首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
A group of regioisomeric phenylethynylbenzenesulfonamides possessing a COX-2 SO2NH2 pharmacophore at the para-, meta- or ortho-position of the C-1 phenyl ring, in conjunction with a C-2 substituted-phenyl (H, OMe, OH, Me, F) group, were synthesized and evaluated as inhibitors of the cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) isozymes. The target 1,2-diphenylacetylenes were synthesized via a palladium-catalyzed Sonogashira cross-coupling reaction. In vitro COX-1/-2 isozyme inhibition structure-activity data showed that COX-1/-2 inhibition and the COX selectivity index (SI) are sensitive to the regioisomeric placement of the COX-2 SO2NH2 pharmacophore where the COX-2 potency order for the benzenesulfonamide regioisomers was generally meta>para and ortho. Among this group of compounds, the in vitro COX-1/-2 isozyme inhibition studies identified 3-(2-phenylethynyl)benzenesulfonamide (10a) as a COX-2 inhibitor (COX-2 IC50=0.45 microM) with a good COX-2 selectivity (COX-2 SI=70). In contrast, 2-[2-(3-fluorophenyl)ethynyl]benzenesulfonamide (11c) possessing a SO2NH2 COX-2 pharmacophore at the ortho-position of the C-1 phenyl ring exhibited COX-1 inhibition and selectivity (COX-1 IC50=3.6 microM). A molecular modeling study where 10a was docked in the binding site of COX-2 shows that the meta-SO2NH2 COX-2 pharmacophore was inserted inside the COX-2 secondary pocket (Arg513, Phe518, Val523, and His90). Similar docking of 10a within the COX-1 binding site shows that the meta-SO2NH2 pharmacophore is unable to interact with the respective amino acid residues in COX-1 that correspond to those near the secondary pocket in COX-2 due to the presence of the larger Ile523 in COX-1 that replaces Val523 in COX-2.  相似文献   

2.
A group of regioisomeric 1-(methylsulfonylphenyl)-2-phenylacetylenes possessing a COX-2 SO(2)Me pharmacophore at the para-, meta- or ortho-position of the C-1 phenyl ring, in conjunction with a C-2 phenyl or substituted-phenyl ring substituent (3-F, 3-OMe, 3-OH, 3-OAc, 4-Me), were designed for evaluation as selective cyclooxygenase-2 (COX-2) inhibitors. These target linear 1,2-diarylacetylenes were synthesized via a palladium-catalyzed Sonogashira cross-coupling reaction followed by oxidation of the respective 1-(methylthiophenyl)-2-phenylacetylene intermediate. In vitro COX-1/COX-2 isozyme inhibition structure-activity studies identified 1-(3-methylsulfonylphenyl)-2-(4-methylphenyl)acetylene (12d) as a potent COX-2 inhibitor (IC(50) = 0.32 microM) with a high COX-2 selectivity index (SI > 320) comparable to the reference compound rofecoxib (COX-2 IC(50) = 0.50 microM; COX-2 SI > 200). A molecular modeling study where (12d) was docked in the binding site of COX-2 showed that the MeSO(2) COX-2 pharmacophore was positioned in the vicinity of the secondary COX-2 binding site near Val(523). The 1-(4-methylsulfonylphenyl)-2-(3-acetoxyphenyl)acetylene (11f, COX-1 IC(50) = 1.00 microM; COX-2 IC(50) = 0.06 microM; COX-2 SI = 16.7) and 1-(3-methylsulfonylphenyl)-2-(3-acetoxyphenyl)acetylene (12f, COX-1 IC(50) = 6.5 microM; COX-2 IC(50) = 0.05 microM; COX-2 SI = 130) regioisomers exhibited comparable COX-2 inhibition, and moderately lower selective COX-2 selectivity, relative to the reference drug celecoxib (COX-1 IC(50) = 33.1 microM; COX-2 IC(50) = 0.07 microM; COX-2 SI = 472). The most potent anti-inflammatory agent 1-(3-methylsulfonylphenyl)-2-(4-methylphenyl)acetylene (12d) exhibited moderate oral anti-inflammatory activity (ED(50)= 129 mg/kg) at 3 h postdrug administration relative to the reference drug celecoxib (ED(50) = 10.8 mg/kg) in a carrageenan-induced rat paw edema assay. The structure-activity data acquired indicate that the acetylene moiety constitutes a suitable scaffold (template) to design novel acyclic 1,2-diarylacetylenes with selective COX-2, or dual COX-1/COX-2, inhibitory activities.  相似文献   

3.
COX-2 is an inducible enzyme mediating inflammatory responses. Selective targeting of COX-2 is useful for developing anti-inflammatory agents devoid of ulcerogenic activity. Herein, we report the design and synthesis of a series of pyrazoles and pyrazolo[1,2-a]pyridazines with selective COX-2 inhibitory activity and in vivo anti-inflammatory effect. Both series were accessed through acid-catalyzed ultrasound-assisted reactions. The most active compounds in this study are two novel molecules, 11 and 16, showing promising selectivity and decent IC50 of 16.2 and 20.1 nM, respectively. These compounds were also docked into the crystal structure of COX-2 enzyme (PDB ID: 3LN1) to understand their mode of binding. Finally, Mulliken charges and electrostatic surface potential were calculated for both compound 11 and celecoxib using DFT method to get insights into the molecular determinants of activity of this compound. These results could lead to the development of novel COX-2 inhibitors with improved selectivity.  相似文献   

4.
The energetics and models of COX-2 complexed with nonsteroidal anti-inflammatory drugs (NSAIDs) having different degrees of selectivity for two isoforms of COX (COX-2 and COX-1) have been studied using computer modelling approach. The models are obtained for complexes of NS398 (NS), a selective COX-2 inhibitor; indoprofen (Ind), a non-selective inhibitor; di-tert-butylbenzofurans (DHDMBFs) with substituents at the 5th position: CONH(CH2)2OMe (BF1), CONH-c-Pr (BF2), 3-methylene-gamma-butyrolactonyl (BF3) and oxicams namely, meloxicam (Mel), piroxicam (Pir) and tenoxicam (Ten). These were optimized using molecular mechanics (MM) and molecular dynamics (MD) techniques. The binding energies and structures were compared with pharmacological parameters and available results with COX-1. In case of NS a larger difference in the binding energies between COX-2 and COX-1 was noticed as compared to that of Ind. It also had stronger interaction with His90 and Tyr355 which is considered important for COX-2 selectivity. There was a difference in the compactness at the channel entrance between COX-2 selective and non-selective ligands. Models with DHDMBFs and oxicams showed a similar correlation. The results were used to design a peptide inhibitor, Tyr-Arg-Cys-Ala-delta Phe-Cys (Pept) which could fit better in the COX-2 cavity. As per our MD simulation results this peptide inhibitor showed both higher activity and COX-2 selectivity.  相似文献   

5.
Structure-based design of COX-2 selectivity into flurbiprofen   总被引:3,自引:0,他引:3  
Comparative computer modeling of the X-ray crystal structures of cyclooxygenase isoforms COX-1 and COX-2 has led to the design of COX-2 selectivity into the nonselective inhibitor flurbiprofen. The COX-2 modeling was based on a postulated binding mode for flurbiprofen and took advantage of a small alcove in the COX-2 active site created by different positions of the Leu384 sidechain between COX-1 and COX-2. The design hypothesis was tested by synthesis and biological assay of a series of flurbiprofen analogs, culminating in the discovery of several inhibitors having up to 78-fold selectivity for COX-2 over COX-1.  相似文献   

6.
Resveratrol (3,5,4'-trihydroxy-trans-stilbene) is found in grapes and various medical plants. Among cytotoxic, antifungal, antibacterial cardioprotective activity resveratrol also demonstrates non-selective cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) inhibition. In order to find more selective COX-2 inhibitors a series of methoxylated and hydroxylated resveratrol derivatives were synthesized and evaluated for their ability to inhibit both enzymes using in vitro inhibition assays for COX-1 and COX-2 by measuring PGE(2) production. Hydroxylated but not methoxylated resveratrol derivatives showed a high rate of inhibition. The most potent resveratrol compounds were 3,3',4',5-tetra-trans-hydroxystilbene (COX-1: IC(50)=4.713, COX-2: IC(50)=0.0113 microM, selectivity index=417.08) and 3,3',4,4',5,5'-hexa-hydroxy-trans-stilbene (COX-1: IC(50)=0.748, COX-2: IC(50)=0.00104 microM, selectivity index=719.23). Their selectivity index was in part higher than celecoxib, a selective COX-2 inhibitor already established on the market (COX-1: IC(50)=19.026, COX-2: IC(50)=0.03482 microM, selectivity index=546.41). Effect of structural parameters on COX-2 inhibition was evaluated by quantitative structure-activity relationship (QSAR) analysis and a high correlation was found with the topological surface area TPSA (r=0.93). Docking studies on both COX-1 and COX-2 protein structures also revealed that hydroxylated but not methoxylated resveratrol analogues are able to bind to the previously identified binding sites of the enzymes. Hydroxylated resveratrol analogues therefore represent a novel class of highly selective COX-2 inhibitors and promising candidates for in vivo studies.  相似文献   

7.
New arylhydrazone derivatives and a series of 1,5-diphenyl pyrazoles were designed and synthesized from 1-(4-chlorophenyl)-4,4,4-trifuorobutane-1,3-dione 1. The newly synthesized compounds were investigated in vivo for their anti-inflammatory activities using carrageenan-induced rat paw oedema model. Moreover, they were tested for their inhibitory activity against ovine COX-1 and COX-2 using an in vitro cyclooxygenase (COX) inhibition assay. Some of the new compounds (2f, 6a and 6d) showed a reasonable in vitro COX-2 inhibitory activity, with IC?? value of 0.45 μM and selectivity index of 111.1. A virtual screening was carried out through docking the designed compounds into the COX-2 binding site to predict if these compounds have analogous binding mode to the COX-2 inhibitors. Docking study of the synthesized compounds 2f, 6a and 6d into the active site of COX-2 revealed a similar binding mode to SC-558, a selective COX-2 inhibitor.  相似文献   

8.
One of the main challenges for nowadays medicine is drugs selectivity. In COX-1 and COX-2, the active sites are composed of the same group of amino acids with the exception of the only one residue in position 523, in COX-1 is an isoleucine, while in COX-2 is a valine. Here, we presented a series of isothiazolopyridine/benzisothiazole derivatives substituted differently into an isothiazole ring, which were synthesized and investigated for their potencies to inhibit COX-1 and COX-2 enzymes by colorimetric inhibitor screening assay. All the tested compounds inhibited the activity of COX-1, the effect on COX-2 activity was differential. The mode of binding was characterized by a molecular docking study. Comparing biological activity of the investigated compounds, it was observed that compounds sharing the most similar position to flurbiprofen and meloxicam, representing the two main enzyme subdomains, achieved higher biological activity than others. It is directly related to the fit to the enzyme’s active site, which prevents too early dissociation of the compounds.  相似文献   

9.
In continuation of our study of novel quinolines with anti-inflammatory activity using the Pfitzinger reaction, several new quinoline derivatives were synthesized and tested for their anti-inflammatory and ulcerogenic effect. A docking study on the COX-2 binding pocket was carried out for the target compounds to rationalize the possible selectivity of them against COX-2 enzyme. The most active compounds (5a, 8a and 11a) were found to be superior to celecoxib. Compound 11a demonstrated the highest anti-inflammatory activity as well as the best binding profiles into the COX-2 binding site. Moreover, compounds 9c, 9e, 10a and 11a were devoid of ulcerogenic activity.  相似文献   

10.
Cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) are the enzymes responsible for the biosynthesis of the precursor to the biologically active prostaglandins, prostacyclin, and thromboxane and are the molecular targets for nonsteroidal antiinflammatory drugs (NSAIDs). Selective COX-2 inhibitors are antiinflammatory and analgesic but lack gastrointestinal toxicity, an undesirable side effect attributed to COX-1 inhibition. Crystallographic analysis of selective COX inhibitors complexed with either isoform provides some information about the molecular determinants of selectivity but does not provide information about the dynamics of inhibitor association/dissociation. We employed rapid-mixing techniques and fluorescence quenching to monitor the association and dissociation of a selective COX-2 inhibitor to COX-1 or COX-2. The association of the fluorescent diaryloxazole, SC299, with both enzymes occurs in a time-dependent fashion. Its binding to COX-2 occurs in three kinetically distinct steps whereas its binding to COX-1 occurs in two steps. In contrast to the relatively rapid association of SC299 with both enzymes, its dissociation from COX-2 is quite slow and occurs over several hours whereas the dissociation from COX-1 is complete in less than 1 min. The selectivity of SC299 as a COX-2 inhibitor correlates to its relative rates of dissociation from the two COX isoforms. A model is proposed for diarylheterocycle binding to COX's that integrates these kinetic data with available structural information.  相似文献   

11.
A series of novel 5-substituted 1H-tetrazoles as cyclooxygenase-2 (COX-2) inhibitors was prepared via treatment of various diaryl amides with tetrachlorosilane/sodium azide. All compounds were tested in cyclooxygenase (COX) assays in vitro to determine COX-1 and COX-2 inhibitory potency and selectivity. Tetrazoles contained a methylsulfonyl or sulfonamide group as COX-2 pharmacophore displayed only low inhibitory potency towards COX-2. Most potent compounds showed IC(50) values of 6 and 7 μM for COX-2. All compounds showed IC(50) values greater 100 μM for COX-1 inhibition.  相似文献   

12.
Twelve new compounds of 1,3,4-trisubstituted-pyrazole derivatives possessing two cyclooxygenase-2 (COX-2) pharmacophoric moieties (SO2Me or/and SO2NH2) 11a-c, 12a-c, 13a-c and 14a-c were designed and synthesized to be evaluated for their COX inhibition, anti-inflammatory activity, ulcerogenic liability. All compounds were more selective for COX-2 isozyme and showed good in vivo anti-inflammatory activity. The bisaminosulphonyl derivatives (14a-c) were the most COX-2 selective compounds (S.I. = 9.87, 9.50 and 9.22 respectively) and showed good anti-inflammatory potency (ED50 = 15.06, 42.51 and 50.43 μmol/kg respectively) in comparison with celecoxib (COX-2 S.I. = 8.61, ED50 = 82.2 μmol/kg). Also, compounds 14a-c were less ulcerogenic (ulcer indexes = 2.72–3.72) than ibuprofen (ulcer index = 20.25) and comparable to celecoxib (ulcer index = 2.93). In addition, to explain the preferential (COX-2) inhibitory and selectivity, the designed compounds were subjected to molecular docking studies. It was found that compound 14c with the highest COX-2 activity and selectivity exhibited a binding pattern and interactions similar to that of celecoxib with formation of more hydrogen-bond features.  相似文献   

13.
Following up on the observation that the dynorphin analog [Pro(3)]Dyn A(1-11)-NH(2) 2 possesses high affinity and selectivity for the kappa opioid receptor, a number of related peptides were prepared and characterized by radioligand binding and [(35)S]GTPgammaS assays. While incorporation of 2-azetidine carboxylic acid in position 3 led to the equally potent analog 3, the corresponding analog containing piperidine-2-carboxylic acid showed a nearly 90-fold reduction in kappa affinity. Differential preferred bond angles phi in the three building blocks might account for these observations. Compounds 2 and 3 were kappa antagonists with IC(50) values of 380 and 350 nM, respectively. The Sar(3) analog 7 and the Sar(2) analog 8 were kappa agonists, with greater selectivity than Dyn A(1-11)-NH(2) 1. In view of their high kappa affinities (8: K(i) = 1.5 nM; 2: K(i) = 2.4 nM), the new analogs were surprisingly weak kappa agonists or antagonists, e.g., the EC(50) value for the agonist 8 was 280 nM. Different kappa receptor subtypes in binding vs functional assays can not account for these results, since both assays were performed using the same membrane preparation.  相似文献   

14.
Cyclooxygenase-2 (COX-2) is an important enzyme responsible for the formation of potent inflammatory mediators like prostaglandins, prostacyclin and thromboxane. Hence, inhibition of COX-2 is one of the best ways to control the inflammation. Non-steroidal anti-inflammatory drugs can control inflammation by inhibiting Cyclooxygenase. Selective inhibition of COX-2 is preferable over the inhibition of COX-1 because of the fewer adverse effects produced. Molecular modeling and docking of 134 selected indole compounds were done against COX-2. The pharmacophore-based in silico structural modifications of the best scored compounds were carried out in order to enhance the binding affinity and selectivity. The modification resulted in derivatives with better binding energies than that of known COX-2 inhibitors. The four best derivatives in terms of the binding energies were selected and their binding stabilities were studied by molecular dynamics simulation methods.  相似文献   

15.
A series of 2-piperazine-alpha-isopropylbenzylamine derivatives were synthesized and characterized as melanocortin-4 receptor (MC4R) antagonists. Attaching an amino acid to benzylamines 7 significantly increased their binding affinity, and the resulting compounds 8-12 bound selectively to MC4R over other melanocortin receptor subtypes and behaved as functional antagonists. These compounds were also studied for their permeability using Caco-2 cell monolayers and metabolic stability in human liver microsomes. Most compounds exhibited low permeability and high efflux ratio possibly due to their high molecular weights. They also showed moderate metabolic stability which might be associated with their moderate to high lipophilicity. Pharmacokinetic properties of these MC4R antagonists, including brain penetration, were studied in mice after oral and intravenous administrations. Two compounds identified to possess high binding affinity and selectivity, 10d and 11d, were studied in a murine cachexia model. After intraperitoneal (ip) administration of 1mg/kg dose, mice treated with 10d had significantly more food intake and weight gain than the control animals, demonstrating efficacy by blocking the MC4 receptor. Similar in vivo effects were also observed when 11d was dosed orally at 20mg/kg. These results provide further evidence that a potent and selective MC4R antagonist has potential in the treatment of cancer cachexia.  相似文献   

16.
N-Acetyl-2-carboxybenzenesulfonamide (11), and a group of analogues possessing an appropriately substituted-phenyl substituent (4-F, 2,4-F(2), 4-SO(2)Me, 4-OCHMe(2)) attached to its C-4, or C-5 position, were synthesized for evaluation as selective cyclooxygenase-2 (COX-2) inhibitors. In vitro COX-1/COX-2 inhibition studies showed that 11 is a more potent inhibitor (COX-1 IC(50)=0.06microM; COX-2 IC(50)=0.25microM) than aspirin (COX-1 IC(50)=0.35microM; COX-2 IC(50)=2.4microM), and like aspirin [COX-2 selectivity index (S.I.)=0.14], 11 is a nonselective COX-2 inhibitor (COX-2 S.I.=0.23). Regioisomers having a 2,4-difluorophenyl substituent attached to the C-4 (COX-2 IC(50)=0.087microM; COX-2 S.I. >1149), or C-5 (COX-2 IC(50)=0.77microM, SI>130), position of 11 exhibited the most potent and selective COX-2 inhibitory activity relative to the reference drug celecoxib (COX-1 IC(50)=33.1microM; COX-2 IC(50)=0.07microM; COX-2 S.I.=472). N-Acetyl-2-carboxybenzenesulfonamide (11, ED(50)=49 mg/kg), and its C-4 2,4-difluorophenyl derivative (ED(50)=91 mg/kg), exhibited superior antiinflammatory activity (oral dosing) in a carrageenan-induced rat paw edema assay compared to aspirin (ED(50)=129 mg/kg). These latter compounds exhibited comparable analgesic activity to the reference drug diflunisal, and superior analgesic activity compared to aspirin, in a 4% NaCl-induced abdominal constriction assay. A molecular modeling (docking) study indicated that the SO(2)NHCOCH(3) substituent present in N-acetyl-2-carboxy-4-(2,4-fluorophenyl)benzenesulfonamide, like the acetoxy substituent in aspirin, is suitably positioned to acetylate the Ser(530) hydroxyl group in the COX-2 primary binding site. The results of this study indicate that the SO(2)NHCOCH(3) pharmacophore present in N-acetyl-2-carboxybenzenesulfonamides is a suitable bioisostere for the acetoxy (OCOMe) group in aspirin.  相似文献   

17.
A new series of ketoprofen analogs were synthesized to evaluate their biological activities as selective cyclooxygenase-2 (COX-2) inhibitors. In vitro COX-1 and COX-2 inhibition studies showed that all compounds were potent and selective inhibitors of the COX-2 isozyme with IC50 values in the highly potent 0.057–0.085 μM range, and COX-2 selectivity indexes in the 115 to >1298.7 range. Compounds possessing azido pharmacophore group (8a and 8b) exhibited highly COX-2 inhibitory selectivity and potency even more than reference drug celecoxib. Molecular modeling studies indicated that the azido substituent can be inserted deeply into the secondary pocket of COX-2 active site for interactions with Arg513.  相似文献   

18.
A series of 4-aryl-5-(4-(methylsulfonyl)phenyl)-2-alkylthio and 2-alkylsulfonyl-1H-imidazole derivatives were synthesized. All compounds were tested in human blood assay to determine COX-1 and COX-2 inhibitory potency and selectivity. Among the synthesized compounds, 2-alkylthio series were more potent and selective than 2-sulfonylalkyl derivatives. In molecular modeling, interaction of 2-sulfonylalkyl moiety with Arg120 in COX-1 and an extra hydrogen bond with Tyr341 in COX-2 increased the residence time of ligands in the active site in 2-sulfonylalkyl and 2-alkylthio analogs, respectively.  相似文献   

19.
Three novel series of diarylpyrazole 10b-d and triarylpyrazole derivatives 11a-d &12a-d were synthesized through Vilsmier-Haack condition. The structures of prepared compounds were determined through IR, 1H NMR, 13C NMR, Mass spectral and elemental analysis. Docking of the synthesized compounds over COX-2 active site ensure their selectivity. Moreover, the target compounds were evaluated for both in vitro and in vivo inhibitory activity. All compounds were more selective for COX-2 isozyme than COX-1 isozyme and with excellent anti-inflammatory activity. Compounds 11b, 11d and 12b showed the highest anti-inflammatory activity (67.4%, 62.7%, 61.4% respectively), lower ulcerogenic liability (UI = 2.00, 2.75, 3.25 respectively) than indomethacin (UI = 14) and comparable to celecoxib (UI = 1.75) which were confirmed from the histopatholgical study.  相似文献   

20.
A group of (E)-1,3-diphenylprop-2-en-1-one derivatives (chalcones) possessing a MeSO(2)NH, or N(3), COX-2 pharmacophore at the para-position of the C-1 phenyl ring were synthesized using a facile stereoselective Claisen-Schmidt condensation reaction. In vitro COX-1/COX-2 structure-activity relationships were determined by varying the substituents on the C-3 phenyl ring (4-H, 4-Me, 4-F, and 4-OMe). Among the 1,3-diphenylprop-2-en-1-ones possessing a C-1 para-MeSO(2)NH COX-2 pharmacophore, (E)-1-(4-methanesulfonamidophenyl)-3-(4-methylphenyl)prop-2-en-1-one (7b) was identified as a selective COX-2 inhibitor (COX-2 IC(50)=1.0 microM; selectivity index >100) that was less potent than the reference drug rofecoxib (COX-2 IC(50)=0.50 microM; SI>200). The corresponding 1,3-diphenylprop-2-en-1-one analogue possessing a C-1 para-N(3) COX-2 pharmacophore, (E)-1-(4-azidophenyl)-3-(4-methylphenyl)prop-2-en-1-one (7f), exhibited potent and selective COX-2 inhibition (COX-1 IC(50)=22.2 microM; COX-2 IC(50)=0.3 microM; SI=60). A molecular modeling study where 7b and 7f were docked in the binding site of COX-2 showed that the p-MeSO(2)NH and N(3) substituents on the C-1 phenyl ring are oriented in the vicinity of the COX-2 secondary pocket (His90, Arg513, Phe518, and Val523). The structure-activity data acquired indicate that the propenone moiety constitutes a suitable scaffold to design new acyclic 1,3-diphenylprop-2-en-1-ones with selective COX-1 or COX-2 inhibitory activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号