首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Fish lineage-specific gene, sinup [Siaz-interacting nuclear protein], modulates neural plate formation in embryogenesis and shares homology with human TPX2 protein, a member of the vertebrate mitogen-activating protein family. In spite of the presence of the TPX2 domain in Sinup, its cellular function has been unknown. As an initial approach to this question, we expressed Sinup by injecting sinup-EGFP mRNAs into zebrafish embryos at the one- to two-cell stage. First of all, Sinup-EGFP was associated with centrosomes and mitotic spindles. In particular, Sinup was localized to the spindle poles and midbody microtubules during the period between anaphase and cytokinesis. Second, various deleted mutants of Sinup-EGFP failed to be associated with the centrosomes and mitotic spindles. Third, a Sinup mutant, where the 144th Serine residue was converted to alanine, not only disturbed the mitotic spindle organization, such as multipolar spindles, fragmented spindle poles, and flattened spindles, but also arrested the cell cycle at metaphase and cell movement. Finally, Sinup is phosphorylated by Aurora A and the 144th Serine mutant of Sinup is partially phosphorylated by Aurora A kinase. We thus propose that Sinup is an essential element for the integrity of centrosomes and mitotic spindle fibers as well as for the normal process of cell cycle and cellular movement in vertebrate embryos.  相似文献   

3.
4.
The first visible event in prokaryotic cell division is the assembly of the soluble, tubulin-like FtsZ GTPase into a membrane-associated cytokinetic ring that defines the division plane in bacterial and archaeal cells. In the temperature-sensitive ftsZ84 mutant of Escherichia coli, this ring assembly is impaired at the restrictive temperature causing lethal cell filamentation. Here I present genetic and morphological evidence that a 2-fold higher dosage of the division gene zipA suppresses thermosensitivity of the ftsZ84 mutant by stabilizing the labile FtsZ84 ring structure in vivo. I demonstrate that purified ZipA promotes and stabilizes protofilament assembly of both FtsZ and FtsZ84 in vitro and cosediments with the protofilaments. Furthermore, ZipA organizes FtsZ protofilaments into arrays of long bundles or sheets that probably represent the physiological organization of the FtsZ ring in bacterial cells. The N-terminal cytoplasmic domain of membrane-anchored ZipA contains sequence elements that resemble the microtubule-binding signature motifs in eukaryotic Tau, MAP2 and MAP4 proteins. It is postulated that the MAP-Tau-homologous motifs in ZipA mediate its binding to FtsZ, and that FtsZ-ZipA interaction represents an ancient prototype of the protein-protein interaction that enables MAPs to suppress microtubule catastrophe and/or to promote rescue.  相似文献   

5.
Summary: Best macular dystrophy (BMD) is an autosomal dominant human disease characterized by macular degeneration with juvenile onset (OMIM 153700). The disease is most often associated with mutations in Bestrophin, which encodes a novel protein with four putative transmembrane domains. However, complete loss‐of‐function mutations in Bestrophin have not been reported in humans or mice. We have identified three homologs of human Bestrophin in the Drosophila genome (dbest1‐3). The protein products of these three genes share significant homology to a 364 amino acid N‐terminal domain of human Bestrophin. We used P‐element mutagenesis to delete dbest1, which encodes a protein with the highest amino acid similarity to Bestrophin. Three independent dbest1 mutants were recovered from the mutagenesis screen. Homozygous null mutations in dbest1 do not significantly alter the viability or fertility of mutant flies. Moreover, dbest1 mutants have normal photoreceptor morphology and function. genesis 31:130–136, 2001. © 2001 Wiley‐Liss, Inc.  相似文献   

6.
The disintegrin and metalloproteinase Adam10 has been implicated in the regulation of key signaling pathways that determine skin morphogenesis and homeostasis. To address the in vivo relevance of Adam10 in the epidermis, we have selectively disrupted Adam10 during skin morphogenesis and in adult skin. K14-Cre driven epidermal Adam10 deletion leads to perinatal lethality, barrier impairment and absence of sebaceous glands. A reduction of spinous layers, not associated with differences in either proliferation or apoptosis, indicates that loss of Adam10 triggers a premature differentiation of spinous keratinocytes. The few surviving K14-Adam10-deleted mice and mice in which Adam10 was deleted postnatally showed loss of hair, malformed vibrissae, epidermal hyperproliferation, cyst formation, thymic atrophy and upregulation of the cytokine thymic stromal lymphopoetin (TSLP), thus indicating non cell-autonomous multi-organ disease resulting from a compromised barrier. Together, these phenotypes closely resemble skin specific Notch pathway loss-of-function phenotypes. Notch processing is indeed strongly reduced resulting in decreased levels of Notch intracellular domain fragment and functional Notch signaling. The data identify Adam10 as the major Site-2 processing enzyme for Notch in the epidermis in vivo, and thus as a central regulator of skin development and maintenance.  相似文献   

7.
Gliomas are major tumors of the central nervous system with a wide spectrum of different tumor types. Ligand of Numb protein X (LNX) is PDZ domain containing protein that interacts with cell fate determinant Numb. cDNA microarray analysis was used to determine the expression of 13,939 genes in a set of 18 gliomas. It showed that human LNX was downregulated in 100% of gliomas including low- and high-grade ones, which was confirmed by Northern blot. In situ hybridization analysis revealed that LNX was lowly expressed in cytoplasm of glioma cells. Thus, LNX might act as a diagnostic marker and a potential therapeutic target for glioma. Two-hybrid screen in yeast was used to identify human LNX interacting proteins important for LNX function. It showed that human LNX interacted with Ski interacting protein (SKIP) via PDZ domains. The co-immunoprecipitation results suggested that LNX interacted with SKIP in HEK293 cells. LNX could affect the subcellular localization of Numb, which indicated that LNX might function as a molecular anchor that localized Numb to the subcellular site of its interaction with Notch. The presence of multiple protein binding domains involved in signal transduction and interaction with Numb and SKIP suggested an important role for LNX in tumorogenesis.  相似文献   

8.
Cytokinesis, the final stage of eukaryotic cell division, ensures the production of two daughter cells. It requires fine coordination between the plasma membrane and cytoskeletal networks, and it is known to be regulated by several intracellular proteins, including the small GTPase Rho and its effectors. In this study we provide evidence that the protein Nir2 is essential for cytokinesis. Microinjection of anti-Nir2 antibodies into interphase cells blocks cytokinesis, as it results in the production of multinucleate cells. Immunolocalization studies revealed that Nir2 is mainly localized in the Golgi apparatus in interphase cells, but it is recruited to the cleavage furrow and the midbody during cytokinesis. Nir2 colocalizes with the small GTPase RhoA in the cleavage furrow and the midbody, and it associates with RhoA in mitotic cells. Its N-terminal region, which contains a phosphatidylinositol transfer domain and a novel Rho-inhibitory domain (Rid), is required for normal cytokinesis, as overexpression of an N-terminal-truncated mutant blocks cytokinesis completion. Time-lapse videomicroscopy revealed that this mutant normally initiates cytokinesis but fails to complete it, due to cleavage furrow regression, while Rid markedly affects cytokinesis due to abnormal contractility. Rid-expressing cells exhibit aberrant ingression and ectopic cleavage sites; the cells fail to segregate into daughter cells and they form a long unseparated bridge-like cytoplasmic structure. These results provide new insight into the cellular functions of Nir2 and introduce it as a novel regulator of cytokinesis.  相似文献   

9.
10.
11.
We identified a novel secreted protein, fibin, in zebrafish, mice and humans. We inhibited its function in zebrafish embryos by injecting antisense fibin morpholino oligonucleotides. A knockdown of fibin function in zebrafish resulted in no pectoral fin bud initiation and abolished the expression of tbx5, which is involved in the specification of pectoral fin identification. The lack of pectoral fins in fibin-knockdown embryos was partially rescued by injection of fibin RNA. fibin was expressed in the lateral plate mesoderm of the presumptive pectoral fin bud regions. Its expression region was adjacent to that of tbx5. fibin expression temporally preceded tbx5 expression in presumptive pectoral fin bud regions, and not abolished in tbx5-knockdown presumptive fin bud regions. In contrast, fibin expression was abolished in retinoic acid signaling-inhibited or wnt2b-knockdown presumptive fin bud regions. These results indicate that fibin is a secreted signal essential for pectoral fin bud initiation in that it potentially acts downstream of retinoic acid and wnt signaling and is essential for tbx5 expression. The present findings have revealed a novel secreted lateral plate mesoderm signal essential for fin initiation in the lateral plate mesoderm.  相似文献   

12.
13.
Zheng W  Chen J  Liu W  Zheng S  Zhou J  Lu G  Wang Z 《Eukaryotic cell》2007,6(12):2240-2250
The small GTPase Rho3 is conserved in fungi and plays a key role in the control of cell polarity and exocytosis in yeast. In this report, we show that a Rho3 homolog, MgRho3, is dispensable for polarized hyphal growth in the rice blast fungus Magnaporthe grisea. However, MgRho3 is required for plant infection. Appressoria formed by the Mgrho3 deletion mutants are morphologically abnormal and defective in plant penetration. Conidia of the Mgrho3 deletion mutants are narrower than those of the wild-type strain and delayed in germination. Transformants expressing a dominant negative Mgrho3 allele exhibit similar phenotypes as the Mgrho3 deletion mutant, while transformants expressing a constitutively active allele of MgRho3 can produce normal conidia but remain defective in appressorium formation and plant infection. In contrast, overexpression of wild-type MgRho3 increases the infectivity of M. grisea. Our results reveal a new role for the conserved Rho3 as a critical regulator of developmental processes and pathogenicity of M. grisea.  相似文献   

14.
TJP3/ZO-3 is a scaffolding protein that tethers tight junction integral membrane proteins to the actin cytoskeleton and links the conserved Crumbs polarity complex to tight junctions. The physiological function of TJP3/ZO-3 is not known and mice lacking TJP3/ZO-3 show no apparent phenotype. Here we show that Tjp3/Zo-3 is a component of tight junctions present in the enveloping cell layer of zebrafish embryos. Silencing tjp3/zo-3 using morpholinos leads to edema, loss of blood circulation and tail fin malformations in the embryos. The ultrastructure of tight junctions of the enveloping cell layer is disrupted, without affecting the asymmetric distribution of plasma membrane proteins. Morphants show a loss of the epidermal barrier, as assessed by an increased permeability of the enveloping cell layer to low molecular weight tracers and a higher sensitivity of the embryos to osmotic stress. Subjecting wild-type embryos to osmotic stress mimicks the morphant phenotype, consistent with the phenotype being a direct consequence of failed osmoregulation. Thus, Tjp3/Zo-3 is critical for barrier function of the enveloping cell layer and osmoregulation in early stages of zebrafish development.  相似文献   

15.
Starting with a mutation impacting photoreceptor morphogenesis, we identify here a Drosophila gene, eyes closed (eyc), as a fly homolog of p47, a protein co-factor of the p97 ATPase implicated in membrane fusion. Temporal misexpression of Eyc during rhabdomere extension early in pupal life results in inappropriate retention of normally transient adhesions between developing rhabdomeres. Later Eyc misexpression results in endoplasmic reticulum proliferation and inhibits rhodopsin transport to the developing photosensitive membrane. Loss of Eyc function results in a lethal failure of nuclear envelope assembly in early zygotic divisions. Phenotypes resulting from eyc mutations provide the first in vivo evidence for a role for p47 in membrane biogenesis.  相似文献   

16.
To evaluate the genetic control of stress responses in Arabidopsis, we have analyzed a mutant (uvh6-1) that exhibits increased sensitivity to UV light, a yellow-green leaf coloration, and mild growth defects. We have mapped the uvh6-1 locus to chromosome I and have identified a candidate gene, AtXPD, within the corresponding region. This gene shows sequence similarity to the human (Homo sapiens) XPD and yeast (Saccharomyces cerevisiae) RAD3 genes required for nucleotide excision repair. We propose that UVH6 is equivalent to AtXPD because uvh6-1 mutants carry a mutation in a conserved residue of AtXPD and because transformation of uvh6-1 mutants with wild-type AtXPD DNA suppresses both UV sensitivity and other defective phenotypes. Furthermore, the UVH6/AtXPD protein appears to play a role in repair of UV photoproducts because the uvh6-1 mutant exhibits a moderate defect in the excision of UV photoproducts. This defect is also suppressed by transformation with UVH6/AtXPD DNA. We have further identified a T-DNA insertion in the UVH6/AtXPD gene (uvh6-2). Plants carrying homozygous insertions were not detected in analyses of progeny from plants heterozygous for the insertion. Thus, homozygous insertions appear to be lethal. We conclude that the UVH6/AtXPD gene is required for UV resistance and is an essential gene in Arabidopsis.  相似文献   

17.
Migration, proliferation and differentiation of keratinocytes are important processes during tissue regeneration and wound healing of the skin. Here, we focussed on proteases that contribute to extracellular matrix (ECM) remodeling as a prerequisite of keratinocyte migration. In particular, we assessed the significance of the mammalian cysteine peptidase cathepsin B for human keratinocytes during regeneration from scratch wounding. We describe the construction of a scratch apparatus that allows applying scratches of defined length, width and depth to cultured cells in a reproducible fashion. The rationale for our approach derived from our previous work where we have shown that HaCaT keratinocytes secrete cathepsin B into the extracellular space during spontaneous and induced migration. Here, we observed rapid removal of type IV collagen from underneath lamellipodial extensions of keratinocytes at the advancing fronts of regenerating monolayers, indicating that proteolytic ECM remodeling starts upon initiation of keratinocyte migration. Furthermore, we verified our previous results with HaCaT cells by using normal human epidermal keratinocytes (NHEK) and show that non-cell-permeant cathepsin B-specific inhibitors delayed full regeneration of the monolayers from scratch wounding in both cell systems, HaCaT and NHEK. Application of a single dose of cathepsin B inhibitor directly after scratch wounding of keratinocytes demonstrated that cathepsin B is essential during initial stages of wound healing, while its contribution to the subsequent processes of proliferation and differentiation of keratinocytes was of less significance. This notion was supported by our observation that the cathepsin B inhibitors used in this study did not affect proliferation rates of keratinocytes of regenerating cultures. Thus, we conclude that cathepsin B is indeed involved in ECM remodeling after its secretion from migrating keratinocytes. Cathepsin B might directly cleave ECM constituents or it may initiate proteolytic cascades that involve other proteases with the ability to degrade ECM components. Because cathepsin B is important for enabling migration of both, HaCaT cells and NHEK, our results support the notion that HaCaT keratinocytes represent an excellent cell culture model for analysis of human epidermal skin keratinocyte migration.  相似文献   

18.
Liu L  Zhu S  Gong Z  Low BC 《PloS one》2008,3(8):e2850
The RAS small GTPases orchestrate multiple cellular processes. Studies on knock-out mice showed the essential and sufficient role of K-RAS, but not N-RAS and H-RAS in embryonic development. However, many physiological functions of K-RAS in vivo remain unclear. Using wild-type and fli1:GFP transgenic zebrafish, we showed that K-ras-knockdown resulted in specific hematopoietic and angiogenic defects, including the impaired expression of erythroid-specific gene gata1 and sse3-hemoglobin, reduced blood circulation and disorganized blood vessels. Expression of either K-rasC40 that links to phosphoinositide 3-kinase (PI3K) activation, or Akt2 that acts downstream of PI3K, could rescue both hematopoietic and angiogenic defects in the K-ras knockdown. Consistently, the functional rescue by k-ras mRNA was significantly suppressed by wortmannin, a PI3K-specific inhibitor. Our results provide direct evidence that PI3K-Akt plays a crucial role in mediating K-ras signaling during hematopoiesis and angiogenesis in vivo, thus offering new targets and alternative vertebrate model for studying these processes and their related diseases.  相似文献   

19.
Yu Y  Jiang D  Xie J  Cheng J  Li G  Yi X  Fu Y 《PloS one》2012,7(4):e34962
The sclerotium is an important dormant body for many plant fungal pathogens. Here, we reported that a protein, named Ss-Sl2, is involved in sclerotial development of Sclerotinia sclerotiorum. Ss-Sl2 does not show significant homology with any protein of known function. Ss-Sl2 contains two putative PAN modules which were found in other proteins with diverse adhesion functions. Ss-Sl2 is a secreted protein, during the initial stage of sclerotial development, copious amounts of Ss-Sl2 are secreted and accumulated on the cell walls. The ability to maintain the cellular integrity of RNAi-mediated Ss-Sl2 silenced strains was reduced, but the hyphal growth and virulence of Ss-Sl2 silenced strains were not significantly different from the wild strain. Ss-Sl2 silenced strains could form interwoven hyphal masses at the initial stage of sclerotial development, but the interwoven hyphae could not consolidate and melanize. Hyphae in these interwoven bodies were thin-walled, and arranged loosely. Co-immunoprecipitation and yeast two-hybrid experiments showed that glyceraldehyde-3-phosphate dehydrogenase (GAPDH), Woronin body major protein (Hex1) and elongation factor 1-alpha interact with Ss-Sl2. GAPDH-knockdown strains showed a similar phenotype in sclerotial development as Ss-Sl2 silenced strains. Hex1-knockdown strains showed similar impairment in maintenance of hyphal integrity as Ss-Sl2 silenced strains. The results suggested that Ss-Sl2 functions in both sclerotial development and cellular integrity of S. sclerotiorum.  相似文献   

20.
The mitochondrial inner membrane (IM) serves as the site for ATP production by hosting the oxidative phosphorylation complex machinery most notably on the crista membranes. Disruption of the crista structure has been implicated in a variety of cardiovascular and neurodegenerative diseases. Here, we characterize ChChd3, a previously identified PKA substrate of unknown function (Schauble, S., King, C. C., Darshi, M., Koller, A., Shah, K., and Taylor, S. S. (2007) J. Biol. Chem. 282, 14952-14959), and show that it is essential for maintaining crista integrity and mitochondrial function. In the mitochondria, ChChd3 is a peripheral protein of the IM facing the intermembrane space. RNAi knockdown of ChChd3 in HeLa cells resulted in fragmented mitochondria, reduced OPA1 protein levels and impaired fusion, and clustering of the mitochondria around the nucleus along with reduced growth rate. Both the oxygen consumption and glycolytic rates were severely restricted. Ultrastructural analysis of these cells revealed aberrant mitochondrial IM structures with fragmented and tubular cristae or loss of cristae, and reduced crista membrane. Additionally, the crista junction opening diameter was reduced to 50% suggesting remodeling of cristae in the absence of ChChd3. Analysis of the ChChd3-binding proteins revealed that ChChd3 interacts with the IM proteins mitofilin and OPA1, which regulate crista morphology, and the outer membrane protein Sam50, which regulates import and assembly of β-barrel proteins on the outer membrane. Knockdown of ChChd3 led to almost complete loss of both mitofilin and Sam50 proteins and alterations in several mitochondrial proteins, suggesting that ChChd3 is a scaffolding protein that stabilizes protein complexes involved in maintaining crista architecture and protein import and is thus essential for maintaining mitochondrial structure and function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号