首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Resistance to selenate and chromate, toxic analogues of sulphate, was used to isolate a mutant of Saccharomyces cerevisiae deficient in the capacity to transport sulphate into the cells. A clone which complements this mutation was isolated from a cDNA library prepared from S. cerevisiae poly(A)+ RNA. This clone contains an insert which is 2775 by in length and has a single open reading frame that encodes a 859 amino acid polypeptide with a molecular mass of 96 kDa. Sequence motifs within the deduced amino acid sequence of this cDNA (SUL1) show homology with conserved areas of sulphate transport proteins from other organisms. Sequence analysis predicts the position of 12 putative membrane spanning domains in SUL1. When the cDNA for SUL1 was expressed in S. cerevisiae, a high affinity sulphate uptake activity (Km = 7.5 ± 0.6 μM for SO 4 2? ) was observed. A genomic mutant of S. cerevisiae in which 1096 by were deleted from the SUL1 coding region was constructed. This mutant was unable to grow on media containing less than 5 mM sulphate unless complemented with a plasmid containing the SUL1 cDNA. We conclude that the SUL1 cDNA encodes a S. cerevisiae high affinity sulphate transporter that is responsible for the transfer of sulphate across the plasma membrane from the external medium.  相似文献   

2.
The development of SO42- influx in roots and sulfur transport to shoots was followed in 35S-tracer experiments for sulfur-deficient spring wheat (Triticum aestivum L. cv. Svenno) seedlings pretreated for various time periods (0–24 h) in nutrient solutions with SO42-. Effects of the metabolic inhibitor 2,4-dinitrophenol (DNP) and the protein synthesis inhibitor cycloheximide (CH) on SO42- influx were also evaluated. The SO42- influx appears feedback-regulated by the internal sulfur level of the roots. Regulation may be achieved solely by a rapidly changed SO42- carrier activity through an allosteric effect by the intracellular SO42- concentration of the roots, followed first by induction of carrier synthesis and then by repression of carrier synthesis after transfer of the roots from SO42--deficient nutrient solutions to solutions with SO42-. A Hill plot of the partly sigmoidal relationship between SO42- influx and intracellular sulfur concentration in the roots gave a Hill coefficient of -4.2, indicating negative cooperativity between a minimum number of four interacting allosteric binding sites for sulfur on each carrier entity. DNP-experiments showed that SO42- influx was mainly metabolic, especially after short pretreatment in SO42- at an external SO42- concentration of 0.1 mM. Pretreatment with CH rapidly prevented new SO42- carriers from being formed. Long CH pretreatment (24 h) and different SO42- pretreatments reduced SO42- influx below the non-metabolic level obtained by uptake experiments with DNP, indicating the existence of SO42- carriers mediating passive SO42- transport across the plasmalemma of the root cells. SO42- influx was further decreased for the CH pretreated (24 h) plants by the presence of both CH and DNP in the experimental nutrient solution. This probably indicates the diffusive part of the non-metabolic SO42- influx in the present experiments. Finally, it is suggested that there is a feedback signal between root and shoot, regulating sulfur transport upwards.  相似文献   

3.
The unidirectional influx of methionine into the brush border epithelium of chicken jejunum has been studied. Tissues leached of Na+ transport methionine from a medium devoid of Na+ with reduced apparent affinity (Kt) and maximal flux (Jmax). Addition of Na+ to the medium during a 1-min incubation with substrate, or during a 30-min preincubation, restored Kt but affected Jmax slightly. Theophylline was found to maintain Jmax in the absence of Na+. Essentially complete restoration of Kt and Jmax could be attained when theophylline-treated tissue was exposed to Na+ for 30 min. Influx from a Na+ medium was unaffected by theophylline pretreatment in Na+-containing buffer. Kt was increased without an effet upon Jmax when influx was studied from choline medium following preincubation in Na+.Modifiers of tissue cyclic AMP levels were investigated in conjunction with theophylline. Histamine and carbachol were found to inhibit theophylline-stimulated transport. Secretin was found to stimulate influx in Na+-leached tissue, but did not potentiate the theophylline effect. Amino acids in the incubation medium inhibited theophylline-stimulated influx, whereas preloaded lysine or methionine had no effect.The results are interpreted in terms of a model which envisions roles for cellular and external Na+ and for cyclic AMP in the activation and regulation of amino acid transport in intestine.  相似文献   

4.
The genome of Saccharomyces cerevisiae encodes 35 members of the mitochondrial carrier family (MCF) and 58 MCF members are coded by the genome of Arabidopsis thaliana, most of which have been functionally characterized. Here two members of this family, Ymc2p from S. cerevisiae and BOU from Arabidopsis, have been thoroughly characterized. These proteins were overproduced in bacteria and reconstituted into liposomes. Their transport properties and kinetic parameters demonstrate that Ymc2p and BOU transport glutamate, and to a much lesser extent L-homocysteinesulfinate, but not other amino acids and many other tested metabolites. Transport catalyzed by both carriers was saturable, inhibited by mercuric chloride and dependent on the proton gradient across the proteoliposomal membrane. The growth phenotype of S. cerevisiae cells lacking the genes ymc2 and agc1, which encodes the only other S. cerevisiae carrier capable to transport glutamate besides aspartate, was fully complemented by expressing Ymc2p, Agc1p or BOU. Mitochondrial extracts derived from ymc2Δagc1Δ cells, reconstituted into liposomes, exhibited no glutamate transport at variance with wild-type, ymc2Δ and agc1Δ cells, showing that S. cerevisiae cells grown in the presence of acetate do not contain additional mitochondrial transporters for glutamate besides Ymc2p and Agc1p. Furthermore, mitochondria isolated from wild-type, ymc2Δ and agc1Δ strains, but not from the double mutant ymc2Δagc1Δ strain, swell in isosmotic ammonium glutamate showing that glutamate is transported by Ymc2p and Agc1p together with a H+. It is proposed that the function of Ymc2p and BOU is to transport glutamate across the mitochondrial inner membrane and thereby play a role in intermediary metabolism, C1 metabolism and mitochondrial protein synthesis.  相似文献   

5.
Cell suspension cultures of maize (Zea mays) growing on a modified Murashige and Skoog's (MS) medium containing 1/10 of the normal N supply, were subjected to SO42– starvation for 4 d. During the period of the experiment, the batches of cells were growing at similar rates in both +S and –S treatments. S-starved cells (–S) took up SO42– at eight to ten times the rate of S-sufficient (+S) cells. The high uptake rate of –S cells was repressed within 1–2 h after SO42– was re-supplied. The response to S-starvation was strongly diminished in cells which had been deprived of a N-source for 4 d. Cells grown for several culture cycles with homocysteine thiolactone (TL) as sole S-source had greatly increased SO42– uptake rates. This enhanced uptake was repressed at similar rates by provision of SO42– or by the renewal of the TL supply. The latter result was unexpected and cannot be explained at present. ATP-sulphurylase (EC 2.7.7.4) activity was also de-repressed: in –S cells, the measured activity being more than four times that in +S cells. Repression by SO42– was observed although after a longer period than that for the repression of SO42– uptake. In +S cells, SO42– uptake and ATP-sulphurylase activity were increased significantly by the addition of 0.5 mol.m–3 O-acetyl-L-serine to the culture. Simultaneously, the cysteine pool increased in the same proportion as the former activities. The addition of other amino acids, viz. glutamine or alanine, had either negative effects or no effect on SO42– uptake.  相似文献   

6.
Cram J 《Plant physiology》1983,72(1):204-211
Compartmental analysis of 35SO42− exchange kinetics is used to obtain SO42− fluxes and compartment contents in carrot (Daucus carota L.) storage root cells, where 2 to 5% of the SO42− taken up is reduced to organic form. The necessary curve fitting is verified by (a) consistency between `content versus time' and `rate versus time' plots of washout data; (b) agreement between loading and washout kinetics; and (c) correct identification of the fastest exchange phase as being from extracellular spaces.

Sulfate is actively transported up an electrochemical potential gradient at both plasmalemma and tonoplast. The plasmalemma influx is from 2 to 10 times higher than the tonoplast influx, is much greater than the SO42− reduction rate, and would not limit the rate of either. This is consistent with the finding that the plasmalemma influx is not regulated by internal SO42− or cysteine (Cram 1982 Plant Sci Lett, in press).

Both SO42− influxes rise with only limited saturation as the external SO42− concentration increases up to 50 millimolarity. Both effluxes appear to be passive, with extensive recycling in the plasmalemma influx pump. SO42− permeability is about 10−11 meter per second at both membranes.

The high, nonlimiting fluxes of SO42− at the plasmalemma relative to the tonoplast (found also in Lemna; Thoiron, Thoiron, Demarty, Thellier 1981 Biochim Biophys Acta 644: 24-35) contrasts with SO42− fluxes in bacteria and with Cl fluxes in plant cells. Their implications for work on characteristics and regulation of SO42− uptake in roots and tissue cultures are discussed.

  相似文献   

7.
The aim of the present investigation was to verify the effect of H2O2-induced oxidative stress on SO4= uptake through Band 3 protein, responsible for Cl-/HCO3- as well as for cell membrane deformability, due to its cross link with cytoskeletal proteins. The role of cytoplasmic proteins binding to Band 3 protein has been also considered by assaying H2O2 effects on hemoglobin-free resealed ghosts of erythrocytes. Oxidative conditions were induced by 30 min exposure of human erythrocytes to different H2O2 concentrations (10 to 300 μM), with or without GSH (glutathione, 2 mM) or curcumin (10 μM), compounds with proved antioxidant properties. Since SO4= influx through Band 3 protein is slower and better controllable than Cl- or HCO3- exchange, the rate constant for SO4= uptake was measured to prove anion transport efficiency, while MDA (malondialdehyde) levels and –SH groups were estimated to quantify the effect of oxidative stress. H2O2 induced a significant decrease in rate constant for SO4= uptake at both 100 and 300 μM H2O2. This reduction, observed in erythrocytes but not in resealed ghosts and associated to increase in neither MDA levels nor in –SH groups, was impaired by both curcumin and GSH, whereas only curcumin effectively restored H2O2-induced changes in erythrocytes shape. Our results show that: i) 30 min exposure to 300 μM H2O2 reduced SO4= uptake in human erythrocytes; ii) oxidative damage was revealed by the reduction in rate constant for SO4= uptake, but not by MDA or –SH groups levels; iii) the damage was produced via cytoplasmic components which cross link with Band 3 protein; iv) the natural antioxidant curcumin may be useful in protecting erythrocytes from oxidative injury; v) SO4= uptake through Band 3 protein may be reasonably suggested as a tool to monitor erythrocytes function under oxidative conditions possibly deriving from alcohol consumption, use of drugs, radiographic contrast media administration, hyperglicemia or neurodegenerative diseases.  相似文献   

8.
It was recently shown that the structure of the fluorophore attached to the acyl chain of phosphatidylcholine analogs determines their mechanism of transport across the plasma membrane of yeast cells (Elvington et al., J. Biol Chem. 280:40957, 2005). In order to gain further insight into the physical properties of these fluorescent phosphatidylcholine (PC) analogs, the rate and mechanism of their intervesicular transport was determined. The rate of spontaneous exchange was measured for PC analogs containing either NBD (7-nitrobenz-2-oxa-1,3-diazol-4-yl), Bodipy FL (4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene), Bodipy 530 (4,4-difluoro-5,7-diphenyl-4-bora-3a,4a-diaza-s-indacene), or Bodipy 581 (4,4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-diaza-s-indacene) attached to a five or six carbon acyl chain in the sn-2 position. The rate of transfer between phospholipid vesicles was measured by monitoring the increase in fluorescence as the analogs transferred from donor vesicles containing self-quenching concentrations to unlabeled acceptor vesicles. Kinetic analysis indicated that the transfer of each analog occurred by diffusion through the water phase as opposed to transfer during vesicle collisions. The vesicle-to-monomer dissociation rate constants differed by over four orders of magnitude: NBD-PC (kdis = 0.115 s− 1; t1/2 = 6.03 s); Bodipy FL-PC (kdis = 5.2 × 10− 4; t1/2 = 22.2 min); Bodipy 530-PC (kdis = 1.52 × 10− 5; t1/2 = 12.6 h); and Bodipy 581-PC (kdis = 5.9 × 10− 6; t1/2 = 32.6 h). The large differences in spontaneous rates of transfer through the water measured for these four fluorescent PC analogs reflect their hydrophobicity and may account for their recognition by different mechanisms of transport across the plasma membrane of yeast.  相似文献   

9.
This report addresses the functional role of His residues in the proton-coupled folate transporter (PCFT; SLC46A1), which mediates intestinal folate absorption. Of ten His residues, only H247A and H281A mutations altered function. The folic acid influx Kt at pH 5.5 for H247A was ↓8.4-fold. Although wild type (WT)-PCFT Ki values varied among the folates, Ki values were much lower and comparable for H247-A, -R, -Q, or -E mutants. Homology modeling localized His247 to the large loop separating transmembrane domains 6 and 7 at the cytoplasmic entrance of the translocation pathway in hydrogen-bond distance to Ser172. The folic acid influx Kt for S172A-PCFT was decreased similar to H247A. His281 faces the extracellular region in the seventh transmembrane domain. H281A-PCFT results in loss-of-function due to ∼12-fold↑ in the folic acid influx Kt. When the pH was decreased from 5.5 to 4.5, the WT-PCFT folic acid influx Kt was unchanged, but the Kt decreased 4-fold for H281A. In electrophysiological studies in Xenopus oocytes, both WT-PCFT- and H281A-PCFT-mediated folic acid uptake produced current and acidification, and both exhibited a low level of folate-independent proton transport (slippage). Slippage was markedly increased for the H247A-PCFT mutant. The data suggest that disruption of the His247 to Ser172 interaction results in a PCFT conformational alteration causing a loss of selectivity, increased substrate access to a high affinity binding pocket, and proton transport in the absence of a folate gradient. The His281 residue is not essential for proton coupling but plays an important role in PCFT protonation, which, in turn, augments folate binding to the carrier.  相似文献   

10.
The yeast Saccharomyces cerevisiae is a facultative anaerobe and its mitochondrial morphology is linked to its metabolic activity. The Sco proteins (Sco1p and Sco2p) were characterized as proteins required for copper delivery to cytochrome c oxidase. Our results indicated a higher fermentative capacity of the sco1-Δ mutant in comparison to the control and the sco2-Δ mutant strains. The mitochondrial proteome analysis showed that the sco1-Δ mutant down-regulated components of the respiratory chain, the TCA cycle and transport of metabolites across the mitochondrial membrane. This evidence suggests that the absence of Sco1p causes irreversible damage to the mitochondria.  相似文献   

11.
Resistance to selenate and chromate, toxic analogues of sulphate, was used to isolate a mutant of Saccharomyces cerevisiae deficient in the capacity to transport sulphate into the cells. A clone which complements this mutation was isolated from a cDNA library prepared from S. cerevisiae poly(A)+ RNA. This clone contains an insert which is 2775 by in length and has a single open reading frame that encodes a 859 amino acid polypeptide with a molecular mass of 96 kDa. Sequence motifs within the deduced amino acid sequence of this cDNA (SUL1) show homology with conserved areas of sulphate transport proteins from other organisms. Sequence analysis predicts the position of 12 putative membrane spanning domains in SUL1. When the cDNA for SUL1 was expressed in S. cerevisiae, a high affinity sulphate uptake activity (Km = 7.5 ± 0.6 M for SO 4 2– ) was observed. A genomic mutant of S. cerevisiae in which 1096 by were deleted from the SUL1 coding region was constructed. This mutant was unable to grow on media containing less than 5 mM sulphate unless complemented with a plasmid containing the SUL1 cDNA. We conclude that the SUL1 cDNA encodes a S. cerevisiae high affinity sulphate transporter that is responsible for the transfer of sulphate across the plasma membrane from the external medium.  相似文献   

12.
Equilibrium exchange of SO42? was measured prior to and during hemolysis in rabbit erythrocytes exposed to staphylococcal α-hemolysin. The anion-transport protein of the rabbit erythrocyte has also been identified. Equilibrium exchange of SO42? was measured by both efflux and influx of 35SO42?. The rate of influx of SO42? in rabbit erythrocytes exposed to α-hemolysin was twice that of the untreated cells. The rate of SO42? efflux was unchanged by α-hemolysin. Inhibition of anion exchange with 4,4′-diisothiocyano-2,2′-stilbenedisulfonic acid (DIDS) did not inhibit hemolysis, therefore, the increased influx of SO42? may occur through a DIDS-insensitive pathway.  相似文献   

13.
New direct syntheses of [Pt(trpy)(NCCH3)](CF3SO3)22 (where trpy = 2,2′:6′,2′′-terpyridine) and [Pt(tBu3-trpy)(NCCH3)](CF3SO3)23 (where tBu3-trpy = 4,4′,4″-tri-tert-butyl-2,2′:6′,2″-terpyridine) via the displacement of acetonitrile from [Pt(NCCH3)4](CF3SO3)2 have been developed. The synthetic utility of 2 was investigated in reactions with triphenylphosphine (PPh3), 2,6-dimethylphenyl isocyanide (CN-Xyl), 2,5-dimethyl-2,5-diisocyanohexane (TM4), and tert-butyl isocyanide (CN-tBu). Whereas the expected substitution products were observed for reactions with PPh3, CN-Xyl, and CN-tBu, dealkylation of TM4 occurred to afford [Pt(trpy)(CN)](CF3SO3) 6. The structures of [Pt(trpy)L]2+ dications show little intermolecular interactions in the solid state, with the exception of the tBu3-trpy complex 3 which exists as head-to-tail dimers with a Pt-Pt distance of 3.29 Å. The cyano product 6 was found to stack in infinite chains of cations with a Pt-Pt distance of 3.45 Å.  相似文献   

14.
We have reported that the monovalent ionophore monensin causes undersulfated chondroitin sulfate biosynthesis in cultured chondrocytes. In order to clarify the mechanism of this diminished sulfation, we have measured the rate of incorporation of sulfate into chondrocytes and assayed the cellular ATP levels. We have also measured sulfatase activity, the incorporation of 35SO4 into 3′-phosphoadenosine 5′-phospho[35S]sulfate and endogenous sulfotransferase activity in the cell-free extracts. We find that: (1) The incorporation of 35SO4 into the free sulfate pool in chondrocytes was not inhibited by monensin. (2) The ATP levels of monensin-treated chondrocytes were the same as control cells. (3) There was no sulfatase activity in both control and monensin-treated chondrocytes. (4) Enzymatic analyses revealed that 35SO4 incorporation into 3′-phosphoadenosine 5′-phospho[35S]sulfate and subsequent sulfotransferase activity were not inhibited in the presence of monensin. At present the most tenable hypothesis to account for monensin causing undersulfated chondroitin sulfate synthesis is that the ionophore impairs the access of proteoglycans to the sulfotransferases in the luminal walls of the Golgi structures.  相似文献   

15.
Within the southeast Canada and northeast USA region, a peak in sulphate (SO4 2?) concentration has been reported for some streams following periods of substantial catchment drying during the summer months (ON, Canada; VT, NH and NY, USA). However, it is currently unclear if a SO4 2? response to seasonal drying is widespread across the broader region, or to what extent the level of response varies among catchments. In our study, SO4 2? response to seasonal drying was compared in 20 catchments from 11 locations across southeastern Canada (ON, QC and NS) and northeastern USA (NH, NY, VT, WV and ME). Using long-term monitoring data of stream discharge and chemistry, the number of days for each month of the dry season (# d) when discharge (Q) was below a threshold level (25th percentile; Q25) was calculated for each catchment to give a measure of ‘seasonal dryness’ (# d Q < Q25). A SO4 2? response score (rs) was then calculated for each catchment based on linear regression analysis of # d Q < Q25 versus either the annual SO4 2? concentration, or the residual of annual SO4 2? concentration as a function of time (year). The final rs values for each catchment provided an estimate of the proportion of variation in annual SO4 2? concentration which could be explained by seasonal drying (possible rs range = 0–1). Of the 20 catchments, 13 exhibited some level of a SO4 2? response to seasonal drying (rs = 0.04–0.72) with an additional two catchments exhibiting a SO4 2? response for one or more seasons. SO4 2? response scores were positively related to percent wetland area (w) (rs = 1.000 ? 0.978e?0.054* w , r 2 = 0.44) and percent saturated area (sat) (rs = 0.481 ? 0.488e?0.101* sat, r 2 = 0.54) indicating that wetlands/saturated areas were an important driver of regional variation in the SO4 2? response to seasonal drying. Our results suggest that any shift towards drier summers as a result of climate change could impact SO4 2? dynamics in a large number of catchments throughout the region.  相似文献   

16.
Sodium-dependence of glycylglycine (Gly-Gly) influx and stimulation of Na+ transport by Gly-Gly were studied in everted sacs, sheet preparations and brush-border membrane vesicles isolated from guinea-pig ileum. Gly-Gly influx was found to be independent of the presence of Na+, while Na+ transport was stimulated by Gly-Gly as evidenced by increases in transmural potential difference (PDt), short-circuit current (Isc) and Na+ influx. The change in PDt (ΔPDt) induced by Gly-Gly was a saturable function of Gly-Gly concentration, showing a Michaelis-Menten type relationship. The half-saturation concentration for Gly-Gly estimated from the electrical data was nearly identical with that estimated from influx data. At a constant Gly-Gly concentration the relationship between Isc and Na+ concentration was sigmoid, and the Hill coefficient was 1.5. Kinetic analysis according to Garay Garrahan indicates that each Gly-Gly carrier has two equivalent non-interacting binding sites for Na+, and that translocation of Na+ occurs when the two Na+ sites on the carrier loaded with Gly-Gly are occupied by Na+. However, our results indicate that the resultant Na+ flow is not capable of stimulating Gly-Gly translocation.  相似文献   

17.
This aim of this paper was the study of the reproductive biology and growth of the sand smelt, Atherina boyeri, in Mellah Lagoon (Algeria). These data are important for the sustainable exploitation of the stocks of this species. Examined was a total of 1402 Atherina boyeri specimens captured monthly from March 2010 to March 2011, in a population with a 3‐year life cycle. Length–weight relationship was estimated as W = 0.0047 L3.077 (r2 = 0.935) for males and W = 0.0047 L3.176 (r2 = 0.935) for females. Using scales, the von Bertalanffy growth function fitted to back‐calculated size‐at‐age data was Lt = 9.49 [1 ? e?0.316 (t + 0.928)] for males, and Lt = 11.67 [1 ? e?0.179 (t + 1.514)] for females; using otoliths this was Lt = 9.68 [1 ? e?0.3 (t + 1.02)] for males, and Lt = 11.93 [1 ? e?0.171 (t + 1.55)] for females. The growth performance index (Φ) indicated that males (Φscales = 3.34, Φotoliths = 3.33) grew at the same rate as females (Φscales = 3.19, Φotoliths = 3.24), with a sex ratio of 1 : 1.6 in favor of females. The reproductive season extended from February to June. Individual length at first sexual maturity was 4.20 cm for 1‐year‐old males and 4.35 cm for 1‐year‐old females.  相似文献   

18.
The pentagonal bipyramidal high-spin iron(II) complex, [(TPA2C(O)NHtBu)Fe(CF3SO3)]+, is shown to exhibit a high-anisotropy ground state, with fits to dc magnetization data providing an axial zero-field splitting parameter of D = − 7.9 cm−1. The utility of this compound as a building unit is demonstrated, as its reaction with [ReCl4(CN)2]2− affords the cyano-bridged dinuclear cluster (TPA2C(O)NHtBu)FeReCl4(CN)2. dc magnetic susceptibility measurements reveal intracluster ferromagnetic exchange interactions between FeII and ReIV centers, with J = +3.0 cm−1, giving rise to a spin ground state of S = 7/2. Moreover, fits to dc magnetization data obtained for the FeRe cluster show the presence of strong axial anisotropy, with D = −2.3 cm−1. Finally, variable-frequency ac susceptibility measurements reveal the onset of slow magnetic relaxation at low temperature, suggesting that the FeRe cluster is a single-molecule magnet.  相似文献   

19.
Bacillus sp B55, a bacterium naturally associated with Nicotiana attenuata roots, promotes growth and survival of wild-type and, particularly, ethylene (ET)–insensitive 35S-ethylene response1 (etr1) N. attenuata plants, which heterologously express the mutant Arabidopsis thaliana receptor ETR1-1. We found that the volatile organic compound (VOC) blend emitted by B55 promotes seedling growth, which is dominated by the S-containing compound dimethyl disulfide (DMDS). DMDS was depleted from the headspace during cocultivation with seedlings in bipartite Petri dishes, and 35S was assimilated from the bacterial VOC bouquet and incorporated into plant proteins. In wild-type and 35S-etr1 seedlings grown under different sulfate (SO4−2) supply conditions, exposure to synthetic DMDS led to genotype-dependent plant growth promotion effects. For the wild type, only S-starved seedlings benefited from DMDS exposure. By contrast, growth of 35S-etr1 seedlings, which we demonstrate to have an unregulated S metabolism, increased at all SO4−2 supply rates. Exposure to B55 VOCs and DMDS rescued many of the growth phenotypes exhibited by ET-insensitive plants, including the lack of root hairs, poor lateral root growth, and low chlorophyll content. DMDS supplementation significantly reduced the expression of S assimilation genes, as well as Met biosynthesis and recycling. We conclude that DMDS by B55 production is a plant growth promotion mechanism that likely enhances the availability of reduced S, which is particularly beneficial for wild-type plants growing in S-deficient soils and for 35S-etr1 plants due to their impaired S uptake/assimilation/metabolism.  相似文献   

20.
The basal 45Ca2+ influx in human red blood cells (RBC) into intact RBC was measured. 45Ca2+ was equilibrated with cells with t1/2=15-20 s and the influx reached the steady state value in about 90-100 s and the steady state level was 1.5±0.2 μmol/lpacked cells (n=6) at 37 °C. The average value of the Ca2+ influx rate was 43.2±8.9 μmol/lpacked cells hour. The rate of the basal influx was pH-dependent with a pH optimum at pH 7.0 and on the temperature with the temperature optimum at 25 °C. The basal Ca2+ influx was saturable with Ca2+ up to 5 mmol/l but at higher extracellular Ca2+ concentrations caused further increase of basal Ca2+ influx. The 45Ca2+ influx was stimulated by addition of submicromolar concentrations of phorbol esters (phorbol 12-myristate-13-acetate (PMA) and phorbol-12,13-dibutyrate (PDBu)) and forskolin. Uncoupler (3,3′,4′,5-tetrachloro-salicylanilide (TCS) 10−6-10−5 mol/l) inhibited in part the Ca2+ influx. The results show that the basal Ca2+ influx is mediated by a carrier and is under control of intracellular regulatory circuits. The effect of uncoupler shows that the Ca2+ influx is in part driven by the proton-motive force and indicates that the influx and efflux of Ca2+ are coupled via the RBC H+ homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号