit of poly(A)+ RNA, declined significantly (p≤ 0.05) in brain and spinal cord. Insulin replacement therapy partially restored IGF-II mRNA levels in brain, cortex, medulla, and spinal cord. The obese, hyperinsulinemic, and spontaneously diabetic (fa/fa) Zucker rat was used as a model of NIDDM. Brain weight (p < 0.025) and IGF-II mRNA contents (p < 0.01) were significantly decreased in (fa/fa) versus lean nondiabetic (+/?) rats. Therefore, the decline in IGF-II mRNA levels in diabetic brain was independent of the type of diabetes, the direction of change in body weight, and the insulinemic state. We speculate that this early biochemical lesion may contribute to the development of diabetic encephalopathy.  相似文献   

14.
We have discovered that clinically tested inhibitors of matrix metalloproteinases can control the functional activity of T cell membrane type-1 matrix metalloproteinase (MT1-MMP) and the onset of disease in a rodent model of type 1 diabetes in non-obese diabetic mice. We determined that MT1-MMP proteolysis of the T cell surface CD44 adhesion receptor affects the homing of T cells into the pancreas. We also determined that both the induction of the intrinsic T cell MT1-MMP activity and the shedding of cellular CD44 follow the adhesion of insulin-specific, CD8-positive, Kd-restricted T cells to the matrix. Conversely, inhibition of these events by AG3340 (a potent hydroxamate inhibitor that was widely used in clinical trials in cancer patents) impedes the transmigration of diabetogenic T cells into the pancreas and protects non-obese diabetic mice from diabetes onset. Overall, our studies have divulged a previously unknown function of MT1-MMP and identified a promising novel drug target in type I diabetes.  相似文献   

15.
Diabetes mellitus is known to impair glucose metabolism. The fundamental mechanism underlying hyperglycaemia in diabetes mellitus involves decreased utilization of glucose by the brain. However, mechanisms responsible for progressive failure of glycaemic regulation in type I (IDDM) diabetes need extensive and proper understanding. Hence the present study was initiated. Type I diabetes was induced in albino rat models with alloxan monohydrate (40 mg/Kg iv). Cerebral cortex and medulla oblongata were studied 48 h after alloxanisation. Diabetes caused an elevation in glucose, glutamate, aspartate, GABA and taurine levels and a decline in the glutamine synthetase activity. The activities of brain lactate dehydrogenase (LDH) and pyruvate dehydrogenase (PDH) exhibited significant decrease during diabetes. Ammonia content increased (P < 0.01) as a function of diabetes. Na(+)-K(+) ATPase showed an elevation (P < 0.01) and Ca(++)-ATPase activity decreased (P < 0.01). Calcium content enhanced (P < 0.05) in the brain of diabetic rats. A General increase in the brain AMP, ADP and ATP was found on inducing diabetes. Impaired cerebral glucose metabolism accounts for the failure of cerebral glucose homeostasis. The impairment in the glycaemic control leads to disturbances in cerebral glutamate content (resulting in calcium overload and excitotoxic injury) and brain energy metabolism as reflected by alterations occurring in adenine nucleotide and the ATPases. The failure in the maintenance of normal energy metabolism during diabetes might affect glucose homeostasis leading to gross cerebral dysfunction during diabetes.  相似文献   

16.
DNase I is an endonuclease responsible to destruction of chromatin during apoptosis. However, its role in diabetes is still unclear. With blood samples from our previous study related to type 2 diabetes, we examined the DNase I activity in the serum of these patients and the role of DNase I in the injury of pancreas was further investigated in rats and INS-1 cells. Serum and pancreatic tissues from human and rats were used for the study. Insulin resistance and diabetes were induced by high fat diet and STZ injection, respectively. DNase I activity was determined by radial enzyme-diffusion method. Expressions of DNase I and caspase-3 in pancreas were determined in rat pancreatic tissues and INS-1 cells. Apoptosis of INS-1 cells was determined by both TUNEL assay and Flow Cytometry. There was a significant elevation of DNase I activity in serum of patients with type 2 diabetes and rats with STZ injection. Moreover, increase in DNase I expression was observed in the pancreas of diabetic person and rats. Furthermore, high glucose induced both DNase I and caspase-3 expression and at the same time increased apoptosis rate of INS-1 cells. In conclusion, elevated DNase I in diabetes may be related to pancreatic injury and could be one of the causes that induce diabetes.  相似文献   

17.
We studied the long-term effects of streptozotocin-induced diabetes on tissue-specific cytochrome P450 (CYP) and glutathione-dependent (GSH-dependent) xenobiotic metabolism in rats. In addition, we also studied the effect of antidiabetic Momordica charantia (karela) fruit-extract feeding on the modulation of xenobiotic metabolism and oxidative stress in rats with diabetes. Our results have indicated an increase (35-50%) in CYP4A-dependent lauric acid hydroxylation in liver, kidney, and brain of diabetic rats. About a two-fold increase in CYP2E-dependent hepatic aniline hydroxylation and a 90-100% increase in CYP1A-dependent ethoxycoumarin-O-deethylase activities in kidney and brain were also observed. A significant increase (80%) in aminopyrene N-demethylase activity was observed only in rat kidney, and a decrease was observed in the liver and brain of diabetic rats. A significant increase (77%) in NADPH-dependent lipid peroxidation (LPO) in kidney of diabetic rats was also observed. On the other hand, a decrease in hepatic LPO was seen during chronic diabetes. During diabetes an increased expression of CYP1A1, CYP2E1, and CYP4A1 isoenzymes was also seen by Western blot analysis. Karela-juice feeding modulates the enzyme expression and catalytic activities in a tissue- and isoenzyme-specific manner. A marked decrease (65%) in hepatic GSH content and glutathione S-transferase (GST) activity and an increase (about two-fold) in brain GSH and GST activity was observed in diabetic rats. On the other hand, renal GST was markedly reduced, and GSH content was moderately higher than that of control rats. Western blot analyses using specific antibodies have confirmed the tissue-specific alterations in the expression of GST isoenzymes. Karela-juice feeding, in general, reversed the effect of chronic diabetes on the modulation of both P450-dependent monooxygenase activities and GSH-dependent oxidative stress related LPO and GST activities. These results have suggested that the modulation of xenobiotic metabolism and oxidative stress in various tissues may be related to altered metabolism of endogenous substrates and hormonal status during diabetes. The findings may have significant implications in elucidating the therapeutic use of antidiabetic drugs and management of Type 1 diabetes in chronic diabetic patients.  相似文献   

18.
Diabetes mellitus and estrogen deficit are known causes of osteopenia in animal models as well as in humans. In the present work, the combined effect of ovariectomy and diabetes was investigated. Diabetes was induced in ovary-intact and ovariectomized female Wistar rats with a single injection (50 mg/kg body weight, i.p.) of streptozotocin. The rats were administered insulin (I) daily or 17-beta estradiol (E2) on alternate days for a period of 35 days and sacrificed. Serum calcium (Ca2+), phosphorus (P), alkaline phosphatase (ALP), tartrate-resistant acid phosphatase (TRAP), vertebral ALP, collagen, and glycosaminoglycans were estimated. The levels of serum Ca2+ and P increased in diabetic rats, but decreased after I or E2 treatments. Serum ALP and TRAP activity increased in the ovary-intact and ovariectomized diabetic rats. Vertebral ALP activity increased in ovariectomized diabetic rats, but decreased in diabetic rats, which were treated with I or E2. In the vertebrae, TRAP activity was elevated as a result of diabetes, but this was prevented by insulin or estradiol. Diabetes induced a decrease in total collagen in the vertebrae, while I or E2 treatment induced an increase. The levels of chondroitin sulphate and heparan sulphate decreased significantly in the vertebrae of both ovary-intact and ovariectomized diabetic rats, while hyaluronic acid increased. In conclusion, diabetes and ovariectomy each seem to affect the process of matrix formation and mineralization in the bone, and this is aggravated by the combination of diabetes and ovariectomy. The effects of I and E2 were similar, and both hormones reversed the changes brought about by diabetes.  相似文献   

19.
Fulminant hepatic failure (FHF) is an acute form of hepatic encephalopathy resulting from severe inflammatory or necrotic liver damage without any previously established liver damage. This develops as a complication due to viral infections, and drug abuse. FHF also occurs in acute disorders like Reye’s syndrome. Although the exact mechanisms in the etiology of FHF are not understood, elevated levels of brain ammonia have been consistently reported. Such increased ammonia levels are suggested to alter neurotransmission signals and impair cerebral energy metabolism due to mitochondrial dysfunctions. In the present study we have examined the role of cerebral electron transport chain complexes, including complex I, II, III IV, and pyruvate dehydrogenase in the non-synaptic mitochondria isolated from the cortex of the thioacetamide-induced FHF rats. Further, we have examined if the structure of mitochondria is altered. The results of the current study demonstrated a decrease in the activity of the complex I by 31 and 48% at 18 and 24 h respectively after the thioacetamide injection. Similarly, the activity of electron transport chain complex III was inhibited by 35 and 52% respectively, at 18 and 24 h, respectively. The complex II and complex IV, on the other hand, revealed unaltered activity. Further the activity of pyruvate dehydrogenase at 18 and 24 h after the induction of FHF was inhibited by 29 and 43%, respectively. Our results also suggest mitochondrial swelling in FHF induced rats. The inhibition of the respiratory complexes III and I and pyruvate dehydrogenase might lead to the increased production of free radical resulting in oxidative stress and cerebral energy disturbances thereby leading to mitochondrial swelling and further contributing to the pathogenesis of FHF.  相似文献   

20.
Cardiac contractile dysfunction is frequently reported in human patients and experimental animals with type-1 diabetes mellitus. The aim of this study was to investigate the voltage-dependence of contraction in ventricular myocytes from the streptozotocin (STZ)-induced diabetic rat. STZ-induced diabetes was characterised by hyperglycaemia and hypoinsulinaemia. Other characteristics included reduced body and heart weight and raised blood osmolarity. Isolated ventricular myocytes were patched in whole cell, voltage-clamp mode after correcting for membrane capacitance and series resistance. From a holding membrane potential of -40 mV, test pulses were applied at potentials between -30 and +50 mV in 10 mV increments. L-type Ca2+ current (I Ca,L) density and contraction were measured simultaneously using a video-edge detection system. Membrane capacitance was not significantly altered between control and STZ-induced diabetic myocytes. The I Ca,L density was significantly (p < 0.05) reduced throughout voltage ranges (-10 mV to +10 mV) in myocytes from STZ-treated rats compared to age-matched controls. Moreover, the amplitude of contraction was significantly reduced (p < 0.05) in myocytes from STZ-treated rats at all test potentials between -20 mV and +30 mV. However, in electrically field-stimulated (1 Hz) myocytes, the amplitude of contraction was not altered by STZ-treatment. It is suggested that in field-stimulated myocytes taken from STZ-induced diabetic hearts, prolonged action potential duration may promote increased Ca2+ influx via the sodium-calcium exchanger (NCX), which may compensate for a reduction in Ca2+ trigger through L-type-Ca2+-channels and lead to normalised contraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号