首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although tropical wet forests play an important role in the global carbon (C) and nitrogen (N) cycles, little is known about the origin, composition, and fate of dissolved organic C (DOC) and N (DON) in these ecosystems. We quantified and characterized fluxes of DOC, DON, and dissolved inorganic N (DIN) in throughfall, litter leachate, and soil solution of an old-growth tropical wet forest to assess their contribution to C stabilization (DOC) and to N export (DON and DIN) from this ecosystem. We found that the forest canopy was a major source of DOC (232 kg C ha–1 y–1). Dissolved organic C fluxes decreased with soil depth from 277 kg C ha–1 y–1 below the litter layer to around 50 kg C kg C ha–1 y–1 between 0.75 and 3.5m depth. Laboratory experiments to quantify biodegradable DOC and DON and to estimate the DOC sorption capacity of the soil, combined with chemical analyses of DOC, revealed that sorption was the dominant process controlling the observed DOC profiles in the soil. This sorption of DOC by the soil matrix has probably led to large soil organic C stores, especially below the rooting zone. Dissolved N fluxes in all strata were dominated by mineral N (mainly NO3). The dominance of NO3 relative to the total amount nitrate of N leaching from the soil shows that NO3 is dominant not only in forest ecosystems receiving large anthropogenic nitrogen inputs but also in this old-growth forest ecosystem, which is not N-limited.  相似文献   

2.
We investigated how conversion from conventional agriculture to organic management affected the structure and biogeochemical function of soil microbial communities. We hypothesized the following. (1) Changing agricultural management practices will alter soil microbial community structure driven by increasing microbial diversity in organic management. (2) Organically managed soil microbial communities will mineralize more N and will also mineralize more N in response to substrate addition than conventionally managed soil communities. (3) Microbial communities under organic management will be more efficient and respire less added C. Soils from organically and conventionally managed agroecosystems were incubated with and without glucose (13C) additions at constant soil moisture. We extracted soil genomic DNA before and after incubation for TRFLP community fingerprinting of soil bacteria and fungi. We measured soil C and N pools before and after incubation, and we tracked total C respired and N mineralized at several points during the incubation. Twenty years of organic management altered soil bacterial and fungal community structure compared to continuous conventional management with the bacterial differences caused primarily by a large increase in diversity. Organically managed soils mineralized twice as much NO3 ? as conventionally managed ones (44 vs. 23 μg N/g soil, respectively) and increased mineralization when labile C was added. There was no difference in respiration, but organically managed soils had larger pools of C suggesting greater efficiency in terms of respiration per unit soil C. These results indicate that the organic management induced a change in community composition resulting in a more diverse community with enhanced activity towards labile substrates and greater capacity to mineralize N.  相似文献   

3.
Experiments document the ability of two species of autotrophic methanogens to assimilate and utilize organic substrates as the nutrient sulfur or nitrogen source and as a carbon source during growth on H2-CO2. Methanobacterium thermoautotrophicum strain ΔH and the mesophilic species Methanobacterium sp. strain Ivanov grew with glutamine as the nitrogen source or cysteine as the sulfur source. M. thermoautotrophicum also utilized urea as the nitrogen source and as a carbon precursor for methane and cell synthesis. Methanobacterium sp. strain Ivanov grew with methionine as the sulfur source. The growth rate of two different Methanobacterium species was lower on an organic N or S source than on ammonium or sulfide. 35S and 14C tracer studies demonstrated that amino acid or urea assimilation correlated with time and amount of growth. The rate of [35S]cysteine incorporation was similar in strain ΔH (34 nmol h−1 mg of cells−1) and strain Ivanov (23 nmol h−1 mg of cells−1). However, the rate of [14C]acetate incorporation was dramatically different (17 versus 208 nmol h−1 mg of cells−1 in strains ΔH and Ivanov, respectively). [14C]acetate accounted for 1.3 and 21.2% of the total cell carbon synthesized by strains ΔH and Ivanov, respectively. Amino acids and urea were mainly assimilated into the cell protein fraction, but accounted for less than 2.0% of the total cell carbon synthesized. The data suggest that a biochemical-genetic approach to understanding cell carbon synthesis in methanogens is feasible; mutants that are auxotrophic for either acetate, glutamine, cysteine, or methionine are suggested as future targets for genetic studies.  相似文献   

4.
Wetland mitigation is implemented to replace ecosystem functions provided by wetlands; however, restoration efforts frequently fail to establish equivalent levels of ecosystem services. Delivery of microbially mediated ecosystem functions, such as denitrification, is influenced by both the structure and activity of the microbial community. The objective of this study was to compare the relationship between soil and vegetation factors and microbial community structure and function in restored and reference wetlands within a mitigation bank. Microbial community composition was assessed using terminal restriction fragment length polymorphism targeting the 16S rRNA gene (total bacteria) and the nosZ gene (denitrifiers). Comparisons of microbial function were based on potential denitrification rates. Bacterial community structures differed significantly between restored and reference wetlands; denitrifier community assemblages were similar among reference sites but highly variable among restored sites throughout the mitigation bank. Potential denitrification was highest in the reference wetland sites. These data demonstrate that wetland restoration efforts in this mitigation bank have not successfully restored denitrification and that differences in potential denitrification rates may be due to distinct microbial assemblages observed in restored and reference (natural) wetlands. Further, we have identified gradients in soil moisture and soil fertility that were associated with differences in microbial community structure. Microbial function was influenced by bacterial community composition and soil fertility. Identifying soil factors that are primary ecological drivers of soil bacterial communities, especially denitrifying populations, can potentially aid the development of predictive models for restoration of biogeochemical transformations and enhance the success of wetland restoration efforts.Wetlands provide more ecosystem services (e.g., flood control, water purification, nutrient cycling, and habitat for wildlife) per hectare than any other ecosystem (16). Riparian wetlands, in particular, are sites of intense biogeochemical activity and play an important role in improving water quality, recycling nutrients, and detoxifying chemicals (41). Changing patterns of land use over the last century have resulted in the loss of over half of the wetlands in the contiguous United States (17) and about 60% of wetlands in the Midwestern United States (82). The loss of ecosystem services through conversion of wetlands to alternative (primarily agricultural) land uses exacerbates nutrient pollution and eutrophication of downstream ecosystems (57). Declines in wetland acreage have continued despite a federal policy goal of no-net-loss of wetland acreage and function adopted in 1990 (7, 55). Wetland mitigation projects provide compensation for impacted wetlands and aim to replace the critical functions provided by wetlands. Despite decades of wetland mitigation, however, restoration efforts frequently fail to reestablish desired levels of ecosystem services. Restoration outcomes remain uncertain, and more information is necessary in order to improve monitoring and assessment of wetland development (13, 18, 50, 80).One approach to wetland compensation is through mitigation banks. These sites are areas that are restored, established, enhanced, or preserved for replacement of wetlands that will be affected by future land use change. Mitigation banks are considered “third-party” compensatory mitigation, where the permittee (e.g., developer planning to destroy a wetland) is responsible for purchasing wetland credits in acreage, but the wetland bank is established and managed by another party (24). Wetland mitigation banks have unique characteristics that distinguish them from smaller individual restoration projects (7, 69, 81). Due to their size, wetland mitigation banks are especially heterogeneous and may have a great deal of within-site variability in hydrology and nutrient status, making it challenging to implement a single restoration design. Thus, wetland mitigation banks require intense management and monitoring for improved success (7, 69, 81).Restoration efforts such as mitigation banks aim to replace chemical, physical, and biological ecosystem functions of wetlands that have been lost through anthropogenic disturbance (24). Monitoring of wetland mitigation sites has largely focused on measures of macro-scale community structure (e.g., vegetation surveys) (52) along with measures of hydrology and soil type (24). Measurement of vegetation is a common proxy for wetland performance but does not provide an accurate assessment of wetland function (6, 52). Quantitative assessment is achievable, however, for ecosystem services such as water quality improvement through nitrate removal, where well-characterized microbial mechanisms underlie denitrification processes.The link between microbial community structure and function in a restoration context is a topic of current interest (33). Relating microbial community composition and dynamics to chemical, physical, and biological variables can help to reveal important ecological drivers of microbial communities and their activities (26, 35, 42). Conserved bacterial functional genes related to specific biogeochemical transformations allow evaluation of the community structure of microbial populations directly involved in these processes (49, 60, 63, 77, 79). Assessing the diversity of microorganisms that are specifically involved in denitrification is possible through amplification of the nosZ gene, which encodes the catalytic subunit of nitrous oxide reductase, the enzyme responsible for the final step of denitrification (60, 63, 66). Phylogenetically diverse microorganisms can carry out denitrification though the majority of previously described denitrifiers belong to subphyla within the Proteobacteria (53, 56, 60, 61). Denitrification is a facultative process that occurs only under anaerobic conditions (53, 75). Complete denitrification to N2 is more prevalent in anaerobic, saturated wetland ecosystems (14, 76), and incomplete denitrification to N2O is the less desirable, more common endpoint of denitrification under more aerobic, drier conditions (14, 62). While the environmental factors (e.g., oxygen, carbon, nitrate, and pH) that influence bulk denitrification rates have been well characterized (31, 72), the influence of these factors on the composition of denitrifier communities, particularly in a restoration context, is unclear. Understanding the relationship between the microbial populations responsible for nitrogen transformations and easily measured environmental parameters (e.g., soil chemical and physical measures) could lead to assessment metrics that are linked directly to ecosystem functions such as denitrification and bridge the current gap in functional assessment methods (36, 60, 70).The objectives of this study were (i) to compare the microbial and plant community composition in restored wetlands to the composition in adjacent reference floodplain forest wetlands; (ii) to assess the relationship between microbial community composition (based on terminal restriction fragment length polymorphism [T-RFLP]) and potential denitrification activity throughout the mitigation bank; and (iii) to examine soil factors correlated with microbial community composition using both phylogenetic and functional gene markers. As soil environmental conditions affect microbial community structure and activity, we expected that sites where wetland hydrology and soil chemistry have been successfully restored would harbor microbial assemblages that are similar in composition and denitrification function to those observed in reference wetlands within this mitigation bank.  相似文献   

5.
We present the results of a full year of high-resolution monitoring of hydrologic event-driven export of stream dissolved organic matter (DOM) from the forested Bigelow Brook watershed in Harvard Forest, Massachusetts, USA. A combination of in situ fluorescent dissolved organic matter (FDOM) measurement, grab samples, and bioassays was utilized. FDOM was identified as a strong indicator of concentration for dissolved organic carbon (DOC, r 2 = 0.96), dissolved organic nitrogen (DON, r 2 = 0.81), and bioavailable DOC (BDOC, r 2 = 0.81). Relationships between FDOM and concentration were utilized to improve characterization of patterns of hydrological event-driven export and the quantification of annual export. This characterization was possible because DOM composition remained relatively consistent seasonally; however, a subtle shift to increased fluorescence per unit absorbance was observed for summer and fall seasons and percent BDOC did increase slightly with increasing concentrations. The majority of export occurred during pulsed hydrological events, so the greatest impact of bioavailable exports may be on downstream aquatic ecosystems. Export from individual events was highly seasonal in nature with the highest flow weighted mean concentrations (DOCFW) being observed in late summer and fall months, but the highest total export being observed for larger winter storms. Seasonal trends in DOC export coincide with weather driven changes in surface and subsurface flow paths, potential for depletion and rebuilding of a flushable soil organic matter pool, and the availability of terrestrial carbon sources such as leaf litter. Our approach and findings demonstrate the utility of high frequency FDOM measurement to improve estimates of intra-annual temporal trends of DOM export.  相似文献   

6.
In aquatic ecosystems, carbon (C) availability strongly influences nitrogen (N) dynamics. One manifestation of this linkage is the importance in the dissolved organic matter (DOM) pool of dissolved organic nitrogen (DON), which can serve as both a C and an N source, yet our knowledge of how specific properties of DOM influence N dynamics are limited. To empirically examine the impact of labile DOM on the responses of bacteria to DON and dissolved inorganic nitrogen (DIN), bacterial abundance and community composition were examined in controlled laboratory microcosms subjected to various combinations of dissolved organic carbon (DOC), DON, and DIN treatments. Bacterial communities that had colonized glass beads incubated in a stream were treated with various glucose concentrations and combinations of inorganic and organic N (derived from algal exudate, bacterial protein, and humic matter). The results revealed a strong influence of C availability on bacterial utilization of DON and DIN, with preferential uptake of DON under low C concentrations. Bacterial DON uptake was affected by the concentration and by its chemical nature (labile versus recalcitrant). Labile organic N sources (algal exudate and bacterial protein) were utilized equally well as DIN as an N source, but this was not the case for the recalcitrant humic matter DON treatment. Clear differences in bacterial community composition among treatments were observed based on terminal restriction fragment length polymorphisms (T-RFLP) of 16S rRNA genes. C, DIN, and DON treatments likely drove changes in bacterial community composition that in turn affected the rates of DON and DIN utilization under various C concentrations.  相似文献   

7.
We examined patterns of dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) loading to a small urban stream during baseflow and stormflow. We hypothesized that lower DOC and TDN contributions from impervious surfaces would dilute natural hydrologic flowpath (i.e., riparian) contributions during storm events in an urban watershed, resulting in lower concentrations of DOC and TDN during storms. We tested these hypotheses in a small urban watershed in Portland, Oregon, over a 3-month period during the spring of 2003. We compared baseflow and stormflow chemistry using Mann–Whitney tests (significant at p<0.05). We also applied a mass balance to the stream to compare the relative significance of impervious surface contributions versus riparian contributions of DOC and TDN. Results showed a significant increase in stream DOC concentrations during stormflows (median baseflow DOC = 2.00 mg l−1 vs. median stormflow DOC = 3.46 mg l−1). TDN streamwater concentrations, however, significantly decreased with stormflow (median baseflow TDN = 0.75 mg l−1 vs. median stormflow TDN = 0.56 mg l−1). During storms, remnant riparian areas contributed 70–74% of DOC export and 38–35% of TDN export to the stream. The observed pattern of increased DOC concentrations during stormflows in this urban watershed was similar to patterns found in previous studies of forested watersheds. Results for TDN indicated that there were relatively high baseflow nitrogen concentrations in the lower watershed that may have partially masked the remnant riparian signal during stormflows. Remnant riparian areas were a major source of DOC and TDN to the stream during storms. These results suggest the importance of preserving near-stream riparian areas in cities to maintain ambient carbon and nitrogen source contributions to urban streams.  相似文献   

8.
Seasonal variations of dissolved inorganic nitrogen (DIN) (NO3–N and NH4–N) and dissolved organic nitrogen (DON) were determined in Fuirosos, an intermittent stream draining an unpolluted Mediterranean forested catchment (10.5 km2) in Catalonia (Spain). The influence of flow on streamwater concentrations and seasonal differences in quality and origin of dissolved organic matter, inferred from dissolved organic carbon to nitrogen ratios (DOC:DON ratios), were examined. During baseflow conditions, nitrate and ammonium had opposite behaviour, probably controlled by biological processes such as vegetation uptake and mineralization activity. DON concentrations did not have a seasonal trend. During storms, nitrate and DON increased by several times but discharge was not a good predictor of nutrient concentrations. DOC:DON ratios in streamwater were around 26, except during the months following drought when DOC:DON ratios ranged between 42 and 20 during baseflow and stormflow conditions, respectively. Annual N export during 2000–2001 was 70 kg km−1 year−1, of which 75% was delivered during stormflow. The relative contribution of nitrogen forms to the total annual export was 57, 35 and 8% as NO3–N, DON and NH4–N, respectively.  相似文献   

9.
Microcosm experiments were conducted with soils contaminated with heavy metals (Pb and Cr) and aromatic hydrocarbons to determine the effects of each upon microbial community structure and function. Organic substrates were added as a driving force for change in the microbial community. Glucose represented an energy source used by a broad variety of bacteria, whereas fewer soil species were expected to use xylene. The metal amendments were chosen to inhibit the acute rate of organic mineralization by either 50% or 90%, and lower mineralization rates persisted over the entire 31-day incubation period. Significant biomass increases were abolished when metals were added in addition to organic carbon. The addition of organic carbon alone had the most significant impact on community composition and led to the proliferation of a few dominant phylotypes, as detected by PCR-denaturing gradient gel electrophoresis of bacterial 16S rRNA genes. However, the community-wide effects of heavy metal addition differed between the two carbon sources. For glucose, either Pb or Cr produced large changes and replacement with new phylotypes. In contrast, many phylotypes selected by xylene treatment were retained when either metal was added. Members of the Actinomycetales were very prevalent in microcosms with xylene and Cr(VI); gene copy numbers of biphenyl dioxygenase and phenol hydroxylase (but not other oxygenases) were elevated in these microcosms, as determined by real-time PCR. Much lower metal concentrations were needed to inhibit the catabolism of xylene than of glucose. Cr(VI) appeared to be reduced during the 31-day incubations, but in the case of glucose there was substantial microbial activity when much of the Cr(VI) remained. In the case of xylene, this was less clear.  相似文献   

10.
Ecosystems - Environmental changes can alter the interactions between biotic and abiotic ecosystem components in tidal wetlands and therefore impact important ecosystem functions. The objective of...  相似文献   

11.
Stream water dissolved organic carbon (DOC) correlates positively with soil organic carbon (SOC) in many biomes. Does this relationship hold in a small geographic region when variations of temperature, precipitation and vegetation are driven by a significant altitudinal gradient? We examined the spatial connectivity between concentrations of DOC in headwater stream and contents of riparian SOC and water-soluble soil organic carbon (WSOC), riparian soil C:N ratio, and temperature in four vegetation types along an altitudinal gradient in the Wuyi Mountains, China. Our analyses showed that annual mean concentrations of headwater stream DOC were lower in alpine meadow (AM) than in subtropical evergreen broadleaf forest (EBF), coniferous forest (CF), and subalpine dwarf forest (SDF). Headwater stream DOC concentrations were negatively correlated with riparian SOC as well as WSOC contents, and were unrelated to riparian soil C:N ratio. Our findings suggest that DOC concentrations in headwater streams are affected by different factors at regional and local scales. The dilution effect of higher precipitation and adsorption of soil DOC to higher soil clay plus silt content at higher elevation may play an important role in causing lower DOC concentrations in AM stream of the Wuyi Mountains. Our results suggest that upscaling and downscaling of the drivers of DOC export from forested watersheds when exploring the response of carbon flux to climatic change or other drivers must done with caution.  相似文献   

12.
We examined the influence of watershed land use and morphology on dissolved organic carbon (DOC) concentration in 32 south-central Ontario streams having varying agricultural land-use intensities in their catchments. For streams in this region, both univariate and multivariate regression models identify the proportion of the watershed with poorly drained soils (r 2 up to 0.67) as a better predictor of stream DOC concentrations than any other landscape characteristic, including the proportion of the watershed as wetland. Agricultural land use did not strongly influence DOC concentrations in our study area; however, we do show that land-use changes could significantly alter the delivery of DOC to streams in the region. We also identify how landscape–DOC relationships change over a 2-year time period, as related to season, regional climatic conditions, soil moisture, and hydrology. Our results indicate that the relationships between landscape predictors and stream DOC concentrations are temporally dynamic. Strong temporal trends are shown seasonally and in association with climate, through its control of modelled soil moisture conditions. During periods of positive and negative deviation from normal soil moisture conditions, the relationships of DOC concentrations with landscape characteristics become less predictable. We show that these dominant patterns are likely a function of varying flow paths and that anthropogenic changes that affect soil moisture conditions or flow path will in turn strongly influence DOC dynamics. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
“Red snow” refers to red-colored snow, caused by bloom of cold-adapted phototrophs, so-called snow algae. The red snow found in Langhovde, Antarctica, was investigated from several viewpoints. Various sizes of rounded red cells were observed in the red snow samples under microscopy. Pigment analysis demonstrated accumulation of astaxanthin in the red snow. Community structure of microorganisms was analyzed by culture-independent methods. In the analyses of small subunit rRNA genes, several species of green algae, fungus, and various phylotypes of bacteria were detected. The detected bacteria were closely related to psychrophilic or psychrotolerant heterotrophic strains, or sequences detected from low-temperature environments. As predominant lineage of bacteria, members of the genus Hymenobacter were consistently detected from samples obtained in two different years. Nitrogen isotopic compositions analysis indicated that the red snow was significantly 15N-enriched. Based on an estimation of trophic level, it was suggested that primary nitrogen sources of the red snow were supplied from fecal pellet of seabirds including a marine top predator of Antarctica.  相似文献   

14.
Heterotrophic bacteria are well known to be key players in the turnover of dissolved organic material (DOM) in the oceans, but the relationship between DOM uptake and bacterial clades is still not well understood. Here we explore the turnover and single-cell use of glucose, an amino acid mixture, N-acetylglucosamine (NAG), and protein by gammaproteobacterial clades in coastal waters of the West Antarctic Peninsula in summer and fall. More than 60% of the cells within two closely related gammaproteobacterial clades, Ant4D3 and Arctic96B-16, were active in using the amino acid mixture, protein, and NAG. In contrast, an average of only 7% of all SAR86 cells used amino acids and protein even in summer when DOM use was high. In addition to DOM uptake within a group, we explored the contribution of the three gammaproteobacterial groups to total community uptake of a compound. SAR86 contributed 5- to 10-fold less than the other gammaproteobacterial subgroups to the uptake of all compounds. We found that the overall contribution of the Ant4D3 clade to DOM uptake was highest, whereas the SAR86 clade contributed the least to DOM turnover in West Antarctic Peninsula waters. Our results suggest that the low growth activity of a bacterial clade leads to low abundance, fewer active cells and a low contribution to the turnover of DOM components.  相似文献   

15.
Stream and river ecosystems are dependent on energetic inputs from their watersheds and thus shifts in land use from forest cover to agriculture will affect stream community composition and function. The disruption of forest-aquatic linkages alters the organic matter resources in agricultural streams. Dissolved organic matter (DOM) is the dominant form of organic matter in aquatic ecosystems, and a microbial energy source that is important for stream respiration. The concentrations and characteristics of DOM are regulated by both terrestrial (for example, terrestrial organic matter supply) and in-stream processes (for example, microbial respiration and periphyton production) that are influenced by land management. The effects of watershed land use and topographic, soil and climatic variables on DOM quantity (dissolved organic carbon concentration and load), source (terrestrial or in-stream) and quality (composition and lability) were measured in 14 streams across an agricultural land-use gradient. DOC concentration was positively correlated with watershed pasture cover and negatively correlated with watershed relief. No watershed variables were important correlates of DOC load. Stream DOM was primarily of terrestrial origin, but DOM in agricultural streams had a greater proportion of sources from in-stream sources. This may be due to reduced connection with riparian vegetation and increased in-stream primary production. We suggest that maintaining watershed tree cover greater than 52% and ensuring less than 10% of the length of riparian corridor is cleared for pasture could minimize changes to DOM composition. This is important to avoid flow-on effects for stream ecosystem processes that are mediated by DOM. Long-term DOM monitoring will be valuable for assessing the functional impacts of land-use change.  相似文献   

16.
17.
Abstract In this study, two different agricultural soils were investigated: one organic soil and one sandy soil, from Stend (south of Bergen), Norway. The sandy soil was a field frequently tilled and subjected to crop rotations. The organic soil was permanent grazing land, infrequently tilled. Our objective was to compare the diversity of the cultivable bacteria with the diversity of the total bacterial population in soil. About 200 bacteria, randomly isolated by standard procedures, were investigated. The diversity of the cultivable bacteria was described at phenotypic, phylogenetic, and genetic levels by applying phenotypical testing (Biolog) and molecular methods, such as amplified rDNA restriction analysis (ARDRA); hybridization to oligonucleotide probes; and REP-PCR. The total bacterial diversity was determined by reassociation analysis of DNA isolated from the bacterial fraction of environmental samples, combined with ARDRA and DGGE analysis. The relationship between the diversity of cultivated bacteria and the total bacteria was elucidated. Organic soil exhibited a higher diversity for all analyses performed than the sandy soil. Analysis of cultivable bacteria resulted in different resolution levels and revealed a high biodiversity within the population of cultured isolates. The difference between the two agricultural soils was significantly higher when the total bacterial population was analyzed than when the cultivable population was. Thus, analysis of microbial diversity must ultimately embrace the entire microbial community DNA, rather than DNA from cultivable bacteria.  相似文献   

18.
The effects of soil organic management on indigenous microorganisms were studied by comparing mulching straw (S), conifer compost (CC), and conifer bark (CB) as well as grass landing with grass (G), clover (Cl), and fescue (F) in a silty–clay soil (Macon), and by incorporating vine shoot (VS) and single and double doses of farmyard manure (FM) and mushroom manure (MM) in a calcareous sandy soil (Chinon). Soil physicochemical and microbial characteristics were assessed at each site at two depths by sampling at 0–5 and 5–20 cm for the Macon site and 0–10 and 10–20 cm for the Chinon site. Changes in the quantity of soil organic matter (SOM), through an increase in Corg and Norg contents, and in its quality, through modifications in the C/N and humic acid/fulvic acid ratios, were essentially recorded at the surface layer of treated plots with differential magnitudes according to the inputs and soil type. Quantitative modifications in microbial communities were assessed by means of C-biomass measurements and resulted in an increase in microbial densities fitted with the increase of Corg and Norg contents. However, the deduced C incorporation in microbial biomass was negatively correlated with the C/N ratio, demonstrating a strong influence of the type of organic management on the rate of microbial processes. Qualitative modifications in microbial communities were evaluated by the characterization of the genetic structure of bacterial and fungal communities from DNA directly extracted from the soil, using bacterial and fungal automated ribosomal intergenic spacer analysis. Organic amendments led to changes in the bacterial and fungal communities of both sites. However, the magnitude and the specificity of these changes were different between sites, organic amendments, and microorganisms targeted, revealing that the impact of organic management is dependent on the soil and organic input types as well as on the particular ecology of microorganisms. A co-inertia analysis was performed to specify the role of the quantity and quality of SOM on the modifications of the genetic structure. A significant costructure was only observed for Macon plots at 0–5 cm between the bacterial genetic structure and the SOM characteristics, demonstrating the influence of the relative amount of the different humic substances (humic and fulvic acids) on microbial composition.  相似文献   

19.
Porewater equilibration samplers were used to obtain porewater inventories of inorganic nutrients (NH4+, NOx, PO43−), dissolved organic carbon (DOC) and nitrogen (DON), sulfate (SO42−), dissolved inorganic carbon (DIC), hydrogen sulfide (H2S), chloride (Cl), methane (CH4) and reduced iron (Fe2+) in intertidal creek-bank sediments at eight sites in three estuarine systems over a range of salinities and seasons. Sulfate reduction (SR) rates and sediment particulate organic carbon (POC) and nitrogen (PON) were also determined at several of the sites. Four sites in the Okatee River estuary in South Carolina, two sites on Sapelo Island, Georgia and one site in White Oak Creek, Georgia appeared to be relatively pristine. The eighth site in Umbrella Creek, Georgia was directly adjacent to a small residential development employing septic systems to handle household waste. The large data set (>700 porewater profiles) offers an opportunity to assess system-scale patterns of porewater biogeochemical dynamics with an emphasis on DOC and DON distributions. SO42− depletion (SO42−)Dep was used as a proxy for SR, and (SO42−)Dep patterns agreed with measured (35S) patterns of SR. There were significant system-scale correlations between the inorganic products of terminal metabolism (DIC, NH4+ and PO43−) and (SO42−)Dep, and SR appeared to be the dominant terminal carbon oxidation pathway in these sediments. Porewater inventories of DIC and (SO42−)Dep indicate a 2:1 stoichiometry across sites, and the C:N ratio of the organic matter undergoing mineralization was between 7.5 and 10. The data suggest that septic-derived dissolved organic matter with a C:N ratio below 6 fueled microbial metabolism and SR at a site with development in the upland. Seasonality was observed in the porewater inventories, but temperature alone did not adequately describe the patterns of (SO42−)Dep, terminal metabolic products (DIC, NH4+, PO43−), DOC and DON, and SR observed in this study. It appears that production and consumption of labile DOC are tightly coupled in these sediments, and that bulk DOC is likely a recalcitrant pool. Preferential hydrolysis of PON relative to POC when overall organic matter mineralization rates were high appears to drive the observed patterns in POC:PON, DOC:DON and DIC:DIN ratios. These data, along with the weak seasonal patterns of SR and organic and inorganic porewater inventories, suggest that the rate of hydrolysis limits organic matter mineralization in these intertidal creek-bank sediments.  相似文献   

20.
Studies were conducted to examine interrelationships between the heterotrophic and phototrophic populations within an epilithic community in the outlet stream of a high alpine lake. Levels of nitrates, phosphates, and total organic compounds in the lake were consistently near the lower limits of detectability. Microscopic examination of the community by phase-contrast light microscopy and scanning electron microscopy revealed diatoms, filamentous algae, and bacteria embedded within a dense gelatinous matrix. Chlorophyll a and primary productivity measurements had peak values in early August, with subsequent declines. Bacterial heterotrophic activity, as measured by Vmax, turnover rate, and relative activity, increased significantly as the phototrophic community declined. This trend in heterotrophic activity was not accompanied by an increase in total bacterial numbers as determined by epi-illuminated fluorescence microscopy. These results suggest that the phototrophic community responded to changes in, or interactions among, various chemical and physical factors throughout the study period. The catabolic activity of the sessile bacteria appeared to be positively influenced by changes in the mat environment resulting from the decline of the phototrophic populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号