首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background  

P53 is a key tumor suppressor protein. In response to DNA damage, p53 accumulates to high levels in differentiated cells and activates target genes that initiate cell cycle arrest and apoptosis. Since stem cells provide the proliferative cell pool within organisms, an efficient DNA damage response is crucial.  相似文献   

2.
3.
Mouse embryonic stem cells (mESC) are characterized by high proliferation activity. mESC are highly sensitive to genotoxic stresses and do not undergo G1/S checkpoint upon DNA-damage. mESC are supposed to develop sensitive mechanisms to maintain genomic integrity provided by either DNA damage repair or elimination of defected cells by apoptosis. The issue of how mESC recognize the damages and execute DNA repair remains to be studied. We analyzed the kinetics of DNA repair foci marked by antibodies to phosphorylated ATM kinase and histone H2AX (γH2AX). We showed that mESC display non-induced DNA single-strand breaks (SSBs), as revealed by comet-assay, and a noticeable background of γH2AX staining. Exposure of mESC to γ-irradiation induced the accumulation of phosphorylated ATM-kinase in the nucleus as well as the formation of additional γH2AX foci, which disappeared thereafter. To decrease the background of γH2AX staining in control non-irradiated cells, we pre-synchronized mESC at the G2/M by low concentration of nocodazol for a short time (6 h). The cells were then irradiated and stained for γH2AX. Irradiation induced the formation of γH2AX foci both in G2-phase and mitotic cells, which evidenced for the active state of DNA-damage signaling at these stages of the cell cycle in mESC. Due to the G1/S checkpoint is compromised in mESCs, we checked, whether wild-type p53, a target for ATM kinase, was phosphorylated in response to γ-irradiation. The p53 was barely phosphorylated in response to irradiation, which correlated with a very low expression of p53-target p21/Waf1 gene. Thus, in spite of the dysfunction of the p53/Waf1 pathway and the lack of cell cycle checkpoints, the mESC are capable of activating ATM and inducing γH2AX foci formation, which are necessary for the activation of DNA damage response.  相似文献   

4.
Despite an increasing interest in the role of the p53 tumour suppressor protein in embryonic stem cells, not much is known about its regulation in this cell type.We show that the relatively high amount of p53 protein correlates with a higher amount of p53 RNA in ES cells compared to differentiated cells. Moreover, p53 RNA is more stable in embryonic stem cells and the p53 protein is more often transcribed. This is at least partly due to decreased expression of miRNA-125a and 125b in embryonic stem cells. Despite its cytoplasmic localisation, p53 is degraded in 26S proteasomes in embryonic stem cells. This process is controlled by Mdm2, the deubiquitinating enzyme Hausp and Ubc13. In contrast, the E3 ligase PirH2 appears to be less important for the control of p53 in embryonic stem cells. During differentiation, p53 protein and RNA levels are decreased which corresponds to increased expression of miRNA-125a and miRNA-125b.  相似文献   

5.
6.
The p53 response to DNA damage   总被引:12,自引:0,他引:12  
Meek DW 《DNA Repair》2004,3(8-9):1049-1056
  相似文献   

7.
Mouse embryonic stem cells (ESCs) are genetically more stable than somatic cells, thereby preventing the passage of genomic abnormalities to their derivatives including germ cells. The underlying mechanisms, however, remain largely unclear. In this paper, we show that the stemness factor Sall4 is required for activating the critical Ataxia Telangiectasia Mutated (ATM)–dependent cellular responses to DNA double-stranded breaks (DSBs) in mouse ESCs and confer their resistance to DSB-induced cytotoxicity. Sall4 is rapidly mobilized to the sites of DSBs after DNA damage. Furthermore, Sall4 interacts with Rad50 and stabilizes the Mre11–Rad50–Nbs1 complex for the efficient recruitment and activation of ATM. Sall4 also interacts with Baf60a, a member of the SWI/SNF (switch/sucrose nonfermentable) ATP-dependent chromatin-remodeling complex, which is responsible for recruiting Sall4 to the site of DNA DSB damage. Our findings provide novel mechanisms to coordinate stemness of ESCs with DNA damage response, ensuring genomic stability during the expansion of ESCs.  相似文献   

8.
The importance of the DNA damage response (DDR) pathway in development, genomic stability, and tumor suppression is well recognized. Although 53BP1 and MDC1 have been recently identified as critical upstream mediators in the cellular response to DNA double-strand breaks, their relative hierarchy in the ataxia telangiectasia mutated (ATM) signaling cascade remains controversial. To investigate the divergent and potentially overlapping functions of MDC1 and 53BP1 in the ATM response pathway, we generated mice deficient for both genes. Unexpectedly, the loss of both MDC1 and 53BP1 neither significantly increases the severity of defects in DDR nor increases tumor incidence compared with the loss of MDC1 alone. We additionally show that MDC1 regulates 53BP1 foci formation and phosphorylation in response to DNA damage. These results suggest that MDC1 functions as an upstream regulator of 53BP1 in the DDR pathway and in tumor suppression.  相似文献   

9.
10.
11.
12.
Rübe CE  Zhang S  Miebach N  Fricke A  Rübe C 《DNA Repair》2011,10(2):159-168
Spermatogonial stem cells (SSCs) must maintain the integrity of their genome to prevent reproduction failure and limit the hereditary risk associated with transmission to the progeny. SSCs must therefore have robust response mechanisms to counteract the potentially deleterious effects of DNA damage, with DNA double-strand breaks (DSBs) representing the greatest threat to genomic integrity. Through in vivo analysis of the DNA damage response of SSCs within their physiological tissue context, we aimed to gain insights into the mechanisms by which SSCs preserve genome integrity. After whole-body irradiation of repair-proficient and repair-deficient (DNA-PK- and ATM-deficient) mice, the formation and rejoining of DSBs was analyzed in SSCs of testis compared with somatic cells of other tissues by enumerating γH2AX-, MDC1-, and 53BP1-foci. Caspase-3 and PARP-1 were used as markers for apoptotic cell death. Our results show that DNA damage response mechanisms in SSCs characterized by unique chromatin compositions are markedly different from those of somatic cells. In SSCs lacking compact heterochromatin, histone-associated signaling components of the DNA repair machinery are completely absent and radiation-induced DSBs are rejoined predominantly by DNA-PK-independent pathways, suggesting the existence of alternative repair mechanisms. As a complimentary mechanism characterized by low thresholds for ATM-dependent checkpoint activation, the differentiating progeny, but not the SSCs themselves, promote apoptosis in response to low levels of DNA damage. By evaluating SSCs within their stem cell niche, we show that DNA repair, cell-cycle checkpoints, and apoptosis function together to maintain the integrity of the heritable genome.  相似文献   

13.
14.
15.
p53 is a tumor suppressor and the p53 dynamics displays stimulus dependent patterns. Recent evidence suggests a bimodal p53 switch in cell fate decision. However, no theoretical studies have been proposed to investigate bimodal p53 induction. Here we constructed a model and showed that MDM2–p53 mRNA binding might contribute to bimodal p53 switch through an intrinsic positive feedback loop. Lower damage favored pulsing while monotonic increasing was generated with higher damage. Bimodal p53 dynamics was largely influenced by cellular MDM2 and elevated p53/MDM2 ratios with increasing etoposide favor mono-ubiquitination. Our model replicated recent experiments and provided potential insights into dynamic mechanisms of bimodal switch.  相似文献   

16.
Mouse embryonic stem cells (ESCs) express high levels of cytoplasmic p53. Exposure of mouse ESCs to DNA damage leads to activation of p53, inducing Nanog suppression. In contrast to earlier studies, we recently reported that chemical inhibition of p53 suppresses ESC proliferation. Here, we confirm that p53 signaling is involved in the maintenance of mouse ESC self-renewal. RNA interference-mediated knockdown of p53 induced downregulation of p21 and defects in ESC proliferation. Furthermore, p53 knockdown resulted in a significant downregulation in Nanog expression at 24 and 48 h post-transfection. p53 knockdown also caused a reduction in Oct4 expression at 48 h post-transfection. Conversely, exposure of ESCs to DNA damage caused a higher reduction of Nanog expression in control siRNA-treated cells than in p53 siRNA-treated cells. These data show that in the absence of DNA damage, p53 is required for the maintenance of mouse ESC self-renewal by regulating Nanog expression.  相似文献   

17.
The molecular mechanisms controlling DNA-damage-induced apoptosis of human embryonic stem cells (hESC) are poorly understood. Here we investigate the role of p53 in etoposide-induced apoptosis. We show that p53 is constitutively expressed at high levels in the cytoplasm of hESC. Etoposide treatment results in a rapid and extensive induction of apoptosis and leads to a further increase in p53 and PUMA expression as well as Bax processing. p53 both translocates to the nucleus and associates with the mitochondria, accompanied by colocalization of Bax with Mcl1. hESC stably transduced with p53 shRNA display 80% reduction of endogenous p53 and exhibit an 80% reduction in etoposide-induced apoptosis accompanied by constitutive downregulation of Bax and an attenuated upregulation of PUMA. Our data further show that undifferentiated hESC that express Oct4 are much more sensitive to etoposide-induced apoptosis than their more differentiated progeny. Our study demonstrates that p53 is required for etoposide-induced apoptosis of hESC and reveals, at least in part, the molecular mechanism of DNA-damage-induced apoptosis in hESC.  相似文献   

18.
DNA放射损伤与p53   总被引:1,自引:0,他引:1  
Qian X  Zhu YB 《生理科学进展》2005,36(4):379-381
电离辐射等多种因素可以引起DNA损伤,表现为碱基改变、DNA双链断裂(DNA double-strand breaks,DSBs)和DNA单链断裂(Single-strand breaks,SSBs)等多种形式。DNA损伤后,细胞发生应答,即引起细胞周期阻滞和/或细胞程序性死亡,以减少损伤引起的染色体畸变和基因组不稳定。在细胞应答过程中,p53蛋白水平和活性均发生变化,介导细胞周期阻滞、程序性死亡,并直接参与DNA损伤修复过程。  相似文献   

19.
20.
Zhang XP  Liu F  Wang W 《Biophysical journal》2012,102(10):2251-2260
The selective expression of p53-targeted genes is central to the p53-mediated DNA damage response. It is affected by multiple factors including posttranslational modifications and cofactors of p53. Here, we proposed an integrated model of the p53 network to characterize how the cellular response is regulated by key cofactors of p53, Hzf and ASPP. We found that the sequential induction of Hzf and ASPP is crucial to a reliable cell-fate decision between survival and death. After DNA damage, activated p53 first induces Hzf, which promotes the expression of p21 to arrest the cell cycle and facilitate DNA repair. The cell recovers to normal proliferation after the damage is repaired. If the damage is beyond repair, Hzf is effectively degraded, and activated E2F1 induces ASPP, which promotes the expression of Bax to trigger apoptosis. Furthermore, interrupting the induction of Hzf or ASPP remarkably impairs the cellular function. We also proposed two schemes for the production of the unknown E3 ubiquitin ligase for Hzf degradation: it is induced by either E2F1 or p53. In both schemes, the sufficient degradation of Hzf is required for apoptosis induction. These results are in good agreement with experimental observations or are experimentally testable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号