首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Lipid modifications of proteins are widespread in nature and play an important role in numerous biological processes. The nonreceptor tyrosine kinase Src is equipped with an N-terminal myristoyl chain and a cluster of basic amino acids for the stable membrane association of the protein. We used 2H NMR spectroscopy to investigate the structure and dynamics of the myristoyl chain of myr-Src(2-19), and compare them with the hydrocarbon chains of the surrounding phospholipids in bilayers of varying surface potentials and chain lengths. The myristoyl chain of Src was well inserted in all bilayers investigated. In zwitterionic 1,2-dimyristoyl-sn-glycero-3-phosphocholine membranes, the myristoyl chain of Src was significantly longer and appears “stiffer” than the phospholipid chains. This can be explained by an equilibrium between the attraction attributable to the insertion of the myristoyl chain and the Born repulsion. In a 1,2-dimyristoyl-sn-glycero-3-phosphocholine/1,2-dimyristoyl-sn-glycero-3-[phospho-L-serine] membrane, where attractive electrostatic interactions come into play, the differences between the peptide and the phospholipid chain lengths were attenuated, and the molecular dynamics of all lipid chains were similar. In a much thicker 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/1,2-dipalmitoyl-sn-glycero-3-[phospho-L-serine]/cholesterol membrane, the length of the myristoyl chain of Src was elongated nearly to its maximum, and the order parameters of the Src chain were comparable to those of the surrounding membrane.  相似文献   

2.
Aqueous phospholipid mixtures that form bilayered micelles (bicelles) have gained wide use by molecular biophysicists during the past 20 years for spectroscopic studies of membrane-bound peptides and structural refinement of soluble protein structures. Nonetheless, the utility of bicelle systems may be compromised by considerations of cost, chemical stability, and preservation of the bicelle aggregate organization under a broad range of temperature, concentration, pH, and ionic strength conditions. In the current work, 31P nuclear magnetic resonance (NMR) and atomic force microscopy (AFM) have been used to monitor the size and morphology of isotropically tumbling small bicelles formed by mixtures of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) or 1,2-di-O-tetradecyl-sn-glycero-3-phosphocholine (DIOMPC) with either 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) or 1,2-di-O-hexyl-sn-glycero-3-phosphocholine (DIOHPC), testing their tolerance of variations in commonly used experimental conditions. 1H-15N 2D NMR has been used to demonstrate the usefulness of the robust DMPC-DIOHPC system for conformational studies of a fatty acid-binding protein that shuttles small ligands to and from biological membranes.  相似文献   

3.
Specific RNA binding to ordered phospholipid bilayers   总被引:2,自引:0,他引:2       下载免费PDF全文
We have studied RNA binding to vesicles bounded by ordered and disordered phospholipid membranes. A positive correlation exists between bilayer order and RNA affinity. In particular, structure-dependent RNA binding appears for rafted (liquid-ordered) domains in sphingomyelin-cholesterol-1,2-dioleoyl-sn-glycero-3-phosphocholine vesicles. Binding to more highly ordered gel phase membranes is stronger, but much less RNA structure-dependent. All modes of RNA-membrane association seem to be electrostatic and headgroup directed. Fluorometry on 1,2-dimyristoyl-sn-glycero-3-phosphocholine liposomes indicates that bound RNA broadens the gel-fluid melting transition, and reduces lipid headgroup order, as detected via fluorometric measurement of intramembrane electric fields. RNA preference for rafted lipid was visualized and confirmed using multiple fluorophores that allow fluorescence and fluorescence resonance energy transfer microscopy on RNA molecules closely associated with ordered lipid patches within giant vesicles. Accordingly, both RNA structure and membrane order could modulate biological RNA–membrane interactions.  相似文献   

4.
The opening and closing of voltage-gated potassium (Kv) channels are controlled by several conserved Arg residues in the S4 helix of the voltage-sensing domain. The interaction of these positively charged Arg residues with the lipid membrane has been of intense interest for understanding how membrane proteins fold to allow charged residues to insert into lipid bilayers against free-energy barriers. Using solid-state NMR, we have now determined the orientation and insertion depth of the S4 peptide of the KvAP channel in lipid bilayers. Two-dimensional 15N correlation experiments of macroscopically oriented S4 peptide in phospholipid bilayers revealed a tilt angle of 40° and two possible rotation angles differing by 180° around the helix axis. Remarkably, the tilt angle and one of the two rotation angles are identical to those of the S4 helix in the intact voltage-sensing domain, suggesting that interactions between the S4 segment and other helices of the voltage-sensing domain are not essential for the membrane topology of the S4 helix. 13C-31P distances between the S4 backbone and the lipid 31P indicate a ∼ 9 Å local thinning and 2 Å average thinning of the DMPC (1,2-dimyristoyl-sn-glycero-3-phosphochloline)/DMPG (1,2-dimyristoyl-sn-glycero-3-phosphatidylglycerol) bilayer, consistent with neutron diffraction data. Moreover, a short distance of 4.6 Å from the guanidinium Cζ of the second Arg to 31P indicates the existence of guanidinium phosphate hydrogen bonding and salt bridges. These data suggest that the structure of the Kv gating helix is mainly determined by protein-lipid interactions instead of interhelical protein-protein interactions, and the S4 amino acid sequence encodes sufficient information for the membrane topology of this crucial gating helix.  相似文献   

5.
Oxidation of glycerophospholipids results in the formation of large variety of oxidized phospholipid products that differs significantly in their chemical compositions and molecular structures. Biological activities of these oxidized products also differ considerably. Here we report the comparisons of the physicochemical properties of non-oxidized phospholipid particle containing two closely related tOx-PLs: 1-palmitoyl-2-(5-keto-6-octendioyl)-sn-glycero-3-phosphocholine (KOdiA-PC) and 1-palmitoyl-2-(9-keto-10-dodecendioyl)-sn-glycero-3-phosphocholine (KDdiA-PC). DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) was used as a model membrane non-oxidized phospholipid. Physicochemical properties of the lipid particles were characterized by using fluorescence spectroscopy, native polyacrylamide gel and agarose gel electrophoresis. Our result shows that the presence of closely related tOx-PLs, which differ only in the chemical composition of the oxidized fatty acyl chains at the sn-2 position, exerts considerably different effect on the physicochemical properties of non-oxidized phospholipid particles containing them.  相似文献   

6.
Modelin-5-CONH2, a synthetic antimicrobial peptide, was used to gain an insight into species-selective haemolytic activity. The peptide displayed limited haemolytic activity against sheep (12 %), human (2 %), and pig (2 %) erythrocytes. Our results show that Modelin-5-CONH2 had a disordered structure in the presence of vesicles formed from sheep, human, and pig erythrocyte lipid extract (<26 % helical) yet folded to form helices in the presence of a phosphatidylcholine (PC) membrane interface (e.g. >42 % in the presence of 1,2-dimyristoyl-sn-glycero-3-phosphocholine). Monolayer studies showed a strong correlation between anionic lipid content and monolayer insertion and lysis inducing surface pressure changes of 9.17 mN m?1 for 1,2-dimyristoyl-sn-glycero-3-phospho-l-serine compared with PC monolayers, which induced pressure changes of ca. 3 mN m?1. The presence of cholesterol in the membrane is shown to increase the packing density as the PC:sphingomyelin (SM) ratio increases so preventing the peptide from forming a stable association with the membrane. The data suggests that the key driver for membrane interaction for Modelin-5-CONH2 is the anionic lipid attraction. However, the key factors in the species-specific haemolysis level for this peptide are the differing packing densities which are influenced by the SM:PC:cholesterol ratio.  相似文献   

7.
The effects of lipids on membrane proteins are likely to be complex and unique for each membrane protein. Here we studied different detergent/phosphatidylcholine reconstitution media and tested their effects on plasma membrane Ca2+ pump (PMCA). We found that Ca2+-ATPase activity shows a biphasic behavior with respect to the detergent/phosphatidylcholine ratio. Moreover, the maximal Ca2+-ATPase activity largely depends on the length and the unsaturation degree of the hydrocarbon chain. Using static light scattering and fluorescence correlation spectroscopy, we monitored the changes in hydrodynamic radius of detergent/phosphatidylcholine particles during the micelle-vesicle transition. We found that, when PMCA is reconstituted in mixed micelles, neutral phospholipids increase the enzyme turnover. The biophysical changes associated with the transition from mixed micelles to bicelles increase the time of residence of the phosphorylated intermediate (EP), decreasing the enzyme turnover. Molecular dynamics simulations analysis of the interactions between PMCA and the phospholipid bilayer in which it is embedded show that in the 1,2-dioleoyl-sn-glycero-3-phosphocholine bilayer, charged residues of the protein are trapped in the hydrophobic core. Conversely, in the 1,2-dimyristoyl-sn-glycero-3-phosphocholine bilayer, the overall hydrophobic-hydrophilic requirements of the protein surface are fulfilled the best, reducing the thermodynamic cost of exposing charged residues to the hydrophobic core. The apparent mismatch produced by a 1,2-dioleoyl-sn-glycero-3-phosphocholine thicker bilayer could be a structural foundation to explain its functional effect on PMCA.  相似文献   

8.
Ampullosporin A and alamethicin are two members of the peptaibol family of antimicrobial peptides. These compounds are produced by fungi and are characterized by a high content of hydrophobic amino acids, and in particular the α-tetrasubstituted amino acid residue α-aminoisobutyric acid. Here ampullosporin A and alamethicin were uniformly labeled with 15N, purified and reconstituted into oriented phophatidylcholine lipid bilayers and investigated by proton-decoupled 15N and 31P solid-state NMR spectroscopy. Whereas alamethicin (20 amino acid residues) adopts transmembrane alignments in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) or 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) membranes the much shorter ampullosporin A (15 residues) exhibits comparable configurations only in thin membranes. In contrast the latter compound is oriented parallel to the membrane surface in 1,2-dimyristoleoyl-sn-glycero-3-phosphocholine and POPC bilayers indicating that hydrophobic mismatch has a decisive effect on the membrane topology of these peptides. Two-dimensional 15N chemical shift - 1H-15N dipolar coupling solid-state NMR correlation spectroscopy suggests that in their transmembrane configuration both peptides adopt mixed α-/310-helical structures which can be explained by the restraints imposed by the membranes and the bulky α-aminoisobutyric acid residues. The 15N solid-state NMR spectra also provide detailed information on the helical tilt angles. The results are discussed with regard to the antimicrobial activities of the peptides.  相似文献   

9.
The membrane-bound conformation of a cell-penetrating peptide, penetratin, is investigated using solid-state NMR spectroscopy. The 13C chemical shifts of 13C, 15N-labeled residues in the peptide indicate a reversible conformational change from β-sheet at low temperature to coil-like at high temperature. This conformational change occurs for all residues examined between positions 3 and 13, at peptide/lipid molar ratios of 1:15 and 1:30, in membranes with 25-50% anionic lipids, and in both saturated DMPC/DMPG (1,2-dimyristoyl-sn-glycero-3-phosphatidylchloline/1,2-dimyristoyl-sn-glycero-3-phosphatidylglycerol) membranes and unsaturated POPC/POPG (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylglycerol) membranes. Thus, it is an intrinsic property of penetratin. The coil state of the peptide has C-H order parameters of 0.23-0.52 for Cα and Cβ sites, indicating that the peptide backbone is unstructured. Moreover, chemical shift anisotropy lineshapes are uniaxially averaged, suggesting that the peptide backbone undergoes uniaxial rotation around the bilayer normal. These observations suggest that the dynamic state of penetratin at high temperature is a structured turn instead of an isotropic random coil. The thermodynamic parameters of this sheet-turn transition are extracted and compared to other membrane peptides reported to exhibit conformational changes. We suggest that the function of this turn conformation may be to reduce hydrophobic interactions with the lipid chains and facilitate penetratin translocation across the bilayer without causing permanent membrane damage.  相似文献   

10.
Urethan-induced pulmonary adenomas of mice are composed of cells that appear to be morphologically identical to alveolar type II cells and synthesize disaturated diacyl-sn-glycero-3-phosphocholine, the major component of pulmonary surfactant. 1-[1-14C]Palmitoyl-sn-glycero-3-phosphocholine and [1-14C]palmitic acid were compared as precursors of disaturated diacyl-sn-glycero-3-phosphocholine in the adenoma type II cells by incubating both substrates with whole adenomas. When the precursors were compared at equal concentrations (100 μm) in the presence of albumin (1 mg/ml), the rates of incorporation of 1-[1-14C]palmitoyl-sn-glycero-3-phosphocholine and [1-14C]palmitic acid into diacyl-sn-glycero-3-phosphocholine were 5.2 and 2.9 nmol/min · g tissue, respectively. The concentration of monoacyl-sn-glycero-3-phosphocholine (lysolecithin) in the blood plasma of BALB/c mice was 150 μm. In short-term labeling experiments, the label in disaturated diacyl-sn-glycero-3-phosphocholine was equally distributed between the sn-1 and sn-2 positions when 1-[1-14C]palmitoyl-sn-glycero-3-phosphocholine was the precursor, whereas 75 to 80% was in the sn-2 position when [1-14C]palmitic acid was the precursor. The ratios are consistent with incorporation of 1-palmitoyl-sn-glycero-3-phosphocholine via the lysolecithin:lysolecithin transacylase reaction and incorporation of palmitate via acylation of 1-palmitoyl-sn-glycero-3-phosphocholine by acyl-CoA:lysolecithin acyltransferase. 1-[1-14C]Palmitoyl-sn-glycero-3-phospho-[3H-methyl]choline was incorporated into total cellular diacyl-sn-glycero-3-phosphocholine with an isotope ratio similar to that of the precursor; the disaturated species was more enriched in 14C. These findings indicate the cells take up intact monoacyl-sn-glycero-3-phosphocholine and incorporate it into diacyl-sn-glycero-3-phosphocholine. The ability of the cells to utilize intact lysophosphoglycerides for synthesis of cellular lipids was further demonstrated by showing that ether analogs, 1-alkyl-sn-glycero-3-phosphocholine and 1-alkyl-sn-glycero-3-phosphoethanolamine, are taken up and acylated by the cells. Activities of lysolecithin:lysolecithin transacylase and acyl-CoA:lysolecithin acyltransferase were measured in subcellular fractions of the adenoma type II cells; the specific activities of the enzymes were 2.1 nmol/min · mg soluble protein and 21 nmol/min · mg microsomal protein, respectively. The total activity of the acyltransferase in the cell fractions was about four-fold higher than the activity of the transacylase. Characteristics of the two enzymes were studied and are discussed. The findings indicate that exogenous 1-palmitoyl-sn-glycero-3-phosphocholine and palmitic acid both serve as efficient precursors of disaturated diacyl-sn-glycero-3-phosphocholine in the adenoma alveolar type II cells.  相似文献   

11.
The interaction of cationic pentalysine with phospholipid membranes was studied by using phosphorus and deuterium Nuclear Magnetic Resonance (NMR) of headgroup deuterated dimyristoyl phosphatidylcholine (DMPC) and dimyristoyl phosphatidylserine (DMPS). In the absence of pentalysine, some of the deuterium and phosphorus spectra of DMPC/DMPS 5:1 (m:m) membranes gave lineshapes similar to those of partially-oriented bilayers with the planes of the bilayers being parallel to the magnetic field. The deuterium NMR data show that the quadrupolar splittings of the deuterated methylenes of the DMPC headgroup are not affected by adsorption of pentalysine on the PC/PS membranes. By contrast, the pentalysine produces significant changes in the quadrupolar splittings of the negatively charged DMPS headgroup. The results are discussed in relation to previous 2H NMR investigations of phospholipid headgroup perturbations arising from bilayer interaction with cationic molecules.Abbreviations NMR nuclear magnetic resonance - DMPC 1,2-dimyristoyl-sn-glycero-3-phosphocholine - DMPS 1,2-dimyristoyl-sn-glycero-3-phosphoserine - POPC 1-palmitoyl, 2-oleyl-sn-glycero-3-phosphocholine - POPG 1-palmitoyl-2-oleyl-sn-glycero-3-phosphoglycerol - PC phosphatidylcholine - PS phosphatidyl serine - PG phosphatidylglycerol - HEPES N-(2-hydroxy-ethyl)piperazine-N-2-ethanesulfonic acid - TRIS tris-(hydroxymethyl)aminoethane - EDTA ethylenediamine-tetra-acetic acid  相似文献   

12.
The effects of hydrophobic thickness and the molar phosphatidylglycerol (PG) content of lipid bilayers on the structure and membrane interaction of three cationic antimicrobial peptides were examined: aurein 2.2, aurein 2.3 (almost identical to aurein 2.2, except for a point mutation at residue 13), and a carboxy C-terminal analog of aurein 2.3. Circular dichroism results indicated that all three peptides adopt an α-helical structure in the presence of a 3:1 molar mixture of 1,2-dimyristoyl-sn-glycero-3-phosphocholine/1,2-dimyristoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (DMPC/DMPG), and 1:1 and 3:1 molar mixtures of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine/1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (POPC/POPG). Oriented circular dichroism data for three different lipid compositions showed that all three peptides were surface-adsorbed at low peptide concentrations, but were inserted into the membrane at higher peptide concentrations. The 31P solid-state NMR data of the three peptides in the DMPC/DMPG and POPC/POPG bilayers showed that all three peptides significantly perturbed lipid headgroups, in a peptide or lipid composition-dependent manner. Differential scanning calorimetry results demonstrated that both amidated aurein peptides perturbed the overall phase structure of DMPC/DMPG bilayers, but perturbed the POPC/POPG chains less. The nature of the perturbation of DMPC/DMPG bilayers was most likely micellization, and for the POPC/POPG bilayers, distorted toroidal pores or localized membrane aggregate formation. Calcein release assay results showed that aurein peptide-induced membrane leakage was more severe in DMPC/DMPG liposomes than in POPC/POPG liposomes, and that aurein 2.2 induced higher calcein release than aurein 2.3 and aurein 2.3-COOH from 1:1 and 3:1 POPC/POPG liposomes. Finally, DiSC35 assay data further delineated aurein 2.2 from the others by showing that it perturbed the lipid membranes of intact S. aureus C622 most efficiently, whereas aurein 2.3 had the same efficiency as gramicidin S, and aurein 2.3-COOH was the least efficient. Taken together, these data show that the membrane interactions of aurein peptides are affected by the hydrophobic thickness of the lipid bilayers and the PG content.  相似文献   

13.
The effect of nonionic detergents of the n-alkyl-β-D-glucopyranoside class on the ordering of lipid bilayers and the dynamics of membrane-embedded peptides were investigated with 2H- and 31P-NMR. 1,2-dipalmitoyl-sn-glycero-3-phosphocholine was selectively deuterated at methylene segments C-2, C-7, and C-16 of the two fatty acyl chains. Two trans-membrane helices, WALP-19 and glycophorin A71-98, were synthesized with Ala-d3 in the central region of the α-helix. n-Alkyl-β-D-glucopyranosides with alkyl chains with 6, 7, 8, and 10 carbon atoms were added at increasing concentrations to the lipid membrane. The bilayer structure is retained up to a detergent/lipid molar ratio of 1:1. The insertion of the detergents leads to a selective disordering of the lipids. The headgroup region remains largely unaffected; the fatty acyl chain segments parallel to the detergent alkyl chain are only modestly disordered (10-20%), whereas lipid segments beyond the methyl terminus of the detergent show a decrease of up to 50%. The change in the bilayer order profile corresponds to an increase in bilayer entropy. Insertion of detergents into the lipid bilayers is completely entropy-driven. The entropy change accompanying lipid disorder is equivalent in magnitude to the hydrophobic effect. Ala-d3 deuterated WALP-19 and GlycA71-97 were incorporated into bilayers of 1,2-dimyristoyl-sn-glycero-3-phosphocholine at a peptide/lipid molar ratio of 1:100 and measured above the 1,2-dimyristoyl-sn-glycero-3-phosphocholine gel/liquid-crystal phase transition. Well-resolved 2H-NMR quadrupole splittings were observed for the two trans-membrane helices, revealing a rapid rotation of the CD3 methyl rotor superimposed on an additional rotation of the whole peptide around the bilayer normal. The presence of detergent fluidizes the membrane and produces magnetic alignment of bilayer domains but does not produce essential changes in the peptide conformation or dynamics.  相似文献   

14.
To investigate the effect of lipid structure upon the membrane topography of hydrophobic helices, the behavior of hydrophobic peptides was studied in model membrane vesicles. To define topography, fluorescence and fluorescence quenching methods were used to determine the location of a Trp at the center of the hydrophobic sequence. For peptides with cationic residues flanking the hydrophobic sequence, the stability of the transmembrane (TM) configuration (relative to a membrane-bound non-TM state) increased as a function of lipid composition on the order: 1:1 (mol:mol) 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC):1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine ∼ 6:4 POPC:cholesterol < POPC ∼ dioleoylphosphatidylcholine (DOPC) < 1,2-dioleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] sodium salt (DOPG) ≤ 1,2-dioleoyl-sn-glycero-3-[phospho-l-serine] sodium salt (DOPS), indicating that the anionic lipids DOPG and DOPS most strongly stabilized the TM configuration. TM stabilization was near maximal at 20-30 mol% anionic lipid, which are physiologically relevant values. TM stabilization by anionic lipid was observed for hydrophobic sequences with a diverse set of sequences (including polyAla), diverse lengths (from 12 to 22 residues), and various cationic flanking residues (H, R, or K), but not when the flanking residues were uncharged. TM stabilization by anionic lipid was also dependent on the number of cationic residues flanking the hydrophobic sequence, but was still significant with only one cationic residue flanking each end of the peptide. These observations are consistent with TM-stabilizing effects being electrostatic in origin. However, Trp located more deeply in DOPS vesicles relative to DOPG vesicles, and peptides in DOPS vesicles showed increased helix formation relative to DOPG and all other lipid compositions. These observations fit a model in which DOPS anchors flanking residues near the membrane surface more strongly than does DOPG and/or increases the stability of the TM state to a greater degree than DOPG. We conclude that anionic lipids can have significant and headgroup structure-specific effects upon membrane protein topography.  相似文献   

15.
The membrane-spanning segments of integral membrane proteins often are flanked by aromatic or charged amino acid residues, which may “anchor” the transmembrane orientation. Single spanning transmembrane peptides such as those of the WALP family, acetyl-GWW(LA)nLWWA-amide, furthermore adopt a moderate average tilt within lipid bilayer membranes. To understand the anchor residue dependence of the tilt, we introduce Leu-Ala “spacers” between paired anchors and in some cases replace the outer tryptophans. The resulting peptides, acetyl-GX2ALW(LA)6LWLAX22A-amide, have Trp, Lys, Arg, or Gly in the two X positions. The apparent average orientations of the core helical sequences were determined in oriented phosphatidylcholine bilayer membranes of varying thickness using solid-state 2H NMR spectroscopy. When X is Lys, Arg, or Gly, the direction of the tilt is essentially constant in different lipids and presumably is dictated by the tryptophans (Trp5 and Trp19) that flank the inner helical core. The Leu-Ala spacers are no longer helical. The magnitude of the apparent helix tilt furthermore scales nicely with the bilayer thickness except when X is Trp. When X is Trp, the direction of tilt is less well defined in each phosphatidylcholine bilayer and varies up to 70° among 1,2-dioleoyl-sn-glycero-3-phosphocholine, 1,2-dimyristoyl-sn-glycero-3-phosphocholine, and 1,2-dilauroyl-sn-glycero-3-phosphocholine bilayer membranes. Indeed, the X = Trp case parallels earlier observations in which WALP family peptides having multiple Trp anchors show little dependence of the apparent tilt magnitude on bilayer thickness. The results shed new light on the interactions of arginine, lysine, tryptophan, and even glycine at lipid bilayer membrane interfaces.  相似文献   

16.
(1) The effect of glycophorin, a major intrinsic glycoprotein of the human erythrocyte membrane, on lipid polymorphism has been investigated by 31P-NMR (at 36.4 MHz) and by freeze-fracture electron microscopy. (2) Incorporation of glycophorin into vesicles of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) results in the formation of unilamellar vesicles (1000–5000 Å diameter) which exhibit 31P-NMR bilayer spectra over a wide range of temperature. A reduction in the chemical shift anisotropy (Δσcsaeff) and an increase in spectral linewidth in comparison to dioleoylphosphatidylcholine liposomes may suggest a decrease in phospholipid headgroup order. (3) 1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), in the presence of excess water, undergoes a bilayer to hexagonal (HII) phospholipid arrangement as the temperature is increased above 0°C. Incorporation of glycophorin into this system stabilizes the bilayer configuration, prohibiting the formation of the HII phase. (4) Cosonication of glycophorin with DOPE in aqueous solution (pH 7.4) produces small, stable unilamellar vesicles (300–1000 Å diameter), unlike DOPE alone which is unstable and precipitates from solution. (5) The current study demonstrates the bilayer stabilizing capacity of an intrinsic membrane protein, glycophorin, most likely by means of a strong hydrophobic interaction between the membrane spanning portion of glycophorin and the hydrophobic region of the phospholipid.  相似文献   

17.
We report results of a partitioning study of 2,3,4,6-tetrachlorophenol (TeCP). In the study we explored (1) the effect of the length of acyl chains of lipids (C16:1 – C24:1) and alkanes (C6–C16), (2) the role of the carbonyl group of lipids, and (3) the effect of molecular structure of the sarcoplasmic reticulum membrane on TeCP partitioning. Mole fraction partition coefficients have been measured using equilibrium dialysis for un-ionized (HA), and ionized (A) species, KpxHA, KpxA. Their values are concentration-dependent. Partition coefficients were analyzed in terms of a model that accounts for saturation of membrane associated with the finite area of partition site, and electrostatic interactions of (A-) species with charged membrane. Limiting values of partition coefficients, corresponding to infinite dilution of solute, Kpx0HA, Kpx0A were obtained. Kpx0HA and Kpx0A measure the strength of solute-membrane interactions. Studies were done with single-layered vesicles of lipids with variable chain length: 1,2-dipalmitoleoyl-sn-glycero-3-phosphocholine (C16:1), 1,2-dioleoyl-sn-glycero-3-phosphocholine (C18:1), 1,2-dierucoyl-sn-glycero-3-phosphocholine (C22:1), and 1 ,2-dinervonoyl-sn-glycero-3-phosphocholine (C24:1), and egg-PC. Kpx0 for transfer of TeCP from water into lipid membranes was found to be independent of the length of acyl chains, whereas Kpx0 for transfer from water into alkanes increased with the length of alkane. The effect of the carbonyl CO group of lipids on partitioning was measured using 1,2-di-o-octadecenyl-sn-glycero-3-phosphocholine (CO absent) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (CO present) liposomes. Carbonyl groups, known to change dipolar potential, had no effect on partitioning. Partition coefficients of un-ionized and ionized forms of TeCP were invariant to the presence of proteins and other membrane components of sarcoplasmic reticulum (SR) membrane.  相似文献   

18.
Lipopolysaccharide (LPS), which constitutes the outermost layer of Gram-negative bacterial cells as a typical component essential for their life, induces the first line defense system of innate immunity of higher animals. To understand the basic mode of interaction between bacterial LPS and phospholipid cell membranes, distribution patterns were studied by various physical methods of deep rough mutant LPS (ReLPS) of Escherichia coli incorporated in phospholipid bilayers as simple models of cell membranes. Solid-state 31P-NMR spectroscopic analysis suggested that a substantial part of ReLPS is incorporated into 1,2-dimyristoyl-sn-glycero-3-phosphocholine lipid bilayers when multilamellar vesicles were prepared from mixtures of these. In egg L-α-phosphatidylcholine (egg-PC)-rich membranes, ReLPS undergoes micellization. In phosphatidylethanolamine-rich membranes, however, micellization was not observed. We studied by microscopic techniques the location of ReLPS in membranes of ReLPS/egg-PC (1:10 M/M) and ReLPS/egg-PC/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) (1:9:1 M/M/M). The influence of ReLPS on the physicochemical properties of the membranes was studied as well. Microscopic images of both giant unilamellar vesicles and supported planar lipid bilayers showed that LPS was uniformly incorporated in the egg-PC lipid bilayers. In the egg-PC/POPG (9:1 M/M) lipid bilayers, however, ReLPS is only partially incorporated and becomes a part of the membrane in a form of aggregates (or as mixed aggregates with the lipids) on the bilayer surface. The lipid lateral diffusion coefficient measurements at various molar ratios of ReLPS/egg-PC/POPG indicated that the incorporated ReLPS reduces the diffusion coefficients of the phospholipids in the membrane. The retardation of diffusion became more significant with increasing POPG concentrations in the membrane at high ReLPS/phospholipid ratios. This work demonstrated that the phospholipid composition has critical influence on the distribution of added ReLPS in the respective lipid membranes and also on the morphology and physicochemical property of the resulting membranes. A putative major factor causing these phenomena is reasoned to be the miscibility between ReLPS and individual phospholipid compositions.  相似文献   

19.
Small unilamellar vesicles associated with plasmid DNA showed maximum association efficiency for a cationic mixture of egg phosphatidylcholine (EPC):1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE):di-1,2-dioleoyl-3-trimethyl ammonium propane (DOTAP) (16:8:1 molar ratio) [65%], followed by neutral lipids EPC:1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine (DMPE):cholesterol (Chol) (2:2:1 molar ratio) [30%], and a polymerized formulation 1,2-bis(10,12-tricosadiynoyl)sn-glycero-3-phosphocholine (DC8,9PC):DMPE:Chol (2:2:1 molar ratio) [11%]. The hydrophobicity factor (HF) for these formulations followed the trend DC8,9PC:DMPE:CHOL < EPC:DMPE:Chol < EPC:DOPE DOTAP, and DNA association did not alter this trend. Results suggest that the higher the HF value, the more fluid the membrane and the higher the efficiency of DNA association. On the other hand, no differences were observed in cell toxicity with lipids up to 1 mg/ml in VERO cells.  相似文献   

20.
To facilitate the early diagnosis of Alzheimer's disease and mild cognitive impairment patients, we developed a cantilever-based microsensor that immobilized liposomes of various phospholipids to detect a trace amount of amyloid β (Aβ) protein, and investigated its aggregation and fibrillization on model cell membranes in human serum. Three species of liposomes composed of different phospholipids of 1,2-dipalmtoyl-sn-glycero-3-phosphocholine (DPPC), DPPC/phosphatidyl ethanolamine and 1,2-dipalmitoyl-sn-glycero-3-phosphorylglycerol having varied hydrophilic groups were applied, which showed different chronological interactions with Aβ(1–40) protein and varied sensitivities of the cantilever sensor, depending on their specific electrostatic charged conditions, hydrophilicity, and membrane fluidity. 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) having short hydrophobic carbon chains confirmed to show a large interaction with Aβ(1–40) and a high sensitivity. Furthermore, the incorporation of cholesterol into DMPC was effective to selectively detect Aβ(1–40) in human serum, which effect was also checked by quartz crystal microbalance. Finally, Aβ detection of 100-pM order was expected selectively in the serum by using the developed biosensor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号