首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Salicylic acid regulates basal resistance to Fusarium head blight in wheat   总被引:1,自引:0,他引:1  
Fusarium head blight (FHB) is a destructive disease of cereal crops such as wheat and barley. Previously, expression in wheat of the Arabidopsis NPR1 gene (AtNPR1), which encodes a key regulator of salicylic acid (SA) signaling, was shown to reduce severity of FHB caused by Fusarium graminearum. It was hypothesized that SA signaling contributes to wheat defense against F. graminearum. Here, we show that increased accumulation of SA in fungus-infected spikes correlated with elevated expression of the SA-inducible pathogenesis-related 1 (PR1) gene and FHB resistance. In addition, FHB severity and mycotoxin accumulation were curtailed in wheat plants treated with SA and in AtNPR1 wheat, which is hyper-responsive to SA. In support of a critical role for SA in basal resistance to FHB, disease severity was higher in wheat expressing the NahG-encoded salicylate hydroxylase, which metabolizes SA. The FHB-promoting effect of NahG was overcome by application of benzo (1,2,3), thiadiazole-7 carbothioic acid S-methyl ester, a synthetic functional analog of SA, thus confirming an important role for SA signaling in basal resistance to FHB. We further demonstrate that jasmonate signaling has a dichotomous role in wheat interaction with F. graminearum, constraining activation of SA signaling during early stages of infection and promoting resistance during the later stages of infection.  相似文献   

2.
3.
Salicylic acid (SA), a cell-signaling metabolite in plants, is involved in resistance of plants to pathogens and environmental stresses; however, there is little information available on the responses of fungi to SA. Conidia of Metarhizium robertsii (ARSEF 2575) (Hypocreales: Clavicipitaceae) were produced on potato dextrose agar medium plus yeast extract (PDAY) supplemented with 1, 2, 4, or 8 mM SA (pH adjusted to 6.9) and incubated under constant-dark conditions. Then the tolerance of conidia against wet heat (45 °C, 3 h) and UV-B radiation (7.0 kJ m(-2)) was tested. For comparison, conidia were also produced on minimal medium (MM) that contained no carbon source (carbon starvation), a condition known to induce elevated conidial tolerance to heat and UV-B radiation in M. robertsii. The heat tolerance of conidia produced on PDAY containing 1, 2, or 4 mM SA were two-fold higher than that of conidia produced on PDAY alone; which is the same level of thermotolerance induced by growth on MM. Conidia produced on PDAY with 8 mM SA, however, did not exhibit increased heat tolerance. Growth on PDAY + SA did not increase conidial UV-B tolerance at any of the SA concentrations tested. The conidial yields of M. robertsii produced on PDAY with all levels of SA were somewhat reduced in comparison to the yield on PDAY alone. Nevertheless, conidial yields on PDAY + SA were 20-40 times greater than that obtained on MM alone. In conclusion, M. robertsii conidia produced on PDAY medium containing low concentrations of SA demonstrated increased tolerance to heat, but not to UV-B radiation. In comparison to PDAY alone, SA-amended PDAY afforded somewhat reduced conidial yields; however, in a mass-production situation, yield reductions would be offset by the fact that the conidia obtained would have relatively high heat tolerance.  相似文献   

4.
The priming agent β-aminobutyric acid (BABA) is known to enhance Arabidopsis resistance to the bacterial pathogen Pseudomonas syringae pv. tomato (Pst) DC3000 by potentiating salicylic acid (SA) defence signalling, notably PR1 expression. The molecular mechanisms underlying this phenomenon remain unknown. A genome-wide microarray analysis of BABA priming during Pst DC3000 infection revealed direct and primed up-regulation of genes that are responsive to SA, the SA analogue benzothiadiazole and pathogens. In addition, BABA was found to inhibit the Arabidopsis response to the bacterial effector coronatine (COR). COR is known to promote bacterial virulence by inducing the jasmonic acid (JA) response to antagonize SA signalling activation. BABA specifically repressed the JA response induced by COR without affecting other plant JA responses. This repression was largely SA-independent, suggesting that it is not caused by negative cross-talk between SA and JA signalling cascades. Treatment with relatively high concentrations of purified COR counteracted BABA inhibition. Under these conditions, BABA failed to protect Arabidopsis against Pst DC3000. BABA did not induce priming and resistance in plants inoculated with a COR-deficient strain of Pst DC3000 or in the COR-insensitive mutant coi1-16. In addition, BABA blocked the COR-dependent re-opening of stomata during Pst DC3000 infection. Our data suggest that BABA primes for enhanced resistance to Pst DC3000 by interfering with the bacterial suppression of Arabidopsis SA-dependent defences. This study also suggests the existence of a signalling node that distinguishes COR from other JA responses.  相似文献   

5.
Salicylic acid (SA), the plant hormone, is extensively involved in signalling pathway, primarily in defence to induced local and systemic resistances in fruits against postharvest pathogens. Exogenous application of SA on fruits at optimum or non-toxic concentration provided efficient control of decay caused by postharvest pathogens. SA has direct fungitoxic effect on pathogen growth. This review scrutinises the control of various postharvest diseases by the application of SA on different fruits. Furthermore, physiological mechanism involved in inducing resistance is also discussed. These findings are necessary for understanding the proper function of SA in harvested fruits. In future, there is a need to correlate the efficacy of SA with environmental conditions and should emphasise on molecular paths involved in signalling of induce resistance.  相似文献   

6.
7.
Fusarium head blight (FHB), caused by Fusarium graminearum, is one of the most important diseases of wheat worldwide, resulting in yield losses and mycotoxin contamination. The molecular mechanisms regulating Fusarium penetration and infection are poorly understood. Beside mycotoxin production, cell wall degradation may play a role in the development of FHB. Many fungal pathogens secrete polygalacturonases (PGs) during the early stages of infection, and plants have evolved polygalacturonase-inhibiting proteins (PGIPs) to restrict pectin degradation during fungal infection. To investigate the role of plant PGIPs in restricting the development of FHB symptoms, we first used Arabidopsis thaliana, whose genome encodes two PGIPs (AtPGIP1 and AtPGIP2). Arabidopsis transgenic plants expressing either of these PGIPs under control of the CaMV 35S promoter accumulate inhibitory activity against F.?graminearum PG in their inflorescences, and show increased resistance to FHB. Second, transgenic wheat plants expressing the bean PvPGIP2 in their flowers also had a significant reduction of symptoms when infected with F.?graminearum. Our data suggest that PGs likely play a role in F.?graminearum infection of floral tissues, and that PGIPs incorporated into wheat may be important for increased resistance to FHB.  相似文献   

8.
Jacalin-related lectins (JRLs) are a subgroup of proteins with one or more jacalin-like lectin domains. Although JRLs are often associated with biotic or abiotic stimuli, their biological functions in plants, as well as their relationships to plant disease resistance, are poorly understood. A mannose-specific JRL (mJRL)-like gene (TaJRLL1) that is mainly expressed in stem and spike and encodes a protein with two jacalin-like lectin domains was identified in wheat. Pathogen infection and phytohormone treatments induced its expression; while application of the salicylic acid (SA) biosynthesis inhibitor paclobutrazol and the jasmonic acid (JA) biosynthesis inhibitor diethyldithiocarbamic acid, respectively, substantially inhibited its expression. Attenuating TaJRLL1 through virus-induced gene silencing increased susceptibility to the facultative fungal pathogen Fusarium graminearum and the biotrophic fungal pathogen Blumeria graminis. Arabidopsis thaliana transformed with TaJRLL1 displayed increased resistance to F. graminearum and Botrytis cinerea. JA and SA levels in transgenic Arabidopsis increased significantly. A loss or increase of disease resistance due to an alteration in TaJRLL1 function was correlated with attenuation or enhancement of the SA- and JA-dependent defence signalling pathways. These results suggest that TaJRLL1 could be a component of the SA- and JA-dependent defence signalling pathways.  相似文献   

9.
Root Knot Nematode (RKN, Meloidogyne incognita) is one of the greatest damaging soil pathogens causes severe yield losses in cucumber and many other economic crops. Here, we evaluated the potential antagonistic effect of the root mutualistic fungus Piriformospora indica against RKN and their impact on vegetative growth, yield, photosynthesis, endogenous salicylic acid (SA) and its responsive genes. Our results showed that P. indica dramatically decreased the damage on shoot and root architecture of cucumber plants, which consequently enhanced yield of infested plants. Likewise, P. indica colonization clearly improved the chlorophyll content and delimited the negative impact of RNK on photosynthesis. Moreover, P. indica colonization exhibited a significant reduction of different vital nematological parameters such as soil larva density, amount of eggs/eggmass, eggmasses, females and amount of galls at cucumber roots. Additionally, the results showed that SA level was significantly increased generally in the roots of all treatments especially in plants infested with RKN alone as compared to control. This suggests that P. indica promoting SA levels in host cucumber plant roots to antagonize the RKN and alleviate severity damages occurred in its roots. This higher levels of SA in cucumber roots was consistent with the higher expressional levels of SA pathway genes PR1 and PR3. Furthermore, P. indica colonization reduces PR1, PR3 and increased NPR1 in roots of RKN infested cucumber plants when compared to non-colonized plants. Interestingly, our in vitro results showed that direct application of P. indica suspension against the J2s exhibited a significant increase in mortality ratio. Our results collectively suggest that P. indica promoting morphological, physiological and SA levels that might together play a major important role to alleviate the adverse impact of RKN in cucumber.  相似文献   

10.
The two fungicides azoxystrobin and fenpropimorph are used against powdery mildew and rust diseases in wheat (Triticum aestivumL). Azoxystrobin, a strobilurin, inhibits fungal mitochondrial respiration and fenpropimorph, a morpholin, represses biosynthesis of ergosterol, the major sterol of fungal membranes. Although the fungitoxic activity of these compounds is well understood, their effects on plant metabolism remain unclear. In contrast to the fungicides which directly affect pathogen metabolism, benzo(1,2,3) thiadiazole-7-carbothioic acid S-methylester (BTH) induces resistance against wheat pathogens by the activation of systemic acquired resistance in the host plant. In this study, we monitored gene expression in spring wheat after treatment with each of these agrochemicals in a greenhouse trial using a microarray containing 600 barley cDNA clones. Defence-related genes were strongly induced after treatment with BTH, confirming the activation of a similar set of genes as in dicot plants following salicylic acid treatment. A similar gene expression pattern was observed after treatment with fenpropimorph and some defence-related genes were induced by azoxystrobin, demonstrating that these fungicides also activate a defence reaction. However, less intense responses were triggered than with BTH. The same experiments performed under field conditions gave dramatically different results. No gene showed differential expression after treatment and defence genes were already expressed at a high level before application of the agrochemicals. These differences in the expression patterns between the two environments demonstrate the importance of plant growth conditions for testing the impact of agrochemicals on plant metabolism.  相似文献   

11.
Extracellular ATP is a regulator of pathogen defence in plants   总被引:2,自引:0,他引:2  
In healthy plants extracellular ATP (eATP) regulates the balance between cell viability and death. Here we show an unexpected critical regulatory role of eATP in disease resistance and defensive signalling. In tobacco, enzymatic depletion of eATP or competition with non-hydrolysable ATP analogues induced pathogenesis-related ( PR ) gene expression and enhanced resistance to tobacco mosaic virus and Pseudomonas syringae pv. tabaci . Artificially increasing eATP concentrations triggered a drop in levels of the important defensive signal chemical salicylic acid (SA) and compromised basal resistance to viral and bacterial infection. Inoculating tobacco leaf tissues with bacterial pathogens capable of activating PR gene expression triggered a rapid decline in eATP. Conversely, inoculations with mutant bacteria unable to induce defence gene expression failed to deplete eATP. Furthermore, a collapse in eATP concentration immediately preceded PR gene induction by SA. Our study reveals a previously unsuspected role for eATP as a negative regulator of defensive signal transduction and demonstrates its importance as a key signal integrating defence and cell viability in plants.  相似文献   

12.
Heat-stable mycelial extracts of the nonpathogenic fungus Trichoderma longibrachiatum induced resistance in tobacco seedlings ( Nicotiana tabacum L. cv. Wisconsin 38) to the pathogen Phytophthora parasitica var. nicotianae (race 0), which did not involve a hypersensitive response. Resistance could not be induced with mycelial extract prepared in the same manner from P. parasitica . The nonpathogenic mycelial extract induced expression of PR-1b and osmotin (PR-5) genes to a higher level than did mycelial extract from the pathogenic fungus. The tissue-specific pattern of PR gene induction by the nonpathogenic mycelial extract was different from that of the pathogenic mycelial extract and was consistent with the ability of the former to cause disease resistance. The expression patterns of these two PR genes and the accumulations of their encoded proteins also were affected by salicylic acid (SA), methyl jasmonate (MeJA), ethylene (E) and combinations of these plant signal messengers. However, only combined SA and MeJA treatment mimicked the pattern of PR gene mRNA and protein accumulation induced by the nonpathogenic mycelial extract. E inhibitors blocked both mycelial extract-induced and SA/MeJA-induced PR gene expression, and the cis pattern of responsiveness on the osmotin promoter was the same for the mycelial extract, SA, E, or E/MeJA. Seedlings treated with P. parasitica spores in the presence of SA/MeJA were protected from pathogen colonization. However, these seedlings exhibited symptoms of cell death (disease symptoms) both in the absence and presence of P. parasitica spores, in contrast to seedlings treated with nonpathogenic mycelial extract, which remained healthy. These results suggest that the signal transduction pathways for elicitation of defense responses by exogenously applied heat-stable nonpathogenic mycelial extract and SA/MeJA overlap at the point of PR protein induction but are not identical.  相似文献   

13.
Double-stranded RNA mycovirus from Fusarium graminearum   总被引:2,自引:0,他引:2  
Double-stranded RNA (dsRNA) viruses in some fungi are associated with hypovirulence and have been used or proposed as biological control agents. We isolated 7.5-kb dsRNAs from 13 of 286 field strains of Fusarium graminearum isolated from maize in Korea. One of these strains, DK21, was examined in more detail. This strain had pronounced morphological changes, including reduction in mycelial growth, increased pigmentation, reduced virulence towards wheat, and decreased (60-fold) production of trichothecene mycotoxins. The presence or absence of the 7.5-kb dsRNA was correlated with the changes in pathogenicity and morphology. The dsRNA could be transferred to virus-free strains by hyphal fusion, and the recipient strain acquired the virus-associated phenotype of the donor strain. The dsRNA was transmitted to approximately 50% of the conidia, and only colonies resulting from conidia carrying the mycovirus had the virus-associated phenotype. Partial nucleotide sequences of the purified dsRNA identify an RNA-dependent RNA polymerase sequence and an ATP-dependent helicase that are closely related to those of Cryphonectria hypovirus and Barley yellow mosaic virus. Collectively, these results suggest that this dsRNA isolated from F. graminearum encodes traits for hypovirulence.  相似文献   

14.
The role of salicylic acid (SA) in plant responses to pathogens has been well documented, but its direct and indirect effects on plant responses to insects are not so well understood. We examined the effects of SA, alone and in combination with jasmonic acid (JA), on the performance of the generalist herbivore, Spodoptera exigua, in wild-type and mutant Arabidopsis thaliana genotypes that varied genetically in their ability to mount SA- and JA-mediated defence responses. In one experiment, growth of S. exigua larvae was highest on the Wassilewskija wild-type, intermediate on the Columbia wild-type and the JA-deficient fad mutant, and lowest on the nim1-1 and jar1-mutants, which are defective in the SA and JA pathways, respectively. Activity of guaiacol peroxidase, polyphenoloxidase, n-acetylglucosaminidase, and trypsin inhibitor varied by genotype but did not correlate with insect performance. SA treatment increased growth of S. exigua larvae by approximately 35% over all genotypes, but had no discernable effect on activities of the four defence proteins. In a second experiment, growth of S. exigua was highest across treatments on the cep1 mutant, a constitutive expressor of high SA levels and systemic acquired resistance, and lowest on the fad mutant, which is JA-deficient. JA treatment generally increased activity of all four defence proteins, increased total glucosinolate levels and reduced insect growth by approximately 25% over all genotypes. SA generally inhibited expression of JA-induced resistance to S. exigua when both hormones were applied simultaneously. Across genotypes and treatments, larval mass was negatively correlated with the activity of trypsin inhibitor and polyphenoloxidase and with total glucosinolate levels, and insect damage was negatively correlated with the activity of polyphenoloxidase. SA had little effect on the induction of defence protein activity by JA. However, SA attenuated the induction of glucosinolates by JA and therefore may explain better the interactive effects of SA and JA on insect performance. This study illustrates that direct and indirect cross-effects of SA on resistance to S. exigua can occur in A. thaliana. Effects of SA may be mediated through effects on plant defence chemistry or other aspects of the suitability of foliage for insect feeding and growth.  相似文献   

15.
Despite the tremendous economic impact of cereal crop pathogens such as the fungus Fusarium graminearum, the development of strategies for enhanced crop protection is hampered by complex host genetics and difficulties in performing high-throughput analyses. To bypass these challenges, we have developed an assay in which the interaction between F. graminearum and the model plant Arabidopsis thaliana is monitored in liquid media in 96-well plates. In this assay, fungal infection is associated with the development of dark lesion-like spots on the cotyledons of Arabidopsis seedlings by 4 days postinoculation. These symptoms can be alleviated by the application of known defense-activating small molecules and in previously described resistant host genetic backgrounds. Based on this infection phenotype, we conducted a small-scale chemical screen to identify small molecules that protect Arabidopsis seedlings from infection by F. graminearum. We identified sulfamethoxazole and the indole alkaloid gramine as compounds with strong protective activity in the liquid assay. Remarkably, these two chemicals also significantly reduced the severity of F. graminearum infection in wheat. As such, the Arabidopsis-based liquid assay represents a biologically relevant surrogate system for high-throughput studies of agriculturally important plant-pathogen interactions.  相似文献   

16.
17.
In tobacco (Nicotiana tabacum L. cv. Xanthinc), salicylic acid (SA) levels increase in leaves inoculated by necrotizing pathogens and in healthy leaves located above the inoculated site. Systemic SA increase may trigger disease resistance and synthesis of pathogenesis-related proteins (PR proteins). Here we report that ultraviolet (UV)-C light or ozone induced biochemical responses similar to those induced by necrotizing pathogens. Exposure of leaves to UV-C light or ozone resulted in a transient ninefold increase in SA compared to controls. In addition, in UV-light-irradiated plants, SA increased nearly fourfold to 0.77 g·g–1 fresh weight in leaves that were shielded from UV light. Increased SA levels were accompanied by accumulation of an SA conjugate and by an increase in the activity of benzoic acid 2-hydroxylase which catalyzes SA biosynthesis. In irradiated and in unirradiated leaves of plants treated with UV light, as well as in plants fumigated with ozone, PR proteins 1a and 1b accumulated. This was paralleled by the appearance of induced resistance to a subsequent challenge with tobacco mosaic virus. The results suggest that UV light, ozone fumigation and tobacco mosaic virus can activate a common signal-transduction pathway that leads to SA and PR-protein accumulation and increased disease resistance.Abbreviations PR protein pathogenesis-related protein - SA salicylic acid - TMV tobacco mosaic virus - UV ultraviolet This work was financed by grants from the U.S. Department of Agriculture (Competitive Research Grants Office), Division of Energy Biosciences of U.S. Department of Energy, the Rockefeller Foundation, the New Jersey Commission for Science and Technology, and the New Jersey Agricultural Experiment Station.  相似文献   

18.
A transgenic wheat line constitutively expressing genes encoding a class IV acidic chitinase and an acidic beta-1,3-glucanase, showed significant delay in spread of Fusarium head blight (scab) disease under greenhouse conditions. In an earlier work, we observed a lesion-mimic phenotype in this transgenic line when homozygous for transgene loci. Apoplastic fluid (AF) extracted from the lesion-mimic plants had pathogenesis-related (PR) proteins belonging to families of beta-1,3-glucanases, chitinases, and thaumatin-like proteins (TLPs). AF had growth inhibitory activity against certain fungal pathogens, including Fusarium graminearum and Gaeumannomyces graminis var. tritici. Through a two-step ion-exchange chromatography protocol, we recovered many PR proteins and a few uncharacterized proteins. Three individual protein bands corresponding to a TLP (molecular mass, 16 kDa) and two beta-1,3-glucanases (molecular mass, 32 kDa each) were purified and identified by tandem mass spectrometry. We measured the in vitro antifungal activity of the three purified enzymes and a barley class II chitinase (purified earlier in our laboratory) in microtiter plate assays with macroconidia or conidiophores of F. graminearum and Pyrenophora tritici-repentis. Mixtures of proteins revealed synergistic or additive inhibitory activity against F. graminearum and P. tritici-repentis hyphae. The concentrations of PR proteins at which these effects were observed are likely to be those reached in AF of cells exhibiting a hypersensitive response. Our results suggest that apoplastic PR proteins are antifungal and their antimicrobial potency is dependent on concentrations and combinations that are effectively reached in plants following microbial attack.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号