首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transgenic mice that express Cre recombinase in hypertrophic chondrocytes   总被引:3,自引:0,他引:3  
In order to investigate the physiological control of hypertrophic chondrocytes which present the terminally differentiated form of chondrocytes, we generated a mouse line expressing the Cre recombinase under the control of the mouse type X collagen (Col10a1) promoter. In situ hybridization analysis demonstrated the expression of Col10a1-Cre transgene in hypertrophic chondrocytes of femur at postnatal day 2 (P2). In order to test the excision activity of the Cre recombinase, the Col10a1-Cre transgenic line was crossed with the mouse strain carrying the Smad4 conditional alleles (Smad4co/co) and the reporter line ROSA26. Multiple tissue PCR of Col10a1-Cre;Smad4co/+ mice revealed the restricted Cre activity in tissues containing hypertrophic chondrocytes. LacZ staining revealed that the Cre activity was observed in the cartilage primordia of ribs at E14.5 and only detected in the lower hypertrophic region of ribs at P1. These data suggest that the Col10a1-Cre mouse line described here could be used to achieve conditional gene targeting in hypertrophic chondrocytes.  相似文献   

2.
侯宁  杨冠  范雄伟  吴秀山  杨晓 《遗传》2009,31(1):69-74
肥大软骨细胞是软骨细胞的终末分化形式,在软骨内成骨过程中发挥十分关键的作用。为了研究肥大软骨细胞在骨骼发育过程中的功能,我们构建了在8.2 kb小鼠X型胶原基因(Col10a1)启动子控制下表达Cre重组酶的转基因小鼠品系(Col10a1-8.2-Cre)。采用显微注射法将11.5 kb的转基因片段引入小鼠基因组,共注射受精卵328枚,获得子代鼠51只,经PCR基因型鉴定有3只在基因组上整合有Cre重组酶基因。PCR检测发现Col10a1-8.2-Cre转基因在含有肥大软骨细胞的组织中表达。为了检测Cre重组酶表达的强度和组织特异性,转基因小鼠与ROSA26报告小鼠交配。子代ROSA26;Col10a1-8.2-Cre双转基因小鼠LacZ染色检测的结果显示,Cre重组酶在所有的肥大软骨细胞中表达。原位杂交的结果验证Col10a1-8.2-Cre转基因表达在肥大区的上端。以上结果表明,我们建立的肥大软骨细胞特异性表达Cre重组酶的转基因小鼠品系可以作为一种遗传学工具,介导目的基因在肥大软骨细胞中的敲除。  相似文献   

3.
The cross-linking enzyme tissue transglutaminase (tTG) participates in a variety of cellular functions. To assess its contribution to extracellular and intracellular processes during development we cloned the cDNA for chicken heart tissue transglutaminase and localized the sites of transglutaminase expression by in situ hybridization and immunohistochemistry. Compared with the chicken red blood cell transglutaminase cDNA, the heart cDNA encodes a transglutaminase with an amino-terminal truncation. The truncated enzyme retains full catalytic activity and is GTP-inhibitable. Tissue transglutaminase expression was observed in developmentally transient structures in embryonic chicken limb at day 7.5 of incubation suggesting that its expression is dynamically regulated during limb morphogenesis. The major morphogenetic events of the limb associated with transglutaminase expression were cartilage maturation during skeletal development, interdigital apoptosis, and differentiation of skeletal muscle. Maturation of the cartilage during endochondral ossification was characterized by intra- and extracellular transglutaminase accumulation in the zone of hypertrophic chondrocytes. Only intracellular enzyme could be detected in mesenchymal cells of the prospective joints, in apoptotic cells of the interdigital web, and in skeletal muscle myoblasts. An apparently constitutive expression of tissue transglutaminase was found in vascular endothelial cells corresponding to the adult expression pattern. The dynamic pattern of transglutaminase expression during morphogenesis suggests that tissue remodeling is a major trigger for transglutaminase induction.  相似文献   

4.
Versican/PG-M is a large chondroitin sulfate proteoglycan in the extracellular matrix, which is transiently expressed in mesenchymal condensation areas during tissue morphogenesis. Here, we generated versican conditional knock-out mice Prx1-Cre/Vcanflox/flox, in which Vcan is pruned out by site-specific Cre recombinase driven by the Prx1 promoter. Although Prx1-Cre/Vcanflox/flox mice are viable and fertile, they develop distorted digits. Histological analysis of newborn mice reveals hypertrophic chondrocytic nodules in cartilage, tilting of the joint, and a slight delay of chondrocyte differentiation in digits. By immunostaining, whereas the joint interzone of Prx1-Cre/Vcan+/+ shows an accumulation of TGF-β, concomitant with versican, that of Prx1-Cre/Vcanflox/flox without versican expression exhibits a decreased incorporation of TGF-β. In a micromass culture system of mesenchymal cells from limb bud, whereas TGF-β and versican are co-localized in the perinodular regions of developing cartilage in Prx1-Cre/Vcan+/+, TGF-β is widely distributed in Prx1-Cre/Vcanflox/flox. These results suggest that versican facilitates chondrogenesis and joint morphogenesis, by localizing TGF-β in the extracellular matrix and regulating its signaling.  相似文献   

5.
6.
7.
Requirement for ErbB2/ErbB signaling in developing cartilage and bone   总被引:2,自引:0,他引:2  
During endochondral ossification, the skeletal elements of vertebrate limbs form and elongate via coordinated control of chondrocyte and osteoblast differentiation and proliferation. The role of signaling by the ErbB family of receptor tyrosine kinases, which consists of ErbB1 (epidermal growth factor receptor or EGFR), ErbB2, ErbB3 and ErbB4, has been little studied during cartilage and bone development. Signaling by the ErbB network generates a diverse array of cellular responses via formation of ErbB dimers activated by distinct ligands that produce distinct signal outputs. Herstatin is a soluble ErbB2 receptor that acts in a dominant negative fashion to inhibit ErbB signaling by binding to endogenous ErbB receptors, preventing functional dimer formation. Here, we examine the effects of Herstatin on limb skeletal element development in transgenic mice, achieved via Prx1 promoter-driven expression in limb cartilage and bone. The limb skeletal elements of Prx1-Herstatin embryos are shortened, and chondrocyte maturation and osteoblast differentiation are delayed. In addition, proliferation by chondrocytes and periosteal cells of Prx1-Herstatin limb skeletal elements is markedly reduced. Our study identifies requirements for ErbB signaling in the maintenance of chondrocyte and osteoblast proliferation involved in the timely progression of chondrocyte maturation and periosteal osteoblast differentiation.  相似文献   

8.
王浩  张继帅  孙强  杨晓 《遗传学报》2007,34(8):698-708
此前发现 Smad3 基因敲除小鼠(Smad3ex8/ex8)的关节软骨细胞异常肥大分化,出现类似于人类骨关节炎的表型。为了进一步明确转化生长因子-β(TGF-β)/Smad3 信号通过调节哪些靶基因的表达来抑制关节软骨细胞的肥大分化,以及研究骨关节炎发病的分子机制,利用寡核苷酸芯片技术分析了 5 日龄 Smad3 基因敲除小鼠与野生型对照小鼠关节软骨细胞基因表达谱的改变。通过对差异表达基因的分析,发现在 Smad3 基因敲除小鼠软骨细胞中骨形态发生蛋白(BMP)与 TGF-β/细胞分裂周期基因 42(Cdc42)信号通路活性增强。此外,还发现其他信号通路,如生长激素(growth hormone)/胰岛素样生长因子 1(Igf1)以及成纤维细胞生长因子(Fgf)信号通路相关基因表达的改变。值得注意的是,还发现了 Smad3 基因敲除小鼠软骨细胞中蛋白合成与电子传递链相关基因的表达水平普遍上调,这意味着蛋白质合成速率的加快与细胞有氧呼吸的增强可能与关节软骨细胞的肥大分化和骨关节炎的发生相关。  相似文献   

9.
To determine the role of Bone morphogenetic protein (BMP) signaling in murine limb development in vivo, the keratin 14 promoter was used to drive expression of the BMP antagonist Noggin in transgenic mice. Phosphorylation and nuclear translocation of Smad1/5 were dramatically reduced in limbs of the transgenic animals, confirming the inhibition of BMP signaling. These mice developed extensive limb soft tissue syndactyly and postaxial polydactyly. Apoptosis in the developing limb necrotic zones was reduced with incomplete regression of the interdigital tissue. The postaxial extra digit is also consistent with a role for BMPs in regulating apoptosis. Furthermore, there was persistent expression of Fgf8, suggesting a delay in the regression of the AER. However, Msx1 and Msx2 expression was unchanged in these transgenic mice, implying that induction of these genes is not essential for mediating BMP-induced interdigital apoptosis in mice. These abnormalities were rescued by coexpressing BMP4 under the same promoter in double transgenic mice, suggesting that the limb abnormalities are a direct effect of inhibiting BMP signaling.  相似文献   

10.
Endochondral ossification consists of successive steps of chondrocyte differentiation, including mesenchymal condensation, differentiation of chondrocytes, and hypertrophy followed by mineralization and ossification. Loss-of-function studies have revealed that abnormal growth plate cartilage of the Cdc42 mutant contributes to the defects in endochondral bone formation. Here, we have investigated the roles of Cdc42 in osteogenesis and signaling cascades governing Cdc42-mediated chondrogenic differentiation. Though deletion of Cdc42 in limb mesenchymal progenitors led to severe defects in endochondral ossification, either ablation of Cdc42 in limb preosteoblasts or knockdown of Cdc42 in vitro had no obvious effects on bone formation and osteoblast differentiation. However, in Cdc42 mutant limb buds, loss of Cdc42 in mesenchymal progenitors led to marked inactivation of p38 and Smad1/5, and in micromass cultures, Cdc42 lay on the upstream of p38 to activate Smad1/5 in bone morphogenetic protein-2-induced mesenchymal condensation. Finally, Cdc42 also lay on the upstream of protein kinase B to transactivate Sox9 and subsequently induced the expression of chondrocyte differential marker in transforming growth factor-β1-induced chondrogenesis. Taken together, by using biochemical and genetic approaches, we have demonstrated that Cdc42 is involved not in osteogenesis but in chondrogenesis in which the BMP2/Cdc42/Pak/p38/Smad signaling module promotes mesenchymal condensation and the TGF-β/Cdc42/Pak/Akt/Sox9 signaling module facilitates chondrogenic differentiation.  相似文献   

11.
The fate of hypertrophic chondrocytes during endochondral ossification remains controversial. It has long been thought that the calcified cartilage is invaded by blood vessels and that new bone is deposited on the surface of the eroded cartilage by newly arrived cells. The present study was designed to determine whether hypertrophic chondrocytes were destined to die or could survive to participate in new bone formation. In a rabbit experiment, a membrane filter with a pore size of 1 µm was inserted in the middle of the hypertrophic zone of the distal growth plate of ulna. In 33 of 37 animals, vascular invasion was successfully interposed by the membrane filter. During 8 days, the cartilage growth plate was enlarged, making the thickness 3-fold greater than that of the nonoperated control side. Histological examination demonstrated that the hypertrophic zone was exclusively elongated. At the terminal end of the growth plate, hypertrophic chondrocytes extruded from their territorial matrix into the open cavity on the surface of the membrane filter. The progenies of hypertrophic chondrocytes (PHCs) were PCNA positive and caspase-3 negative. In situ hybridization studies demonstrated that PHCs did not express cartilage matrix proteins anymore but expressed bone matrix proteins. Immunohistochemical studies also demonstrated that the new matrix produced by PHCs contained type I collagen, osteonectin, and osteocalcin. Based on these results, we concluded that hypertrophic chondrocytes switched into bone-forming cells after vascular invasion was interposed in the normal growth plate.  相似文献   

12.
13.
Endochondral bone formation includes a cascade of cellular events such as proliferation, maturation, hypertrophic conversion and calcification of chondrocytes and the cartilage replacement by bone. During these processes, hypertrophic conversion and calcification of chondrocytes (the late-phase differentiation) is a crucial process of chondrogenic differentiation. Indian hedgehog (Ihh), a secreted protein expressed in early hypertrophic chondrocytes, is thought to be involved in regulation of hypertrophic conversion via a feedback loop through the perichondrium. In the present study, we showed by Northern analysis and in situ hybridization that Smoothened (Smo), a key component in hedgehog signal transduction, was expressed in chondrocytes in both adult mice and mouse embryos at 16 days post-coitum in vivo, suggesting that Ihh directly acts on chondrocytes. We previously reported that Ihh, Patched and Smo were all expressed in differentiated ATDC5 cells. Exogenously administered mouse recombinant N-terminal protein of Ihh (mrIhh-N) upregulated the gene expression of type X collagen, a phenotypic marker of hypertrophic chondrocytes, as well as osteoprotegerin ligand (OPGL), a potent stimulator of osteoclastogenesis and osteoclast activity, while it did not modulate the expression of Ihh itself, bone morphogenetic protein (BMP)-4, BMP-6, transforming growth factor (TGF)-beta1 and TGF-beta2 in differentiated ATDC5 cells. Moreover, when added to the osteoclast cultures, mrIhh-N markedly stimulated the formation of resorption pits on dentine slices. Our data support the hypothesis that Ihh stimulated the late-phase chondrogenic differentiation in differentiated ATDC5 cells and upregulated the gene expression of OPGL in these cells.  相似文献   

14.
15.
16.
Ultrastructural aspects of hypertrophic chondrocytes in hamster and mouse epiphysial cartilage were examined in relation to their metabolic activities. With the hypertrophic change, cytoplasmic vacuolization proceeded leaving the partially intact endoplasmic reticulum (ER). In the hypertrophic cells, cytoplasmic hyaluronan was stained with the biotinylated hyaluronan-binding region (b-HABR) of aggrecan, and mRNAs of hyaluronan synthase (Has 1, Has 2 and Has 3) were detected by in situ hybridization. When the epiphysial cartilage was cultured in the presence of 35S, 3H-GlcNAc, 3H-proline or 14C-palmitic acid, vacuolated late hypertrophic chondrocytes were labeled with these radioactive precursors. The evidence indicates that late hypertrophic chondrocytes are metabolically active, which appears to be essential for the enlargement of chondrocytes.  相似文献   

17.
18.
19.
Endochondral ossification begins from the condensation and differentiation of mesenchymal cells into cartilage. The cartilage then goes through a program of cell proliferation, hypertrophic differentiation, calcification, apoptosis, and eventually is replaced by bone. Unlike most cartilage, articular cartilage is arrested before terminal hypertrophic differentiation. In this study, we showed that TGF-beta/Smad3 signals inhibit terminal hypertrophic differentiation of chondrocyte and are essential for maintaining articular cartilage. Mutant mice homozygous for a targeted disruption of Smad3 exon 8 (Smad3(ex8/ex8)) developed degenerative joint disease resembling human osteoarthritis, as characterized by progressive loss of articular cartilage, formation of large osteophytes, decreased production of proteoglycans, and abnormally increased number of type X collagen-expressing chondrocytes in synovial joints. Enhanced terminal differentiation of epiphyseal growth plate chondrocytes was also observed in mutant mice shortly after weaning. In an in vitro embryonic metatarsal rudiment culture system, we found that TGF-beta1 significantly inhibits chondrocyte differentiation of wild-type metatarsal rudiments. However, this inhibition is diminished in metatarsal bones isolated from Smad3(ex8/ex8) mice. These data suggest that TGF-beta/Smad3 signals are essential for repressing articular chondrocyte differentiation. Without these inhibition signals, chondrocytes break quiescent state and undergo abnormal terminal differentiation, ultimately leading to osteoarthritis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号