首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously reported that the odontogenic ameloblast‐associated protein (ODAM) plays important roles in enamel mineralization through the regulation of matrix metalloproteinase‐20 (MMP‐20). However, the precise function of ODAM in MMP‐20 regulation remains largely unknown. The aim of the present study was to uncover the molecular mechanisms responsible for MMP‐20 regulation. The subcellular localization of ODAM varies in a stage‐specific fashion during ameloblast differentiation. During the secretory stage of amelogenesis ODAM was localized to both the nucleus and cytoplasm of ameloblasts. However, during the maturation stage of amelogenesis, ODAM was observed in the cytoplasm and at the interface between ameloblasts and the enamel layer, but not in the nucleus. Secreted ODAM was detected in the conditioned medium of ameloblast‐lineage cell line (ALC) from days 14 to 21, which coincided with the maturation stage of amelogenesis. Interestingly, the expression of Runx2 and nuclear ODAM correlated with MMP‐20 expression in ALC. We therefore examined whether ODAM cooperates with Runx2 to regulate MMP‐20 and modulate enamel mineralization. Increased expression of ODAM and Runx2 augmented MMP‐20 expression, and Runx2 expression enhanced expression of ODAM, although overexpression of ODAM did not influence Runx2 expression. Conversely, loss of Runx2 in ALC decreased ODAM expression, resulting in down‐regulation of MMP‐20 expression. Increased MMP‐20 expression accelerated amelogenin processing during enamel mineralization. Our data suggest that Runx2 regulates the expression of ODAM and that nuclear ODAM serves an important regulatory function in the mineralization of enamel through the regulation of MMP‐20 apart from a different, currently unidentified, function of extracellular ODAM. J. Cell. Biochem. 111: 755–767, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
In tooth development matrix metalloproteinases (MMPs) are under the control of several regulatory mechanisms including the upregulation of expression by inducers and downregulation by inhibitors. The aim of the present study was to monitor the occurrence and distribution pattern of the extracellular matrix metalloproteinase inducer (EMMPRIN), the metalloproteinases MMP-2 and MT1-MMP and caveolin-1 during the cap and bell stage of rat molar tooth germs by means of immunocytochemistry. Strong EMMPRIN immunoreactivity was detected on the cell membranes of ameloblasts and cells of the stratum intermedium in the bell stage of the enamel organ. Differentiating odontoblasts exhibited intense EMMPRIN immunoreactivity, especially at their distal ends. Caveolin-1 immunoreactivity was evident in cells of the internal enamel epithelium and in ameloblasts. Double immunofluorescence studies revealed a focal co-localization between caveolin-1 and EMMPRIN in ameloblastic cells. Finally, western blotting experiments demonstrated the expression of EMMPRIN and caveolin-1 in dental epithelial cells (HAT-7 cells). A substantial part of EMMPRIN was detected in the detergent-insoluble caveolin-1-containing low-density raft membrane fraction of HAT-7 cells suggesting a partial localization within lipid rafts. The differentiation-dependent co-expression of MMPs with EMMPRIN in the enamel organ and in odontoblasts indicates that EMMPRIN takes part in the induction of proteolytic enzymes in the rat tooth germ. The localization of EMMPRIN in membrane rafts provides a basis for further investigations on the role of caveolin-1 in EMMPRIN-mediated signal transduction cascades in ameloblasts.  相似文献   

3.
Maspin is a 42 kDa serine protease inhibitor that possesses tumor suppressive and anti-angiogenic activities. Despite of a huge amount of data concerning the expression pattern of maspin in various tissues and its relevance to the biological properties of a variety of human cancer cells, little is known on the maspin expression in skeletal and tooth tissues. Recently, we reported that maspin may play an important role in extracellular matrix formation in bone by enhancing the accumulation of latent TGF-β in the extracellular matrix. This study was performed to elucidate the possible role of maspin in tooth development. First, an immunohistochemical analysis for human tooth germs at the late bell stage showed the expression of maspin by active ameloblasts and odontoblasts that were forming enamel and dentin, respectively. During rat tooth development, maspin expression was observed for the first time in inner and outer enamel epithelial cells and dental papilla cells at early bell stage. The neutralizing anti-maspin antibody inhibited the proper dental tissue formation in organ cultures of mandibular first molars obtained from 21-day-old rat embryos. In addition, the proliferation of HAT-7 cells, a rat odontogenic epithelial cell line, and human dental papilla cells were suppressed in a dose-dependent manner with anti-maspin antibody. Moreover, RT-PCR analysis showed that the expression of mRNA for tooth-related genes including dentin matrix protein 1, dentin sialophosphoprotein and osteopontin in human dental papilla cells was inhibited when treated with anti-maspin antibody. These findings suggest that maspin expressed in ameloblasts and odontoblasts plays an important physiological role in tooth development through the regulation of matrix formation in dental tissues.  相似文献   

4.
We previously have communicated our discovery that the amyloid associated with calcifying epithelial odontogenic tumors is composed of N-terminal fragments of the structurally novel odontogenic ameloblast-associated protein designated ODAM. Subsequently, it was shown by other investigators that ODAM is expressed in rodent enamel organ and is likely involved in dental development. We now report that this molecule also is found in certain human tissues, principally the salivary gland and trachea, as evidenced by RNA array analysis and immunohistochemistry-utilizing antibodies prepared against synthetic ODAM-related peptides and recombinant protein. Notably, these reagents immunostained normal and malignant ameloblasts and other types of human neoplastic cells, including those of gastric, lung, and breast origin where the presence in the latter was confirmed by in situ hybridization using gene-specific molecular probes. Moreover, significant titers of anti-ODAM IgG antibodies were detected in the sera of patients with these malignancies. Our studies have provided the first evidence in humans for the cellular expression of ODAM in normal and diseased states. Based on our findings, we posit that ODAM is a developmental antigen that has an essential role in tooth maturation and in the pathogenesis of certain odontogenic and other epithelial neoplasms; further, we suggest that ODAM may serve as a novel prognostic biomarker, as well as a potential diagnostic and therapeutic target for patients with breast and other epithelial forms of cancer.  相似文献   

5.
Mutations in FAM20C were recently identified as the cause of lethal osteosclerotic bone dysplasia, which highlighted the important role of this molecule in biomineralization. No systematic studies have been performed to evaluate the expression pattern of this relatively new molecule in the developmental processes of bone and tooth. In the present study, we analyzed in detail the expression profile of FAM20C during osteogenesis and odontogenesis using ISH and IHC approaches. The specimens analyzed were mouse tissues spanning embryonic day 13.5 (E13.5) to postnatal 8 weeks. The earliest presence of FAM20C was observed at E14.5. During osteogenesis, FAM20C mRNA was detected in the chondrocytes and osteoblasts of the long bone, whereas its protein was observed in the extracellular matrix (ECM) of bone and in the cytoplasm of the chondrocytes, osteoblasts, and osteocytes. During odontogenesis, FAM20C mRNA was detected in the ameloblasts, odontoblasts, cementoblasts, and periodontal ligament fibroblasts, whereas its protein was observed in the matrices of dentin, enamel, and alveolar bone and in the cytoplasm of the aforementioned cells. The temporospatial expression profile revealed in this study indicates that FAM20C is an ECM protein that may play an important role in controlling the mineralization of bone and tooth. (J Histochem Cytochem 58:957–967, 2010)  相似文献   

6.
To elucidate the function of the odontogenic ameloblast-associated protein (ODAM) in ameloblasts, we identified more than 74 proteins that interact with ODAM using protoarray. Of the identified proteins, bone morphogenetic protein receptor type-IB (BMPR-IB) was physiologically relevant in differentiating ameloblasts. ODAM and BMPR-IB exhibited similar patterns of expression in vitro, during ameloblast differentiation. ODAM and BMPR-IB interacted through the C-terminus of ODAM, which resulted in increased ODAM phosphorylation in the presence of bone morphogenetic protein 2 (BMP-2). Immunoprecipitation assays using Ser-Xaa-Glu (SXE) mutants of ODAM demonstrated that the phosphorylation of ODAM by BMPR-IB occurs at this motif, and this phosphorylation is required for the activation of MAPKs. ODAM phosphorylation was detected in ameloblasts during ameloblast differentiation and enamel mineralization in vitro and involved in the activation of downstream factors of MAPKs. Therefore, the BMP-2-BMPR-IB-ODAM-MAPK signaling cascade has important roles in ameloblast differentiation and enamel mineralization. Our data suggest that ODAM facilitates the progression of tooth development in cooperation with BMPR-IB through distinct domains of ODAM.  相似文献   

7.
Summary Molar tooth germs from three-day-old rats were cultured successfully for fourteen days, permitting the study of the development in vitro of both extracellular matrix and cellular elements such as odontoblasts and ameloblasts. The ultrastructure of the cultured tooth germs was compared with the ultrastructure of tooth germs in vivo at a comparable developmental stage. Progenitor cells of odontoblasts and ameloblasts were found to differentiate in vitro. Odontoblasts seemed to contain more lysosome-like bodies and fewer secretory granules than in vivo. They formed normally mineralizing dentine or a thick layer of dense, unmineralized predentine with incidentally some amorphous, extracellular material. Enamel was exclusively present opposite well developed dentine. It was often hyperor hypomineralized and enamel rods were not as regularly shaped as in vivo. In places where no enamel formation had taken place, large amounts of amorphous extracellular material were sometimes seen. From these observations it can be concluded that cellular development in cultured tooth germs appeared more or less normal, but extracellular matrix formation and mineralization were sometimes disturbed.  相似文献   

8.
Amelogenin is the most abundant matrix protein in enamel. Proper amelogenin processing by proteinases is necessary for its biological functions during amelogenesis. Matrix metalloproteinase 9 (MMP-9) is responsible for the turnover of matrix components. The relationship between MMP-9 and amelogenin during tooth development remains unknown. We tested the hypothesis that MMP-9 binds to amelogenin and they are co-expressed in ameloblasts during amelogenesis. We evaluated the distribution of both proteins in the mouse teeth using immunohistochemistry and confocal microscopy. At postnatal day 2, the spatial distribution of amelogenin and MMP-9 was co-localized in preameloblasts, secretory ameloblasts, enamel matrix and odontoblasts. At the late stages of mouse tooth development, expression patterns of amelogenin and MMP-9 were similar to that seen in postnatal day 2. Their co-expression was further confirmed by RT-PCR, Western blot and enzymatic zymography analyses in enamel organ epithelial and odontoblast-like cells. Immunoprecipitation assay revealed that MMP-9 binds to amelogenin. The MMP-9 cleavage sites in amelogenin proteins across species were found using bio-informative software program. Analyses of these data suggest that MMP-9 may be involved in controlling amelogenin processing and enamel formation.  相似文献   

9.
10.
Tooth enamel is formed by epithelially-derived cells called ameloblasts, while the pulp dentin complex is formed by the dental mesenchyme. These tissues differentiate with reciprocal signaling interactions to form a mature tooth. In this study we have characterized ameloblast differentiation in human developing incisors, and have further investigated the role of extracellular matrix proteins on ameloblast differentiation. Histological and immunohistochemical analyses showed that in the human tooth, the basement membrane separating the early developing dental epithelium and mesenchyme was lost shortly before dentin deposition was initiated, prior to enamel matrix secretion. Presecretary ameloblasts elongated as they came into contact with the dentin matrix, and then shortened to become secretory ameloblasts. In situ hybridization showed that the presecretory stage of odontoblasts started to express type I collagen mRNA, and also briefly expressed amelogenin mRNA. This was followed by upregulation of amelogenin mRNA expression in secretory ameloblasts. In vitro, amelogenin expression was upregulated in ameloblast lineage cells cultured in Matrigel, and was further up-regulated when these cells/Matrigel were co-cultured with dental pulp cells. Co-culture also up-regulated type I collagen expression by the dental pulp cells. Type I collagen coated culture dishes promoted a more elongated ameloblast lineage cell morphology and enhanced cell adhesion via integrin α2β1. Taken together, these results suggest that the basement membrane proteins and signals from underlying mesenchymal cells coordinate to initiate differentiation of preameloblasts and regulate type I collagen expression by odontoblasts. Type I collagen in the dentin matrix then anchors the presecretary ameloblasts as they further differentiate to secretory cells. These studies show the critical roles of the extracellular matrix proteins in ameloblast differentiation.  相似文献   

11.
Summary Several extracellular matrix components (procollagen type III, fibronectin, collagen type IV, laminin and nidogen) and microfilament constituents (actin, α-actinin and vinculin) were localized by indirect immunofluorescence microscopy in frozen sections of embryonic mouse molars. Nidogen was present at the epithelio-mesenchymal junction during polarization and initial steps of functional differentiation of odontoblasts. Nidogen disappeared at a stage where direct contacts between preameloblasts and predentin were required to allow the initiation of ameloblast polarization. Our observations concerning the distribution of procollagen type III and fibronectin during odontoblast differentiation add to current knowledge. Procollagen type III and fibronectin surrounding preodontoblasts accumulated at the apical part of polarizing and functional odontoblasts secreting “initial” predentin. Procollagen type III, but not fibronectin, disappeared in front of functional odontoblasts synthesizing “late” predentin and dentin. Fibronectin, present in “initial” predentin, was no longer detected in “late” predentin and dentin but was found between odontoblasts secreting “late” predentin and dentin. Actin, α-actinin and vinculin were concentrated in the peripheral cytoplasm of preameloblasts and accumulated at the apical and basal poles of functional ameloblasts. During differentiation of odontoblasts, the three proteins accumulated at the apical pole of these cells. Time and space correlations between matrix and microfilament modifications during odontoblast and ameloblast differentiation are documented. The possibility is discussed that there is transmembranous control of the cytoskeletal activities of odontoblasts and ameloblasts by the extracellular matrix.  相似文献   

12.
In the rat model, we used the continuously growing incisor to study the expression pattern of matrix metalloproteinase-20 (MMP-20) during the formation of mineralized dental tissues. Casein zymography analysis of extracts of the forming part of the incisor revealed lysis bands corresponding to both the latent form at 57 kD and the active 46- and 41-kD forms, whereas omission of proteinase inhibitors during protein extraction resulted in a single band at 21 kD. A higher molecular weight form of 78 kD was also stained with MMP-20 and TIMP-2 antibodies in Western blotting, and was therefore believed to correspond to an MMP-20/TIMP-2 complex. Immunohistochemical and immunogold electron microscopic results demonstrated strong MMP-20 staining in the forming outer enamel, which diminished near the dentino-enamel junction, but dentin and predentin were unstained. A strong concentration of MMP-20 was seen in the stratum intermedium (SI), particularly at the earlier stages of enamel development. Our results confirm the presence of MMP-20 protein in ameloblasts and odontoblasts of rat incisor and show it to be localized in the same sites of the forming enamel as amelogenin. Their expression is transient in odontoblasts but persists in ameloblasts, and in both cases the expression of amelogenin preceded that of MMP-20 suggesting a developmentally controlled regulation.  相似文献   

13.
14.
15.
Small leucine-rich proteoglycans (SLRPs) have a number of biological functions and some of them are thought to regulate collagen mineralizaton in bone and tooth. We have previously identified and immunolocalized two members of the SLRPs family, decorin and biglycan, in bovine tooth/periodontium. To investigate their potential roles in tooth development, we examined the mRNA expression patterns of decorin, biglycan and type I collagen in newborn (day 19) mice tooth germs by in situ hybridization. At this developmental stage, the first maxillary and mandibular molars include stages before and after secretion of the predentin matrix, respectively. The expression of decorin mRNA coincided with that of type I collagen mRNA and was mostly observed in secretory odontoblasts, while the biglycan mRNA was expressed throughout the tooth germ, including pre-secretory odontoblasts/ameloblasts, dental papilla and stellate reticulum. However, its signal in secretory odontoblasts was not as evident as that of decorin. In mandibular incisors, where a significant amount of predentin matrix and a small amount of enamel matrix were already secreted, a similar differential expression pattern was observed. In secretory ameloblasts the biglycan mRNA expression was apparent, while that of decorin was not. These differential expression patterns suggest the distinct roles of biglycan and decorin in the process of tooth development.  相似文献   

16.
17.
Itm2a is a type II transmembrane protein with a BRICHOS domain. We investigated the temporospatial mRNA and protein expression patterns of Itm2a in the developing lower first molar, and examined the subcellular localization of Itm2a in murine dental epithelial (mDE6) cells. From the initiation to the bud stage, the in situ and protein signals of Itm2a were not detected in either the dental epithelial or mesenchymal cells surrounding the tooth bud. However, at the bell stage, these signals of Itm2a were primarily observed in the inner enamel epithelium of the enamel organ. After the initiation of the matrix formation, strong signals were detected in ameloblasts and odontoblasts. Itm2a showed a punctate pattern in the cytoplasm of the mDE6 cells. The perinuclear-localized Itm2a displayed a frequent overlap with the Golgi apparatus marker, GM130. A tiny amount of Itm2a was colocalized with lysosomes and endoplasmic reticulum. Minimal or no overlap between the Itm2a-EGFP signals with the other organelle markers for endoplasmic reticulum, lysosome and mitochondria used in this study noted in the cytoplasm. These findings suggest that Itm2a may play a role in cell differentiation during odontogenesis, rather than during the initiation of tooth germ formation, and may be related to the targeting of proteins associated with enamel and dentin matrices in the secretory pathway.  相似文献   

18.
19.
Leptin, a 16 kDa non-glycolated polypeptide of 146 amino acids produced by the ob gene, has a variety of physiological roles not only in lipid metabolism, hematopoiesis, thermogenesis and ovarian function, but also in angiogenesis. This study focuses to investigate the possibility that leptin, as an angiogenic factor, may regulate the angiogenesis during tooth development. We firstly studied the expression of leptin and vascular endothelial growth factor (VEGF) during tooth development immunohistochemically. This investigation revealed that leptin is expressed in ameloblasts, odontoblasts, dental papilla cells and stratum intermedium cells. This expression pattern was similar to that of VEGF, one of the most potent angiogenic factors. Interestingly, more leptin-positive cells were observed in the upper third portion of dental papilla, which is closest to odontoblastic layer, compared to middle and lower thirds. Moreover, in the dental papilla, more CD31 and/or CD34-positive vascular endothelial cells were observed in the vicinity of ameloblasts and odontoblasts expressing leptin and VEGF. These findings strongly suggest that ameloblasts, odontoblasts and dental papilla cells induce the angiogenesis in tooth germs by secretion of leptin as well as VEGF.  相似文献   

20.
It has been suggested that vitamin D is involved in the process of cell differentiation and extracellular mineralization during tooth development. One of the best-defined molecular markers of the action of vitamin D is a calcium-binding protein of Mr 28,000 called calbindin D-28 K (CaBP 28 K). Since this protein is present in growing teeth, we have examined its synthesis in teeth from vitamin D-replete and -deplete rats by Western blotting and immunocytochemistry with an antiserum to CaBP 28 K purified from rat kidney. The CaBP 28 K present in the enamel organ is a single molecular species migrating near 30 k Da, similarly to the kidney protein. The differentiation and maturation of odontogenic cells were followed during early postnatal development (2-12 days) in rat molars. At the light-microscope level, CaBP 28 K was only found in a single cell-type, the ameloblasts. The expression of this protein appeared to be developmentally controlled, since its distribution varied with the cell stage and the functional steps of amelogenesis. The protein was localized in the basal compartment of ameloblasts from the presecretory stage. During the early secretory stage, the concentration of cytoplasmic CaBP 28 K formed a gradient from the apical to the basal pole of the ameloblasts. Staining appeared homogeneous in the cytoplasm of later secretory ameloblasts. CaBP 28 K was discontinuously distributed during the maturation stage. This discontinuity might be related to cyclical changes in mature ameloblasts. In all stages, ameloblasts from vitamin-D-deficient rats appeared depleted of CaBP 28 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号