首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Continuing our work on fluorogenic substrates labeled with single fluorophores for nucleic acid modifying enzymes, here we describe the development of such substrates for DNA ligases and some base excision repair enzymes. These substrates are hairpin-type synthetic DNA molecules with a single fluorophore located on a base close to the 3′ ends, an arrangement that results in strong fluorescence quenching. When such substrates are subjected to an enzymatic reaction, the position of the dyes relative to that end of the molecules is altered, resulting in significant fluorescence intensity changes. The ligase substrates described here were 5′ phosphorylated and either blunt-ended or carrying short, self-complementary single-stranded 5′ extensions. The ligation reactions resulted in the covalent joining of the ends of the molecules, decreasing the quenching effect of the terminal bases on the dyes. To generate fluorogenic substrates for the base excision repair enzymes formamido–pyrimidine–DNA glycosylase (FPG), human 8-oxo-G DNA glycosylase/AP lyase (hOGG1), endonuclease IV (EndoIV), and apurinic/apyrimidinic endonuclease (APE1), we introduced abasic sites or a modified nucleotide, 8-oxo-dG, at such positions that their enzymatic excision would result in the release of a short fluorescent fragment. This was also accompanied by strong fluorescence increases. Overall fluorescence changes ranged from approximately 4-fold (ligase reactions) to more than 20-fold (base excision repair reactions).  相似文献   

2.
Single molecule methods offer an unprecedented opportunity to examine complex macromolecular reactions that are obfuscated by ensemble averaging. The application of single molecule techniques to study DNA processing enzymes has revealed new mechanistic details that are unobtainable from bulk biochemical studies. Homologous DNA recombination is a multi-step pathway that is facilitated by numerous enzymes that must precisely and rapidly manipulate diverse DNA substrates to repair potentially lethal breaks in the DNA duplex. In this review, we present an overview of single molecule assays that have been developed to study key aspects of homologous recombination and discuss the unique information gleaned from these experiments.  相似文献   

3.
Lipases and esterases constitute a large category of enzymes. They are ubiquitous in nature, found in bacteria, fungi, and animals. The family members address a wide variety of structurally diverse substrates. Appropriately, a large number of assays have been developed to analyze their activity in vitro. Here, we present an overview of these enzymes, along with protocols for common assays performed in solution. An emphasis is placed on assays for enzymes that can hydrolyze triacylglycerols.  相似文献   

4.
Cyanine fluorophores are commonly used in single-molecule FRET experiments with nucleic acids. We have previously shown that indocarbocyanine fluorophores attached to the 5′-termini of DNA and RNA via three-carbon atom linkers stack on the ends of the helix, orienting their transition moments. We now investigate the orientation of sulfoindocarbocyanine fluorophores tethered to the 5′-termini of DNA via 13-atom linkers. Fluorescence lifetime measurements of sulfoindocarbocyanine 3 attached to double-stranded DNA indicate that the fluorophore is extensively stacked onto the terminal basepair at 15°C, with properties that depend on the terminal sequence. In single molecules of duplex DNA, FRET efficiency between sulfoindocarbocyanine 3 and 5 attached in this manner is modulated with helix length, indicative of fluorophore orientation and consistent with stacked fluorophores that can undergo lateral motion. We conclude that terminal stacking is an intrinsic property of the cyanine fluorophores irrespective of the length of the tether and the presence or absence of sulfonyl groups. However, compared to short-tether indocarbocyanine, the mean rotational relationship between the two fluorophores is changed by ∼60° for the long-tether sulfoindocarbocyanine fluorophores. This is consistent with the transition moments becoming approximately aligned with the long axis of the terminal basepair for the long-linker species.  相似文献   

5.
Bacteria produce a range of proteolytic enzymes. In an attempt to detect and identify bacteria on the basis of their protease activity, a panel of protease substrates was investigated. Peptides conjugated to the fluorophore 7-amino-4-methylcoumarin (AMC) are well-established substrates for measuring protease activity. Although peptide-AMC substrates are generally not specific for a single protease, a unique pattern can be achieved for both highly specific enzymes and those with a broader substrate range by comparing different peptide substrates. The panel of 7 peptide-AMC substrates chosen exhibited a unique pattern for nine microbial proteases. The selected peptides were used to determine protease activity in cultured strains of Pseudomonas aeruginosa and Staphylococcus aureus. A signal pattern obtained with peptides with arginine, lysine, and tyrosine in the P1 position characterized the bacterial protease activities in these samples. The kinetic parameters for the three best substrates for the P. aeruginosa sample were calculated. Further information about substrate specificity was gained by the selective use of protease inhibitors. The results presented show that peptide-AMC substrates provide a simple and sensitive tool to characterize protease activity in microbiological samples and that they have the potential to identify and distinguish different bacterial species.  相似文献   

6.
Highly miniaturized P450 screening assays designed to enable facile analysis of P450 drug interactions in a 1536-well plate format with the principal human cytochrome P450 enzymes (CYP3A4, 2D6, 2C9, 2C19, and 1A2) and Vivid fluorogenic substrates were developed. The detailed characterization of the assays included stability, homogeneity, and reproducibility of the recombinant P450 enzymes and the kinetic parameters of their reactions with Vivid fluorogenic substrates, with a focus on the specific characteristics of each component that enable screening in a low-volume 1536-well plate assay format. The screening assays were applied for the assessment of individual cytochrome P450 inhibition profiles with a panel of selected assay modifiers, including isozyme-specific substrates and inhibitors. IC(50) values obtained for the modifiers in 96- and 1536-well plate formats were similar and comparable with values obtained in assays with conventional substrates. An overall examination of the 1536-well assay statistics, such as signal-to-background ratio and Z' factor, demonstrated that these assays are a robust, successful, and reliable tool to screen for cytochrome P450 metabolism and inhibition in an ultra-high-throughput screening format.  相似文献   

7.
Glycosyltransferases are key enzymes in glycoconjugate biosynthesis, which make them important targets for biomedical research. Among the different methodologies developed to analyze glycosyltransferase activities, fluorophore-assisted capillary electrophoresis (FACE) emerges as a powerful technique in carbohydrate analysis. Its application to monitor glycosyltransferase activity has been limited to reactions with derivatized sugars as acceptor substrates in which a charged fluorophore/chromophore must be introduced, thus requiring tedious preparative synthesis and purification for each single acceptor substrate. Here we describe a novel and general glycosyltransferase assay based on FACE using underivatized acceptor substrates. Enzyme activity is monitored by a discontinuous assay with postreaction derivatization by reductive amination with 8-aminonaphthalene-1,3,6-trisulfonic acid. The reaction mixture is directly analyzed by HPCE (high-performance capillary electrophoresis) under inverted electroosmotic conditions at pH 2.5 and 30 degrees C. After method validation, it was applied to the kinetic characterization of an alpha-1,3-galactosyltransferase, the enzyme responsible for the biosynthesis of alphaGal epitope involved in the hyperacute rejection in xenotransplantation. The absence of a label on the acceptor during the GT reaction avoids any interference of the label with the enzyme, and the postreaction derivatization does not require any purification step.  相似文献   

8.
Retroviral integrase enzymes have a nonspecific endonuclease activity that is stimulated by certain compounds, suggesting that integrase could be manipulated to damage viral DNA. To identify integrase stimulator (IS) compounds as potential antiviral agents, we have developed a nonradioactive assay that is suitable for high-throughput screening. The assay uses a 49-mer oligonucleotide that is 5′-labeled with a fluorophore, 3′-tagged with a quencher, and designed to form a hairpin that mimics radioactive double-stranded substrates in gel-based nicking assays. Reactions in 384-well plates are analyzed on a real-time PCR machine after a single heat denaturation and subsequent cooling to a point between the melting temperatures of unnicked substrate and nicked products (no cycling is required). Under these conditions, unnicked DNA reforms the hairpin and quenches fluorescence, whereas completely nicked DNA yields a large signal. The assay was linear with time, stimulator concentration, and amount of integrase, and 20% concentrations of the solvent used for many chemical libraries did not interfere with the assay. The assay had an excellent Z′ factor, and it reliably detected known IS compounds. This assay, which is adaptable to other nonspecific nucleases, will be useful for identifying additional IS compounds to develop the novel antiviral strategy of stimulating integrase to destroy retroviral DNA.  相似文献   

9.
Liu J  Shi R  Li Q  Sederoff RR  Chiang VL 《Planta》2012,236(3):879-885
Lignin content and composition are largely determined by the composition and quantity of the monolignol precursors. Individual enzymes of the monolignol biosynthetic pathway determine the composition and quantity of monolignols. Monolignol biosynthesis in angiosperms is mediated by ten enzyme families. We developed a method using a total protein extract (soluble and microsomal) for the comprehensive and simultaneous analysis of these ten enzyme activities in a single target tissue, stem differentiating xylem (SDX) of Populus trichocarpa. As little as 300?mg fresh weight of SDX is sufficient for triplicate assays of all ten enzyme activities. To expand the effectiveness of the analysis, we quantified the reaction products directly by HPLC and developed a universal method that can separate the substrates and products of all enzymes. The specific activities measured with this simple approach are similar to those obtained with the optimum conditions previously established for each individual enzyme. This approach is applicable to the enzyme activity analysis for both P. trichocarpa (angiosperm) and Pinus taeda (gymnosperm) and is particularly useful when a large number of samples need to be analyzed for all monolignol biosynthetic enzymes.  相似文献   

10.

Background

The detailed characterization of arabinoxylan-active enzymes, such as double-substituted xylan arabinofuranosidase activity, is still a challenging topic. Ad hoc chromogenic substrates are useful tools and can reveal subtle differences in enzymatic behavior. In this study, enzyme selectivity on natural substrates has been compared with enzyme selectivity towards aryl-glycosides. This has proven to be a suitable approach to understand how artificial substrates can be used to characterize arabinoxylan-active α-l-arabinofuranosidases (Abfs).

Methods

Real-time NMR using a range of artificial chromogenic, synthetic pseudo-natural and natural substrates was employed to determine the hydrolytic abilities and specificity of different Abfs.

Results

The way in which synthetic di-arabinofuranosylated substrates are hydrolyzed by Abfs mirrors the behavior of enzymes on natural arabinoxylo-oligosaccharide (AXOS). Family GH43 Abfs that are strictly specific for mono-substituted d-xylosyl moieties (AXH-m) do not hydrolyze synthetic di-arabinofuranosylated substrates, while those specific for di-substituted moieties (AXH-d) remove a single l-arabinofuranosyl (l-Araf) group. GH51 Abfs, which are supposedly AXH-m enzymes, can release l-Araf from disubstituted d-xylosyl moieties, when these are non-reducing terminal groups.

Conclusions and general significance

The present study reveals that although the activity of Abfs on artificial substrates can be quite different from that displayed on natural substrates, enzyme specificity is well conserved. This implies that carefully chosen artificial substrates bearing di-arabinofuranosyl d-xylosyl moieties are convenient tools to probe selectivity in new Abfs. Moreover, this study has further clarified the relative promiscuity of GH51 Abfs, which can apparently hydrolyze terminal disubstitutions in AXOS, albeit less efficiently than mono-substituted motifs.  相似文献   

11.
The biogenic amine transporters (BATs) are integral membrane proteins that terminate the actions of dopamine (DA), serotonin (5-HT) and norepinephrine (NE) by pumping these substrates from the extracellular space back into the nerve terminal. Numerous drugs and medications target BATs, acting as inhibitors or substrates. This paper will review some of the methods used to measure the activity of test drugs at the BATs. These methods include traditional uptake inhibition assays and transporter binding assays, as well as methods developed in our lab to determine if a test agent is a BAT substrate or inhibitor. Newer methods, developed in our lab, are used to determine the potency of test drugs as BAT substrates in a relatively high throughput manner. The potential application of these methods to characterizing natural products will be discussed in reference to results obtained with "purified" natural products, such as ephedrine stereoisomers.  相似文献   

12.
A highly sensitive assay based on new internally quenched fluorogenic peptide substrates has been developed for monitoring protease activities. These novel substrates comprise an Edans (5-(2-aminoethylamino)-1-naphthalenesulfonic acid) group at the C terminus and a Dabsyl (4-(dimethylamino)azobenzene-4'-sulfonyl chloride) fluorophore at the N terminus of the peptide chains. The Edans fluorescence increases upon peptide hydrolysis by Pseudomonas aeruginosa proteases, and this increase is directly proportional to the amount of substrate cleaved, i.e., protease activity. The substrates Dabsyl-Ala-Ala-Phe-Ala-Edans and Dabsyl-Leu-Gly-Gly-Gly-Ala-Edans were used for testing the peptidasic activities of P. aeruginosa elastase and LasA protease, respectively. Elastase and LasA kinetic parameters were calculated and a sensitive assay was designed for the detection of P. aeruginosa proteases in bacterial supernatants. The sensitivity and the small sample requirements make the assay suitable for high-throughput screening of biological samples. Furthermore, this P. aeruginosa protease assay improves upon existing assays because it is simple, it requires only one step, and even more significantly it is enzyme specific.  相似文献   

13.
DNA repair activity is of interest as a potential biomarker of individual susceptibility to genotoxic agents. In view of the current trend for exploitation of large cohorts in molecular epidemiology projects, there is a pressing need for the development of phenotypic DNA repair assays that are high-throughput, very sensitive, inexpensive and reliable. Towards this goal we have developed and validated two phenotypic assays for the measurement of two DNA repair enzymes in cell extracts: (1) O(6)-methylguanine-DNA-methyltransferase (MGMT), which repairs the O(6)-alkylguanine-type of adducts induced in DNA by alkylating genotoxins; and (2) apurinic/apyrimidinic endonuclease 1 (APE 1), which participates in base excision repair (BER) by causing a rate-limiting DNA strand cleavage 5' to the abasic sites. The MGMT assay makes use of the fact that: (a) the enzyme works by irreversibly transferring the alkyl group from the O(6) position of guanine to a cystein residue in its active site and thereby becomes inactivated and (b) that the free base O(6)-benzylguanine (BG) is a very good substrate for MGMT. In the new assay, cell extracts are incubated with BG tagged with biotin and the resulting MGMT-BG-biotin complex is immobilized on anti-MGMT-coated microtiter plates, followed by quantitation using streptavidin-conjugated alkaline phosphatase and a chemiluminescence-producing substrate. A one-step/one-tube phenotypic assay for APE1 activity has been developed based on the use of a fluorescent molecular beacon (partially self-complementary oligonucleotide with a hairpin-loop structure carrying a fluorophore and a quencher at each end). It also contains a single tetrahydrofuran residue (THF) which is recognized and cleaved by APE1, and the subsequently formed single-stranded oligomer becomes a fluorescence signal emitter. Both assays are highly sensitive, require very small amounts of protein extracts, are relatively inexpensive and can be easily automated. They have been extensively validated and are being used in the context of large-scale molecular epidemiology studies.  相似文献   

14.
Assay of apical membrane enzymes based on fluorogenic substrates.   总被引:5,自引:0,他引:5  
A series of enzymatic rate assays are described. The assays are based on coumarin derivatives that are fluorogenic substrates for the enzymes dipeptidase IV, aminopeptidase N, alkaline phosphatase, and gamma-glutamyltransferase. These simple assays are rapid and offer improved sensitivity over established colorimetric methods. The substrates have apparent affinities for the enzymes of 5-250 microM. L-Glutamic acid gamma-(7-amido-4-methylcoumarin) is characterized as a substrate of gamma-glutamyltransferase on the basis of inhibition of enzymatic cleavage when the glycylglycine acceptor molecule is omitted and inhibition of the enzymatic reaction by addition of glycine. Assay conditions for the four enzymes are established such that less than 0.6% of the substrate is consumed, fluorescence is proportional to enzymatic product, and results may be directly compared to established colorimetric assays. Intestinal epithelial cells are used both to establish appropriate assay conditions and to demonstrate the utility of the assays.  相似文献   

15.
On the basis of crystal structures of the pyrroloquinoline quinone (PQQ) dependent enzymes methanol dehydrogenase (MDH) and soluble glucose dehydrogenase (s-GDH), different catalytic mechanisms have been proposed. However, several lines of biochemical and kinetic evidence are strikingly similar for both enzymes. To resolve this discrepancy, we have compared the structures of these enzymes in complex with their natural substrates in an attempt to bring them in line with a single reaction mechanism. In both proteins, PQQ is located in the center of the molecule near the axis of pseudo-symmetry. In spite of the absence of significant sequence homology, the overall binding of PQQ in the respective active sites is similar. Hydrogen bonding interactions are made with polar protein side chains in the plane of the cofactor, whereas hydrophobic stacking interactions are important below and above PQQ. One Arg side chain and one calcium ion are ligated to the ortho-quinone group of PQQ in an identical fashion in either active site, in agreement with their proposed catalytic function of polarizing the PQQ C5-O5 bond. The substrates are bound in a similar position above PQQ and within hydrogen bond distance of the putative general bases Asp297 (MDH) and His144 (s-GDH). On the basis of these similarities, we propose that MDH and s-GDH react with their substrates through an identical mechanism, comprising general base-catalyzed hydride transfer from the substrate to PQQ and subsequent tautomerization of the PQQ intermediate to reduced PQQ.  相似文献   

16.
This paper describes the development of homogeneous, fluorogenic polymerase, restriction endonuclease, and ligase assays based on the use of DNA substrate molecules labeled with a single fluorophore. All three enzymatic assays are based on the same observed phenomenon whereby the fluorescence intensity of hairpin-type oligonucleotides with a 5′single-stranded extension, labeled with a single fluorophore, changes when the distance of the dye from the 3′ end of the molecule is altered as a result of the enzymatic transformation (i.e., polymerase extension, endonuclease hydrolysis, or ligation). The magnitudes of the observed fluorescence intensity changes range from 1.2-fold to 3.9-fold, and they are dependent on the type of dye used, its position within the substrate and product molecules, and the base composition surrounding the labeling site.  相似文献   

17.
As the importance of ubiquitylation in certain disease states becomes increasingly apparent, the enzymes responsible for removal of ubiquitin (Ub) from target proteins, deubiquitylases (DUBs), are becoming attractive targets for drug discovery. For rapid identification of compounds that alter DUB function, in vitro assays must be able to provide statistically robust data over a wide dynamic range of both substrate and enzyme concentrations during high throughput screening (HTS). The most established reagents for HTS are Ubs with a quenched fluorophore conjugated to the C-terminus; however, a luciferase-based strategy for detecting DUB activity (DUB-Glo?, Promega) provides a wider dynamic range than traditional fluorogenic reagents. Unfortunately, this assay requires high enzyme concentrations and lacks specificity for DUBs over other isopeptidases (e.g. desumoylases), as it is based on an aminoluciferin (AML) derivative of a peptide derived from the C-terminus of Ub (Z-RLRGG-). Conjugation of aminoluciferin to a full-length Ub (Ub-AML) yields a substrate that has a wide dynamic range, yet displays detection limits for DUBs 100- to 1000-fold lower than observed with DUB-Glo?. Ub-AML was even a sensitive substrate for DUBs (e.g. JosD1 and USP14) that do not show appreciable activity with DUB-Glo?. Aminoluciferin derivatives of hSUMO2 and NEDD8 were also shown to be sensitive substrates for desumoylases and deneddylases, respectively. Ub/Ubl-AML substrates are amenable to HTS (Z'=0.67) yielding robust signal, and providing an alternative drug discovery platform for Ub/Ubl isopeptidases. This article is part of a Special Issue entitled: Ubiquitin Drug Discovery and Diagnostics.  相似文献   

18.
Summary The aperture-defined microvolume (ADM) method is based on the relatively constant absorbance or fluorescence of a microvolume of homogeneously coloured material, which is defined by the numerical aperture of the objective.This paper describes the princile of the method and discusses the equipment needed. The main applications reported so far for the measurement of enzyme activity are reviewed. Among these are the quantification of ELISA and DASS tests used in immunology, kinetic studies of enzymes in solution using fluorogenic substrates, and the measurement of enzyme activity in single cells or cell fractions that have been isolated by flow sorting.Typical characteristics of automated ADM measurements include a coefficient of variation of less than 3%, a lower detection limit of a few nanogrammes of fluorescing dye (e.g. 4-methylumbelliferone) and a linear relationship between fluorescence yield and fluorophore concentration over a range of 0.01 to 2.5 nmol. The scanning of Terasaki-type trays and 96-well microtitration plates can be completely automated and requires approximately one minute.  相似文献   

19.
We have developed a general experimental strategy that enables the quantitative detection of dynamic protein-protein interactions in intact living cells, based on protein-fragment complementation assays (PCAs). In this method, protein interactions are coupled to refolding of enzymes from cognate fragments where reconstitution of enzyme activity acts as the detector of a protein interaction. We have described a number of assays with different reporter readouts, but of particular value to studies of protein interaction dynamics are assays based on enzyme reporters that catalyze the creation of products, thus taking advantage of the amplification of signal afforded. Here we describe protocols for one such PCA based on the enzyme TEM beta-lactamase as a reporter in mammalian cells. The beta-lactamase PCA consists of fusing complementary fragments of beta-lactamase to two proteins of interest. If the proteins interact, the fragments are brought together and fold into active beta-lactamase. Here we describe a protocol for this PCA that can be completed in a few hours, using two different substrates that are converted to fluorescent or colored products by beta-lactamase.  相似文献   

20.
Aminoacyl-tRNA synthetases are essential enzymes that help to ensure the fidelity of protein translation by accurately aminoacylating (or "charging") specific tRNA substrates with cognate amino acids. Many synthetases have an additional catalytic activity to confer amino acid editing or proofreading. This activity relieves ambiguities during translation of the genetic code that result from one synthetase activating multiple amino acid substrates. In this review, we describe methods that have been developed for assaying both pre- and post-transfer editing activities. Pre-transfer editing is defined as hydrolysis of a misactivated aminoacyl-adenylate prior to transfer to the tRNA. This reaction has been reported to occur either in the aminoacylation active site or in a separate editing domain. Post-transfer editing refers to the hydrolysis reaction that cleaves the aminoacyl-ester linkage formed between the carbonyl carbon of the amino acid and the 2' or 3' hydroxyl group of the ribose on the terminal adenosine. Post-transfer editing takes place in a hydrolytic active site that is distinct from the site of amino acid activation. Here, we focus on methods for determination of steady-state reaction rates using editing assays developed for both classes of synthetases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号