首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
CC chemokine receptor 5 (CCR5) is a G-protein-coupled receptor for the chemokines CCL3, -4, and -5 and a coreceptor for entry of R5-tropic strains of human immunodeficiency virus type 1 (HIV-1) into CD4(+) T-cells. We investigated the mechanisms whereby nonpeptidic, low molecular weight CCR5 ligands block HIV-1 entry and infection. Displacement binding assays and dissociation kinetics demonstrated that two of these molecules, i.e. TAK779 and maraviroc (MVC), inhibit CCL3 and the HIV-1 envelope glycoprotein gp120 binding to CCR5 by a noncompetitive and allosteric mechanism, supporting the view that they bind to regions of CCR5 distinct from the gp120- and CCL3-binding sites. We observed that TAK779 and MVC are full and weak inverse agonists for CCR5, respectively, indicating that they stabilize distinct CCR5 conformations with impaired abilities to activate G-proteins. Dissociation of [(125)I]CCL3 from CCR5 was accelerated by TAK779, to a lesser extent by MVC, and by GTP analogs, suggesting that inverse agonism contributes to allosteric inhibition of the chemokine binding to CCR5. TAK779 and MVC also promote dissociation of [(35)S]gp120 from CCR5 with an efficiency that correlates with their ability to act as inverse agonists. Displacement experiments revealed that affinities of MVC and TAK779 for the [(35)S]gp120-binding receptors are in the same range (IC(50) ~6.4 versus 22 nm), although we found that MVC is 100-fold more potent than TAK779 for inhibiting HIV infection. This suggests that allosteric CCR5 inhibitors not only act by blocking gp120 binding but also alter distinct steps of CCR5 usage in the course of HIV infection.  相似文献   

2.
The binding of protein HIV-1 gp120 to coreceptors CCR5 or CXCR4 is a key step of the HIV-1 entry to the host cell, and is predominantly mediated through the V3 loop fragment of HIV-1 gp120. In the present work, we delineate the molecular recognition of chemokine receptor CCR5 by a dual tropic HIV-1 gp120 V3 loop, using a comprehensive set of computational tools predominantly based on molecular dynamics simulations and free energy calculations. We report, what is to our knowledge, the first complete HIV-1 gp120 V3 loop : CCR5 complex structure, which includes the whole V3 loop and the N-terminus of CCR5, and exhibits exceptional agreement with previous experimental findings. The computationally derived structure sheds light into the functional role of HIV-1 gp120 V3 loop and CCR5 residues associated with the HIV-1 coreceptor activity, and provides insights into the HIV-1 coreceptor selectivity and the blocking mechanism of HIV-1 gp120 by maraviroc. By comparing the binding of the specific dual tropic HIV-1 gp120 V3 loop with CCR5 and CXCR4, we observe that the HIV-1 gp120 V3 loop residues 13–21, which include the tip, share nearly identical structural and energetic properties in complex with both coreceptors. This result paves the way for the design of dual CCR5/CXCR4 targeted peptides as novel potential anti-AIDS therapeutics.  相似文献   

3.
The entry of human immunodeficiency virus (HIV) into cells depends on a sequential interaction of the gp120 envelope glycoprotein with the cellular receptors CD4 and members of the chemokine receptor family. The CC chemokine receptor CCR5 is such a receptor for several chemokines and a major coreceptor for the entry of R5 HIV type-1 (HIV-1) into cells. Although many studies focus on the interaction of CCR5 with HIV-1, the corresponding interaction sites in CCR5 and gp120 have not been matched. Here we used an approach combining protein structure modeling, docking and molecular dynamics simulation to build a series of structural models of the CCR5 in complexes with gp120 and CD4. Interactions such as hydrogen bonds, salt bridges and van der Waals contacts between CCR5 and gp120 were investigated. Three snapshots of CCR5-gp120-CD4 models revealed that the initial interactions of CCR5 with gp120 are involved in the negatively charged N-terminus (Nt) region of CCR5 and positively charged bridging sheet region of gp120. Further interactions occurred between extracellular loop2 (ECL2) of CCR5 and the base of V3 loop regions of gp120. These interactions may induce the conformational changes in gp120 and lead to the final entry of HIV into the cell. These results not only strongly support the two-step gp120-CCR5 binding mechanism, but also rationalize extensive biological data about the role of CCR5 in HIV-1 gp120 binding and entry, and may guide efforts to design novel inhibitors.  相似文献   

4.
Maraviroc, an (HIV-1) entry inhibitor, binds to CCR5 and efficiently prevents R5 human immunodeficiency virus type 1 (HIV-1) from using CCR5 as a coreceptor for entry into CD4+ cells. However, HIV-1 can elude maraviroc by using the drug-bound form of CCR5 as a coreceptor. This property is known as noncompetitive resistance. HIV-1V3-M5 derived from HIV-1JR-FLan is a noncompetitive-resistant virus that contains five mutations (I304V/F312W/T314A/E317D/I318V) in the gp120 V3 loop alone. To obtain genetic and structural insights into maraviroc resistance in HIV-1, we performed here mutagenesis and computer-assisted structural study. A series of site-directed mutagenesis experiments demonstrated that combinations of V3 mutations are required for HIV-1JR-FLan to replicate in the presence of 1 µM maraviroc, and that a T199K mutation in the C2 region increases viral fitness in combination with V3 mutations. Molecular dynamic (MD) simulations of the gp120 outer domain V3 loop with or without the five mutations showed that the V3 mutations induced (i) changes in V3 configuration on the gp120 outer domain, (ii) reduction of an anti-parallel β-sheet in the V3 stem region, (iii) reduction in fluctuations of the V3 tip and stem regions, and (iv) a shift of the fluctuation site at the V3 base region. These results suggest that the HIV-1 gp120 V3 mutations that confer maraviroc resistance alter structure and dynamics of the V3 loop on the gp120 outer domain, and enable interactions between gp120 and the drug-bound form of CCR5.  相似文献   

5.
Human immunodeficiency virus type 1 (HIV-1) entry is mediated by the consecutive interaction of the envelope glycoprotein gp120 with CD4 and a coreceptor such as CCR5 or CXCR4. The CCR5 coreceptor is used by the most commonly transmitted HIV-1 strains that often persist throughout the course of infection. Compounds targeting CCR5-mediated entry are a novel class of drugs being developed to treat HIV-1 infection. In this study, we have identified the mechanism of action of two inhibitors of CCR5 function, SCH-350581 (AD101) and SCH-351125 (SCH-C). AD101 is more potent than SCH-C at inhibiting HIV-1 replication in primary lymphocytes, as well as viral entry and gp120 binding to cell lines. Both molecules also block the binding of several anti-CCR5 monoclonal antibodies that recognize epitopes in the second extracellular loop of CCR5. Alanine mutagenesis of the transmembrane domain of CCR5 suggests that AD101 and SCH-C bind to overlapping but nonidentical sites within a putative ligand-binding cavity formed by transmembrane helices 1, 2, 3, and 7. We propose that the binding of small molecules to the transmembrane domain of CCR5 may disrupt the conformation of its extracellular domain, thereby inhibiting ligand binding to CCR5.  相似文献   

6.
The human immunodeficiency virus type 1 (HIV-1) gp120 exterior glycoprotein is conformationally flexible. Upon binding the host cell receptor, CD4, gp120 assumes a conformation that is able to bind the chemokine receptors CCR5 or CXCR4, which act as coreceptors for the virus. CD4-binding-site (CD4BS) antibodies are neutralizing antibodies elicited during natural infection that are directed against gp120 epitopes that overlap the binding site for CD4. Recent studies (S. H. Xiang et al., J. Virol. 76:9888-9899, 2002) suggest that CD4BS antibodies recognize conformations of gp120 distinct from the CD4-bound conformation. This predicts that the binding of CD4BS antibodies will inhibit chemokine receptor binding. Here, we show that Fab fragments and complete immunoglobulin molecules of CD4BS antibodies inhibit CD4-independent gp120 binding to CCR5 and cell-cell fusion mediated by CD4-independent HIV-1 envelope glycoproteins. These results are consistent with a model in which the binding of CD4BS antibodies limits the ability of gp120 to assume a conformation required for coreceptor binding.  相似文献   

7.
Mulampaka SN  Dixit NM 《PloS one》2011,6(5):e19941
Reduced expression of CCR5 on target CD4(+) cells lowers their susceptibility to infection by R5-tropic HIV-1, potentially preventing transmission of infection and delaying disease progression. Binding of the HIV-1 envelope (Env) protein gp120 with CCR5 is essential for the entry of R5 viruses into target cells. The threshold surface density of gp120-CCR5 complexes that enables HIV-1 entry remains poorly estimated. We constructed a mathematical model that mimics Env-mediated cell-cell fusion assays, where target CD4(+)CCR5(+) cells are exposed to effector cells expressing Env in the presence of a coreceptor antagonist and the fraction of target cells fused with effector cells is measured. Our model employs a reaction network-based approach to describe protein interactions that precede viral entry coupled with the ternary complex model to quantify the allosteric interactions of the coreceptor antagonist and predicts the fraction of target cells fused. By fitting model predictions to published data of cell-cell fusion in the presence of the CCR5 antagonist vicriviroc, we estimated the threshold surface density of gp120-CCR5 complexes for cell-cell fusion as ~20 μm(-2). Model predictions with this threshold captured data from independent cell-cell fusion assays in the presence of vicriviroc and rapamycin, a drug that modulates CCR5 expression, as well as assays in the presence of maraviroc, another CCR5 antagonist, using sixteen different Env clones derived from transmitted or early founder viruses. Our estimate of the threshold surface density of gp120-CCR5 complexes necessary for HIV-1 entry thus appears robust and may have implications for optimizing treatment with coreceptor antagonists, understanding the non-pathogenic infection of non-human primates, and designing vaccines that suppress the availability of target CD4(+)CCR5(+) cells.  相似文献   

8.
Developing of multi-target HIV-1 entry inhibitors represents an important avenue of drug therapy. Two such inhibitors are hexa-arginine-neomycin-conjugate (NeoR6) and nona-d-arginine-neomycin-conjugate (Neo-r9). Our findings that NeoR6-resistant mutations appear in the gp120 constant regions; and NeoR6 is not CCR5 antagonist, but inhibits CXCR4 and CCR5 HIV-1 using isolates, led us to suggest that NeoR6 may inhibit HIV-1 entry by interfering with the CD4-gp120 binding. To support this notion, we constructed a homology model of unliganded HIV-1(IIIB) gp120 and docked NeoR6 and Neo-r9 to it, using a multistep docking procedure: geometric-electrostatic docking by MolFit; flexible ligand docking by Autodock3 and final refinement of the obtained complexes by Discover3. Binding free energies were calculated by MM-PBSA methodology. The model predicts competitive inhibition of CD4-gp120 binding by NeoR6 and Neo-r9. We determined plausible binding sites between constructed CD4-bound gp120 trimer and homology modeled membranal CXCR4, and tested NeoR6 and Neo-r9 interfering with this interaction. These models support our notion that another mechanism of anti-HIV-1 activity of NeoR6 is inhibition of gp120-CXCR4 binding. These structural models and interaction of NeoR6 and Neo-r9 with gp120 and CXCR4 provide a powerful approach for structural based drug design for selective targeting of HIV-1 entry and/or for inhibition of other retroviruses with similar mechanism of entry.  相似文献   

9.
Human immunodeficiency virus (HIV) type 1 infection requires functional interactions of the viral surface (gp120) glycoprotein with cell surface CD4 and a chemokine coreceptor (usually CCR5 or CXCR4) and of the viral transmembrane (gp41) glycoprotein with the target cell membrane. Extensive genetic variability, generally in gp120 and the gp41 ectodomain, can result in altered coreceptor use, fusion kinetics, and neutralization sensitivity. Here we describe an R5 HIV variant that, in contrast to its parental virus, infects T-cell lines expressing low levels of cell surface CCR5. This correlated with an ability to infect cells in the absence of CD4, increased sensitivity to a neutralizing antibody recognizing the coreceptor binding site of gp120, and increased resistance to the fusion inhibitor T-20. Surprisingly, these properties were determined by alterations in gp41, including the cytoplasmic tail, a region not previously shown to influence coreceptor use. These data indicate that HIV infection of cells with limiting levels of cell surface CCR5 can be facilitated by gp41 sequences that are not exposed on the envelope ectodomain yet induce allosteric changes in gp120 that facilitate exposure of the CCR5 binding site.  相似文献   

10.
Developing of multi-target HIV-1 entry inhibitors represents an important avenue of drug therapy. Two such inhibitors are hexa-arginine-neomycin-conjugate (NeoR6) and nona-d-arginine-neomycin-conjugate (Neo-r9). Our findings that NeoR6-resistant mutations appear in the gp120 constant regions; and NeoR6 is not CCR5 antagonist, but inhibits CXCR4 and CCR5 HIV-1 using isolates, led us to suggest that NeoR6 may inhibit HIV-1 entry by interfering with the CD4-gp120 binding. To support this notion, we constructed a homology model of unliganded HIV-1IIIB gp120 and docked NeoR6 and Neo-r9 to it, using a multistep docking procedure: geometric-electrostatic docking by MolFit; flexible ligand docking by Autodock3 and final refinement of the obtained complexes by Discover3. Binding free energies were calculated by MM-PBSA methodology. The model predicts competitive inhibition of CD4-gp120 binding by NeoR6 and Neo-r9. We determined plausible binding sites between constructed CD4-bound gp120 trimer and homology modeled membranal CXCR4, and tested NeoR6 and Neo-r9 interfering with this interaction. These models support our notion that another mechanism of anti-HIV-1 activity of NeoR6 is inhibition of gp120-CXCR4 binding. These structural models and interaction of NeoR6 and Neo-r9 with gp120 and CXCR4 provide a powerful approach for structural based drug design for selective targeting of HIV-1 entry and/or for inhibition of other retroviruses with similar mechanism of entry.  相似文献   

11.
CD4 and CCR5 mediate fusion and entry of R5 human immunodeficiency virus type 1 (HIV-1) strains. Sulfotyrosine and other negatively charged residues in the CCR5 amino-terminal domain (Nt) are crucial for gp120 binding and viral entry. We previously showed that a soluble gp120-CD4 complex specifically binds to a peptide corresponding to CCR5 Nt residues 2 to 18, with sulfotyrosines in positions 10 and 14. This sulfopeptide also inhibits soluble gp120-CD4 binding to cell surface CCR5 as well as infection by an R5 virus. Here we show that residues 10 to 18 constitute the minimal domain of the CCR5 Nt that is able to specifically interact with soluble gp120-CD4 complexes. In addition to sulfotyrosines in positions 10 and 14, negatively charged residues in positions 11 and 18 participate in this interaction. Furthermore, the CCR5 Nt binds to a CD4-induced surface on gp120 that is composed of conserved residues in the V3 loop stem and the C4 domain. Binding of gp120 to cell surface CCR5 is further influenced by residues in the crown of the V3 loop, C1, C2, and C3. Our data suggest that gp120 docking to CCR5 is a multistep process involving several independent regions of the envelope glycoprotein and the coreceptor.  相似文献   

12.
Tyrosine sulfation of the amino terminus of CCR5 facilitates HIV-1 entry   总被引:23,自引:0,他引:23  
Chemokine receptors and related seven-transmembrane-segment (7TMS) receptors serve as coreceptors for entry of human and simian immunodeficiency viruses (HIV-1, HIV-2, and SIV) into target cells. Each of these otherwise diverse coreceptors contains an N-terminal region that is acidic and tyrosine rich. Here, we show that the chemokine receptor CCR5, a principal HIV-1 coreceptor, is posttranslationally modified by O-linked glycosylation and by sulfation of its N-terminal tyrosines. Sulfated tyrosines contribute to the binding of CCR5 to MIP-1 alpha, MIP-1 beta, and HIV-1 gp120/CD4 complexes and to the ability of HIV-1 to enter cells expressing CCR5 and CD4. CXCR4, another important HIV-1 coreceptor, is also sulfated. Tyrosine sulfation may contribute to the natural function of many 7TMS receptors and may be a modification common to primate immunodeficiency virus coreceptors.  相似文献   

13.
CC chemokine receptor 5 (CCR5) is a high-affinity receptor for macrophage inflammatory protein (MIP)-1beta and functions as the major coreceptor for entry of macrophage-tropic (M-tropic) human immunodeficiency virus type 1 (HIV-1). To evaluate the role of transmembrane domains (TM) in the receptor function of CCR5, the seventh transmembrane domain (TM7) was examined in a series of chimeric receptor constructs including CCR5TM (CCR5 backbone/CCR5 TM7 replaced with CCR1 TM7) and mutants of CCR5TM. The CCR5TM chimera exhibited a dramatic reduction in receptor activation, as well as little or no MIP-1beta binding. Further mutational analysis revealed that Met 287 in TM7 of CCR5 is a critical molecular determinant for both MIP-1beta binding and receptor activation. Interestingly, all of the chimeric/mutated receptors were biologically active in an HIV-1 coreceptor fusion assay, demonstrating that chemokine binding is independent of HIV-1 coreceptor activity.  相似文献   

14.
CCR5 is the major HIV-1 entry coreceptor. RANTES/CCL5 analogs are more potent inhibitors of infection than native chemokines; one class activates and internalizes CCR5, one neither activates nor internalizes, and a third partially internalizes without activation. Here we show that mutations in CCR5 transmembrane domains differentially impact the activity of these three inhibitor classes, suggesting that the transmembrane region of CCR5, a key interaction site for inhibitors, is a sensitive molecular switch, modulating receptor activity.  相似文献   

15.
The G-protein coupled receptor CCR5 functions pathologically as the primary co-receptor for macrophage tropic (R5) strains of HIV-1. The interactions responsible for co-receptor activity are unknown. Molecular-dynamics simulations of the extracellular and adjacent transmembrane domains of CCR5 were performed with explicit solvation utilizing a rhodopsin-based homology model. The functional unit of co-receptor binding was constructed via docking and molecular-dynamics simulation of CCR5 and the variable 3 loop of gp120, which is a dominant determinant of co-receptor utilization. The variable 3 loop was demonstrated to interact primarily with the amino terminus and the second extracellular loop of CCR5, providing novel structural information regarding the co-receptor-binding site. Alanine mutants that alter chemokine binding and co-receptor activity were examined. Molecular-dynamics simulations with and without the variable 3 loop of gp120 were able to rationalize the activities of these mutants successfully, providing support for the proposed model. Based on these results, the global complex of CCR5, gp120 including the V3 loop and CD4, was investigated. The utilization of computational analysis, in combination with molecular biological data, provides a powerful approach for understanding the use of CCR5 as a co-receptor by HIV-1.  相似文献   

16.
Multiple extracellular domains of the CC-chemokine receptor CCR5 are important for its function as a human immunodeficiency virus type 1 (HIV-1) coreceptor. We have recently demonstrated by alanine scanning mutagenesis that the negatively charged residues in the CCR5 amino-terminal domain are essential for gp120 binding and coreceptor function. We have now extended our analysis of this domain to include most polar and nonpolar amino acids. Replacement of alanine with all four tyrosine residues and with serine-17 and cysteine-20 decrease or abolish gp120 binding and CCR5 coreceptor activity. Tyrosine-15 is essential for viral entry irrespective of the test isolate. Substitutions at some of the other positions impair the entry of dualtropic HIV-1 isolates more than that of macrophagetropic ones.  相似文献   

17.
The gp120 envelope glycoprotein of the human immunodeficiency virus type 1 (HIV-1) promotes virus entry by sequentially binding CD4 and chemokine receptors on the target cell. Primary, clinical HIV-1 isolates require interaction with CD4 to allow gp120 to bind the CCR5 chemokine receptor efficiently. We adapted a primary HIV-1 isolate, ADA, to replicate in CD4-negative canine cells expressing human CCR5. The gp120 changes responsible for the adaptation were limited to alteration of glycosylation addition sites in the V2 loop-V1-V2 stem. The gp120 glycoproteins of the adapted viruses bound CCR5 directly, without prior interaction with CD4. Thus, a major function of CD4 binding in the entry of primary HIV-1 isolates can be bypassed by changes in the gp120 V1-V2 elements, which allow the envelope glycoproteins to assume a conformation competent for CCR5 binding.  相似文献   

18.
Schön A  Madani N  Klein JC  Hubicki A  Ng D  Yang X  Smith AB  Sodroski J  Freire E 《Biochemistry》2006,45(36):10973-10980
NBD-556 and the chemically and structurally similar NBD-557 are two low-molecular weight compounds that reportedly block the interaction between the HIV-1 envelope glycoprotein gp120 and its receptor, CD4. NBD-556 binds to gp120 with a binding affinity of 2.7 x 10(5) M(-1) (K(d) = 3.7 muM) in a process characterized by a large favorable change in enthalpy partially compensated by a large unfavorable entropy change, a thermodynamic signature similar to that observed for binding of sCD4 to gp120. NBD-556 binding is associated with a large structuring of the gp120 molecule, as also demonstrated by CD spectroscopy. NBD-556, like CD4, activates the binding of gp120 to the HIV-1 coreceptor, CCR5, and to the 17b monoclonal antibody, which recognizes the coreceptor binding site of gp120. NBD-556 stimulates HIV-1 infection of CD4-negative, CCR5-expressing cells. The thermodynamic signature of the binding of NBD-556 to gp120 is very different from that of another viral entry inhibitor, BMS-378806. Whereas NBD-556 binds gp120 with a large favorable enthalpy and compensating unfavorable entropy changes, BMS-378806 does so with a small binding enthalpy change in a mostly entropy-driven process. NBD-556 is a competitive inhibitor of sCD4 and elicits a similar structuring of the coreceptor binding site, whereas BMS-378806 does not compete with sCD4 and does not induce coreceptor binding. These studies demonstrate that low-molecular-weight compounds can induce conformational changes in the HIV-1 gp120 glycoprotein similar to those observed upon CD4 binding, revealing distinct strategies for inhibiting the function of the HIV-1 gp120 envelope glycoprotein. Furthermore, competitive and noncompetitive compounds have characteristic thermodynamic signatures that can be used to guide the design of more potent and effective viral entry inhibitors.  相似文献   

19.
HIV-1 utilizes CD4 and the chemokine coreceptor for viral entry. The coreceptor CCR5 binding site on gp120 partially overlaps with the binding epitope of 17b, a neutralizing antibody of HIV-1. We designed a multicomponent biosensor assay to investigate the kinetic mechanism of interaction between gp120 and its receptors and the cooperative effect of the CCR5 binding site on the CD4 binding site, using 17b as a surrogate of CCR5. The Env gp120 proteins from four viral strains (JRFL, YU2, 89.6, and HXB2) and their corresponding C1-, V1/V2-, C5-deleted mutants (DeltaJRFL, DeltaYU2, Delta89.6, and DeltaHXB2) were tested in this study. We found that, across the primary and lab-adapted virus strains, 17b reduced the affinity of all four full-length Env gp120s for sCD4 by decreasing the on-rate and increasing the off-rate. This effect of 17b on full-length gp120 binding to sCD4 contrasts with the enhancing effect of sCD4 on gp120-17b interaction. For the corresponding loop-deleted mutants of Env gp120, the off-rates of the gp120-sCD4 interaction were greatly reduced in the presence of 17b, resulting in higher affinities (except for that of DeltaHXB2). The results suggest that, when 17b is prebound to full-length gp120, the V1/V2 loops may be relocated to a position that partially blocks the CD4-binding site, leading to weakening of the CD4 interaction. Given the fact that the 17b binding epitope partially overlaps with the binding site of CCR5, the kinetic results suggest that coreceptor CCR5 binding could have a similar "release" effect on the gp120-CD4 interaction by increasing the off-rate of the latter. The results also suggest that the neutralizing effect of 17b may arise not only from partially blocking the CCR5 binding site but also from reducing the CD4 binding affinity of gp120. This negative cooperative effect of 17b may provide insight into approaches to designing antagonists for viral entry.  相似文献   

20.
The ability to determine coreceptor usage of patient-derived human immunodeficiency virus type 1 (HIV-1) strains is clinically important, particularly for the administration of the CCR5 antagonist maraviroc. The envelope glycoprotein (Env) determinants of coreceptor specificity lie primarily within the gp120 V3 loop region, although other Env determinants have been shown to influence gp120-coreceptor interactions. Here, we determined whether conserved amino acid alterations outside the V3 loop that contribute to coreceptor usage exist, and whether these alterations improve the performance of V3 sequence-based coreceptor usage prediction algorithms. We demonstrate a significant covariant association between charged amino acids at position 322 in V3 and position 440 in the C4 Env region that contributes to the specificity of HIV-1 subtype B strains for CCR5 or CXCR4. Specifically, positively charged Lys/Arg at position 322 and negatively charged Asp/Glu at position 440 occurred more frequently in CXCR4-using viruses, whereas negatively charged Asp/Glu at position 322 and positively charged Arg at position 440 occurred more frequently in R5 strains. In the context of CD4-bound gp120, structural models suggest that covariation of amino acids at Env positions 322 and 440 has the potential to alter electrostatic interactions that are formed between gp120 and charged amino acids in the CCR5 N-terminus. We further demonstrate that inclusion of a “440 rule” can improve the sensitivity of several V3 sequence-based genotypic algorithms for predicting coreceptor usage of subtype B HIV-1 strains, without compromising specificity, and significantly improves the AUROC of the geno2pheno algorithm when set to its recommended false positive rate of 5.75%. Together, our results provide further mechanistic insights into the intra-molecular interactions within Env that contribute to coreceptor specificity of subtype B HIV-1 strains, and demonstrate that incorporation of Env determinants outside V3 can improve the reliability of coreceptor usage prediction algorithms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号