首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Dihydrodipicolinate synthase (DHDPS) is a key enzyme in lysine biosynthesis and a potential antibiotic target. The enzyme catalyses the condensation of (S)-aspartate semi-aldehyde (ASA) and pyruvate to form dihydrodipicolinate. Constrained diketopimelic acid derivatives have been designed as mimics of the acyclic enzyme-bound condensation product of ASA and pyruvate. Several of the compounds are shown to be active, slow-binding inhibitors with improved inhibition of DHDPS.  相似文献   

2.
Heterocyclic inhibitors of dihydrodipicolinate synthase are not competitive   总被引:1,自引:0,他引:1  
A series of piperidine- and pyridine-2,6-dicarboxylate derivatives has been evaluated as potential inhibitors of dihydrodipicolinate synthase (DHDPS). The compounds were designed with oxygen functionality at the C-4 position in order to mimic the putative enzyme product HTHDP. Most compounds displayed weak-moderate inhibition of DHDPS. Additionally, the most potent inhibitors were shown not to be competitive, indicating they do not bind at the active site. Discrepancies between the two common assay systems-the imidazole assay and the coupled assay-were observed which are attributed to inherent problems in the imidazole assay, leading to artefactually low K(i) measurements.  相似文献   

3.
In plants and bacteria, the branch point of (S)-lysine biosynthesis is the condensation of (S)-aspartate-beta-semialdehyde [(S)-ASA] and pyruvate, a reaction catalyzed by dihydrodipicolinate synthase (DHDPS, EC 4.2.1.52). It has been proposed that Arg138, a residue situated at the entrance to the active site of DHDPS, is responsible for binding the carboxyl of (S)-ASA and may additionally be involved in the mechanism of (S)-lysine inhibition. This study tests these assertions by mutation of Arg138 to both histidine and alanine. Following purification, DHDPS-R138H and DHDPS-R138A each showed severely compromised activity (approximately 0.1% that of the wild type), and the apparent Michaelis-Menten constant for (S)-ASA in each mutant, calculated using a pseudo-single substrate analysis, was significantly higher than that of the wild type. This provides good evidence that Arg138 is indeed essential for catalysis and plays a key role in substrate binding. To test whether structural changes could account for the change in kinetic behavior, the solution structure was probed via far-UV circular dichroism, confirming that the mutations at position 138 did not modify secondary structure. The crystal structures of both mutant enzymes were determined, confirming the presence of the mutations and suggesting that Arg138 plays an important role in catalysis: the stabilization of the catalytic triad residues, a motif we have previously demonstrated to be essential for activity. In addition, the role of Arg138 in (S)-lysine inhibition was examined. Both mutant enzymes showed the same IC(50) values as the wild type but different partial inhibition patterns, from which it is concluded that arginine 138 is not essential for (S)-lysine inhibition.  相似文献   

4.
In the course of our search for selective iNOS inhibitors, we have previously reported that 2-imino-1,3-oxazolidine derivatives (1) and 2-aminothiazole derivatives (2) are selective iNOS inhibitors. In order to find more potent iNOS inhibitors, we focused our efforts on the synthesis and evaluation of the inhibitory activity against iNOS and selectivity for iNOS both in vitro and in vivo of a series of 2-imino-1,3-thiazolidine derivatives (3), which are analogues of 1 and 2. Our results show that among the compounds synthesized (4R,5R)-5-ethyl-2-imino-4-methyl-1,3-thiazolidine [(4R,5R)-14a: ES-1537] exhibited potent inhibitory activity and selectivity for iNOS. In addition, ES-1537 had good pharmacokinetic profile in rats with BA value of 80%. It is therefore expected that ES-1537 may be therapeutically useful for the treatment of diseases related to excess production of NO.  相似文献   

5.
Summary Dihydrodipicolinate synthase (DHPS; EC 4.2.1.52) is the first committed enzyme in the lysine branch of the aspartate-derived amino acid biosynthesis pathway and is common to bacteria and plants. Due to feedback inhibition by lysine, DHPS serves in a regulatory role for this pathway in plant metabolism. To elucidate the molecular genetic characteristics of DHPS, we isolated a putative full-length cDNA clone for maize DHPS by direct genetic selection in an Escherichia coli dapA auxotroph. The maize DHPS activity expressed in the complemented E. coli auxotroph showed the lysine inhibition characteristics of purified maize DHPS, indicating that the cDNA encoded sequences for both the catalytic function and regulatory properties of the enzyme. The N-terminal amino acid sequence of purified maize DHPS was determined by direct sequencing and showed homology to a sequence within the cDNA, indicating that the clone contained the entire coding region for a mature polypeptide of 326 amino acids plus a 54 amino acid transit peptide sequence. The molecular weight of 35854, predicted from the deduced amino acid sequence, was similar to the 38 000 Mr determined by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) for the purified enzyme from maize. DHPS mRNAs complementary to the cDNA were detected in RNA isolated from developing maize endosperm and embryo tissues. Southern blots indicated the presence of more than one genomic sequence homologous to DHPS per haploid maize genome.  相似文献   

6.
A group of 1,3-diarylurea derivatives, possessing a methylsulfonyl pharmacophore at the para-position of the N-1 phenyl ring, in conjunction with a N-3 substituted-phenyl ring (4-F, 4-Cl, 4-Me, 4-OMe), were designed and synthesized for evaluation as selective cyclooxygenase-2 (COX-2) inhibitors. In vitro COX-1/COX-2 isozyme inhibition structure-activity studies identified 1-(4-methylsulfonylphenyl)-3-(4-methoxyphenyl) urea (4e) as a potent COX-2 inhibitor (IC(50)=0.11 microM) with a high COX-2 selectivity index (SI=203.6) comparable to the reference drug celecoxib (COX-2 IC(50)=0.06 microM; COX-2 SI=405). The structure-activity data acquired indicate that the urea moiety constitutes a suitable scaffold to design new acyclic 1,3-diarylurea derivatives with selective COX-2 inhibitory activity.  相似文献   

7.
8.
A series of 3,5-disubstituted indole derivatives was designed, synthesized and evaluated as inhibitors of human nitric oxide synthase (NOS). Various guanidine isosteric groups were explored at the 5-position of the indole ring, while keeping the basic amine side chain such as N-methylpiperidine ring, fixed at the 3-position of the indole ring. Compounds having 2-thiophene amidine and 2-furanyl amidine groups (7, 8, 10 and 12) showed increased activity for human neuronal NOS and good selectivity over endothelial and inducible NOS isoforms. Compound 8 was shown to reverse (10mg/kg, ip) thermal hyperalgesia in the L(5)/L(6) spinal nerve ligation (neuropathic pain) model and was devoid of any significant drug-drug interaction potential due to cytochrome P450 inhibition or cardiovascular liabilities associated with the inhibition of endothelial NOS.  相似文献   

9.
4-(1,3-Thiazol-2-yl)morpholine derivatives have been identified as potent and selective inhibitors of phosphoinositide 3-kinase. The SAR data of selected examples are presented and the in vivo profiling of compound 18 is shown to demonstrate the utility of this class of compounds in xenograft models of tumor growth.  相似文献   

10.
Dihydrodipicolinate synthase (DHDPS, EC 4.2.1.52) catalyses the branchpoint reaction of lysine biosynthesis in plants and microbes: the condensation of (S)-aspartate-beta-semialdehyde and pyruvate. The crystal structure of wild-type DHDPS has been published to 2.5A, revealing a tetrameric molecule comprised of four identical (beta/alpha)(8)-barrels, each containing one active site. Previous workers have hypothesised that the catalytic mechanism of the enzyme involves a catalytic triad of amino acid residues, Tyr133, Thr44 and Tyr107, which provide a proton shuttle to transport protons from the active site to solvent. We have tested this hypothesis using site-directed mutagenesis to produce three mutant enzymes: DHDPS-Y133F, DHDPS-T44V and DHDPS-Y107F. Each of these mutants has substantially reduced activity, consistent with the catalytic triad hypothesis. We have determined each mutant crystal structure to at least 2.35A resolution and compared the structures to the wild-type enzyme. All mutant enzymes crystallised in the same space group as the wild-type form and only minor differences in structure are observed. These results suggest that the catalytic triad is indeed in operation in wild-type DHDPS.  相似文献   

11.
A group of 2,3-diaryl-1,3-thiazolidine-4-ones, possessing a methylsulfonyl pharmacophore, were synthesized and their biological activities were evaluated for cyclooxygenase-2 (COX-2) inhibitory activity.  相似文献   

12.
A novel series of pyridazinone analogs has been developed as potent β-1,3-glucan synthase inhibitors through structure-activity relationship study of the lead 5-[4-(benzylsulfonyl)piperazin-1-yl]-4-morpholino-2-phenyl-pyridazin-3(2H)-one (1). The effect of changes to the core structure is described in detail. Optimization of the sulfonamide moiety led to the identification of important compounds with much improved systematic exposure while retaining good antifungal activity against the fungal strains Candida glabrata and Candida albicans.  相似文献   

13.
Orally bioavailable inhibitors of β-(1,3)-d-glucan synthase have been pursued as new, broad-spectrum fungicidal therapies suitable for treatment in immunocompromised patients. Toward this end, a collaborative medicinal chemistry program was established based on semisynthetic derivatization of the triterpenoid glycoside natural product enfumafungin in order to optimize in vivo antifungal activity and oral absorption properties. In the course of these studies, it was hypothesized that the pharmacokinetic properties of the semisynthetic enfumafungin analog 3 could be improved by tethering the alkyl groups proximal to the basic nitrogen of the C3-aminoether side chain into an azacyclic system, so as to preclude oxidative N-demethylation. The results of this research effort are disclosed herein.  相似文献   

14.
Lysine biosynthesis in plants is tightly regulated by feedback inhibition of the end product on the first enzyme of the lysine-specific branch, dihydrodipicolinate synthase (DHDPS). Three complete DHDPS coding sequences and one partial sequence were obtained in Medicago truncatula via inverse PCR. Analysis of the MtDHDPS sequences indicated the presence of isozymes (MtDHDPS2 and MtDHDPS3) with multiple amino acid substitutions on positions previously shown to be involved in feedback inhibition and of residues important for catalytic activity, possibly affecting the enzymatic properties of these isoforms. Sequences similar to MtDHDPS2 and 3 are present in Lotus japonicus and Glycine max, suggesting the existence of a specific conserved class of DHDPS genes within the Fabaceae family. The MtDHDPS genes were found by quantitative RT-PCR analysis to be expressed in an organ-specific manner in M. truncatula. All four MtDHDPS enzymes were expressed separately in Escherichia coli, revealing a strongly reduced sensitivity of the MtDHDPS2 protein to lysine feedback inhibition and a severely reduced activity of the MtDHDPS3 protein. Remarkably, MtDHDPS3 expression in Arabidopsis thaliana produced transgenic plants with a significantly increased threonine level, suggesting a dominant DHDPS inhibiting role of this isoform. This is supported by co-expression experiments in E. coli which indicate that AtDHDPS and MtDHDPS3 interact and may form hetero-oligomers with strongly reduced enzymatic activity. In conclusion, analysis of DHDPS in M. truncatula revealed the presence of unique isozymes displaying novel regulatory properties.  相似文献   

15.
Allene oxide synthase (AOS) is a key enzyme in the oxylipin pathway in plants leading to jasmonic acid and other jasmonates (JAs), important signal mediators of defense signal networks in plants. AOS uses hydroperoxylinolenic acid as an oxygen donor as well as the substrate, thus the biochemical conversion of 13(S)-hydroperoxylinolenic acid to allene oxide can proceed in the absence of oxygen and NADPH. We have designed the synthesized of a series of novel imidazole derivatives and tested them in a bioassay as AOS inhibitors using a purified recombinant AOS enzyme isolated from Arabidopsis and expressed in E. coli. Among the derivatives prepared, heptyl 8-[1-(2,4-dichlorophenyl)-2-imidazolylethoxy]octanoate (k) was found to be the most potent inhibitor, with an IC50 of 10±5 nM, which is 250,000-fold and 1,000,000-fold more potent than the known AOS inhibitors, acetylsalicyclic acid (2.5 mM) and ketoconazole (10 mM), respectively.  相似文献   

16.
A new group of 1, 3-benthiazinan-4-ones, possessing a methyl sulfonyl pharmacophore, were synthesized and their biological activities were evaluated for cyclooxygenase-2 (COX-2) inhibitory activity. In vitro COX-1/COX-2 inhibition studies identified 3-(p-fluoropheny)-2-(4-methylsulfonylphenyl)-1,3-benzthiazinan-4-one (7b) as a potent (IC50 = 0.05 μM) and selective (selectivity index = 259) COX-2 inhibitor.  相似文献   

17.
New derivatives of L-thiocitrulline were prepared and assayed as inhibitors of the three isoforms of nitric oxide synthase. These compounds demonstrated weak inhibitory activity against the NOS isoforms and these results directly support a recently described model of the L-arginine binding site of NOS.  相似文献   

18.
New derivatives of -thiocitrulline were prepared and assayed as inhibitors of the three isoforms of nitric oxide synthase. These compounds demonstrated weak inhibitory activity against the NOS isoforms and these results directly support a recently described model of the -arginine binding site of NOS.  相似文献   

19.
This study described the synthesis and in vitro evaluation of eight new derivatives of uridine as antifungal agents and inhibitors of chitin synthase. Dimeric uridinyl derivatives synthesized by us did not exhibit significant activity. One of the studied monomeric derivative, 5′-(N-succinyl)-5′-amino-5′-deoxyuridine methyl ester (compound 7) showed activities against several fungal strains (MIC range 0.06–1.00 mg/mL) and inhibited chitin synthase from Saccharomyces cerevisiae (IC50 = 0.8 mM). Moreover compound 7 exhibited synergistic interaction with caspofungin against Candida albicans (FIC index = 0.28).  相似文献   

20.
In nature, Escherichia coli are exposed to harsh and non-ideal growth environments—nutrients may be limiting, and cells are often challenged by oxidative stress. For E. coli cells confronting these realities, there appears to be a link between oxidative stress, methionine availability, and the enzyme that catalyzes the final step of methionine biosynthesis, cobalamin-independent methionine synthase (MetE). We found that E. coli cells subjected to transient oxidative stress during growth in minimal medium develop a methionine auxotrophy, which can be traced to an effect on MetE. Further experiments demonstrated that the purified enzyme is inactivated by oxidized glutathione (GSSG) at a rate that correlates with protein oxidation. The unique site of oxidation was identified by selectively cleaving N-terminally to each reduced cysteine and analyzing the results by liquid chromatography mass spectrometry. Stoichiometric glutathionylation of MetE by GSSG occurs at cysteine 645, which is strategically located at the entrance to the active site. Direct evidence of MetE oxidation in vivo was obtained from thiol-trapping experiments in two different E. coli strains that contain highly oxidizing cytoplasmic environments. Moreover, MetE is completely oxidized in wild-type E. coli treated with the thiol-oxidizing agent diamide; reduced enzyme reappears just prior to the cells resuming normal growth. We argue that for E. coli experiencing oxidizing conditions in minimal medium, MetE is readily inactivated, resulting in cellular methionine limitation. Glutathionylation of the protein provides a strategy to modulate in vivo activity of the enzyme while protecting the active site from further damage, in an easily reversible manner. While glutathionylation of proteins is a fairly common mode of redox regulation in eukaryotes, very few proteins in E. coli are known to be modified in this manner. Our results are complementary to the independent findings of Leichert and Jakob presented in the accompanying paper (Leichert and Jakob 2004), which provide evidence that MetE is one of the proteins in E. coli most susceptible to oxidation. In eukaryotes, glutathionylation of key proteins involved in protein synthesis leads to inhibition of translation. Our studies suggest a simpler mechanism is employed by E. coli to achieve the same effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号