首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The magnitude of the terrestrial carbon (C) sink may be overestimated globally due to the difficulty of accounting for all C losses across heterogeneous landscapes. More complete assessments of net landscape C balances (NLCB) are needed that integrate both emissions by fire and transfer to aquatic systems, two key loss pathways of terrestrial C. These pathways can be particularly significant in the wet–dry tropics, where fire plays a fundamental part in ecosystems and where intense rainfall and seasonal flooding can result in considerable aquatic C export (ΣFaq). Here, we determined the NLCB of a lowland catchment (~140 km2) in tropical Australia over 2 years by evaluating net terrestrial productivity (NEP), fire‐related C emissions and ΣFaq (comprising both downstream transport and gaseous evasion) for the two main landscape components, that is, savanna woodland and seasonal wetlands. We found that the catchment was a large C sink (NLCB 334 Mg C km?2 year?1), and that savanna and wetland areas contributed 84% and 16% to this sink, respectively. Annually, fire emissions (?56 Mg C km?2 year?1) and ΣFaq (?28 Mg C km?2 year?1) reduced NEP by 13% and 7%, respectively. Savanna burning shifted the catchment to a net C source for several months during the dry season, while ΣFaq significantly offset NEP during the wet season, with a disproportionate contribution by single major monsoonal events—up to 39% of annual ΣFaq was exported in one event. We hypothesize that wetter and hotter conditions in the wet–dry tropics in the future will increase ΣFaq and fire emissions, potentially further reducing the current C sink in the region. More long‐term studies are needed to upscale this first NLCB estimate to less productive, yet hydrologically dynamic regions of the wet–dry tropics where our result indicating a significant C sink may not hold.  相似文献   

2.
This research utilized tower‐based eddy covariance to quantify the trends in net ecosystem mass (CO2 and H2O vapor) and energy exchange of important land‐cover types of NW Mato Grosso during the March–December 2002 seasonal transition. Measurements were made in a mature transitional (ecotonal) tropical forest near Sinop, Mato Grosso, and a cattle pasture near Cotriguaçú, Mato Grosso, located 500 km WNW of Sinop. Pasture net ecosystem CO2 exchange (NEE) was considerably more variable than the forest NEE over the seasonal transition, and the pasture had significantly higher rates of maximum gross primary production in every season except the dry–wet season transition (September–October). The pasture also had significantly higher rates of whole‐ecosystem dark respiration than the forest during the wetter times of the year. Average (±95% CI) rates of total daily NEE during the March–December 2002 measurement period were 26±15 mmol m?2 day?1 for the forest (positive values indicate net CO2 loss by the ecosystem) and ?38±26 mmol m?2 day?1 for the pasture. While both ecosystems partitioned more net radiation (Rn) into latent heat flux (Le), the forest had significantly higher rates of Le and lower rates of sensible heat flux (H) than the pasture; a trend that became more extreme during the onset of the dry season. Large differences in pasture and forest mass and energy exchange occurred even though seasonal variations in micrometeorology (air temperature, humidity, and radiation) were relatively similar for both ecosystems. While the short measurement period and lack of spatial replication limit the ability to generalize these results to pasture and forest regions of the Amazon Basin, these results suggest important differences in the magnitude and seasonal variation of NEE and energy partitioning for pasture and transitional tropical forest.  相似文献   

3.
Prolonged dry periods, and increasingly the generation of smoke and dust in partially-deforested regions, can influence the chemistry of rainfall and throughfall in moist tropical forests. We investigated rainfall and throughfall chemistry in a palm-rich open tropical rainforest in the southwestern Brazilian Amazon state of Rondônia, where precipitation averages 2300 mm year?1 with a marked seasonal pattern, and where the fragmentation of remaining forest is severe. Covering the transition from dry to wet season (TDWS) and the wet season (WS) of 2004–2005, we sampled 42 rainfall events on event basis as well as 35 events on a within-event basis, and measured concentrations of DOC, Na+, K+, Ca2+, Mg2+, NH 4 + , Cl?, SO 4 2? , NO 3 ? and pH in rainfall and throughfall. We found strong evidence of both seasonal and within-event solute rainfall concentration dynamics. Seasonal volume-weighted mean (VWMS) concentrations in rainfall of DOC, K+, Ca2+, Mg2+, NH 4 + , SO 4 2? and NO 3 ? were significantly higher in the TDWS than the WS, while VWMS concentrations in throughfall were significantly higher for all solutes except DOC. Patterns were generally similar within rain events, with solute concentrations declining sharply during the first few millimeters of rainfall. Rainfall and throughfall chemistry dynamics appeared to be strongly influenced by forest and pasture burning and a regional atmosphere rich in aerosols at the end of the dry season. These seasonal and within-event patterns of rainfall and throughfall chemistry were stronger than those recorded in central Amazônia, where the dry season is less pronounced and where regional deforestation is less severe. Fragmentation and fire in Rondônia now appear to be altering the patterns in which solutes are delivered to remaining moist tropical forests.  相似文献   

4.
A long-term declining trend of pH values has been observed for several rivers in areas of central Japan that are geologically dominated by acidic rocks such as granite, rhyolite, or chert. We monitored the seasonal variation in water chemistry in one of these rivers: the Araya River in Niigata Prefecture. During the 4-year survey period, we observed temporary acidification during the rainy and snowmelt seasons when the river flow rate abruptly increased. In the rainy season, the decrease in pH may be attributable to the dilution of almost all ions and increased leaching of NO3 ? from the catchment. In the snowmelt season, decreases in pH were found to be associated with peaks of SO4 2?, where the SO4 2? was possibly derived from that accumulated in the snowpack. The data pertaining to the river showed that it had a sensitive response to meteorological events and was likely to be acid sensitive. The estimated mass balance of the river showed that the SO4 2? output exceeded the corresponding input to the Araya River catchment. Mobilization of internal sulfur accumulated in forest ecosystems might have contributed to the observed long-term acidification of this acid-sensitive river.  相似文献   

5.
Termites are a highly uncertain component in the global source budgets of CH4 and CO2. Large seasonal variations in termite mound fluxes of CH4 and CO2 have been reported in tropical savannas but the reason for this is largely unknown. This paper investigated the processes that govern these seasonal variations in CH4 and CO2 fluxes from the mounds of Microcerotermes nervosus Hill (Termitidae), a common termite species in Australian tropical savannas. Fluxes of CH4 and CO2 of termite mounds were 3.5-fold greater in the wet season as compared to the dry season and were a direct function of termite biomass. Termite biomass in mound samples was tenfold greater in the wet season compared to the dry season. When expressed per unit termite biomass, termite fluxes were only 1.2 (CH4) and 1.4 (CO2)-fold greater in the wet season as compared to the dry season and could not explain the large seasonal variations in mound fluxes of CH4 and CO2. Seasonal variation in both gas diffusivity through mound walls and CH4 oxidation by mound material was negligible. These results highlight for the first time that seasonal termite population dynamics are the main driver for the observed seasonal differences in mound fluxes of CH4 and CO2. These findings highlight the need to combine measurements of gas fluxes from termite mounds with detailed studies of termite population dynamics to reduce the uncertainty in quantifying seasonal variations in termite mound fluxes of CH4 and CO2.  相似文献   

6.
Ocean acidification is expected to alter marine systems, but there is uncertainty about its effects due to the logistical difficulties of testing its large-scale and long-term effects. Responses of biological communities to increases in carbon dioxide can be assessed at CO2 seeps that cause chronic exposure to lower seawater pH over localised areas of seabed. Shifts in macroalgal communities have been described at temperate and tropical pCO2 seeps, but temporal and spatial replication of these observations is needed to strengthen confidence our predictions, especially because very few studies have been replicated between seasons. Here we describe the seawater chemistry and seasonal variability of macroalgal communities at CO2 seeps off Methana (Aegean Sea). Monitoring from 2011 to 2013 showed that seawater pH decreased to levels predicted for the end of this century at the seep site with no confounding gradients in Total Alkalinity, salinity, temperature or wave exposure. Most nutrient levels were similar along the pH gradient; silicate increased significantly with decreasing pH, but it was not limiting for algal growth at all sites. Metal concentrations in seaweed tissues varied between sites but did not consistently increase with pCO2. Our data on the flora are consistent with results from laboratory experiments and observations at Mediterranean CO2 seep sites in that benthic communities decreased in calcifying algal cover and increased in brown algal cover with increasing pCO2. This differs from the typical macroalgal community response to stress, which is a decrease in perennial brown algae and proliferation of opportunistic green algae. Cystoseira corniculata was more abundant in autumn and Sargassum vulgare in spring, whereas the articulated coralline alga Jania rubens was more abundant at reference sites in autumn. Diversity decreased with increasing CO2 regardless of season. Our results show that benthic community responses to ocean acidification are strongly affected by season.  相似文献   

7.

Background and aims

Due to the high spatial and temporal variation in soil CO2 efflux, terrestrial carbon budgets rely on a detailed understanding of the drivers of soil respiration from a diverse range of ecosystems and climate zones. In this study we aim to evaluate the independent influence of vegetation structure and climate on soil CO2 efflux within cerrado ecosystems.

Methods

We examine the seasonal and diel variation of soil CO2 efflux, including its autotrophic and heterotrophic components, within two adjacent and structurally contrasting woody savannas in central Brazil.

Principle results

We found no significant difference in the annual soil CO2 efflux between the two stands (p?=?0.53) despite a clear disparity in both LAI (p?<?0.01) and leaf litterfall (p?<?0.01). The mean annual loss of carbon from the soil was 17.32(±1.48) Mg C?ha?1 of which approximately 63% was accounted for by autotrophic respiration. The relative contribution of autotrophic respiration varied seasonally between 55% in the wet season to 79% of the total soil CO2 efflux in the dry season. Furthermore, seasonal fluctuations of all the soil respiration components were strongly correlated with soil moisture (R 2?=?0.79–0.90, p?<?0.01).

Conclusions

Across these two structurally distinct cerrado stands, seasonal variations in rainfall, was the main driver of soil CO2 efflux and its components. Consequently, soil respiration within these ecosystems is likely to be highly sensitive to any changes in seasonal precipitation patterns.  相似文献   

8.
A nonequilibrium, dynamic, global vegetation model, Hybrid v4.1, with a subdaily timestep, was driven by increasing CO2 and transient climate output from the UK Hadley Centre GCM (HadCM2) with simulated daily and interannual variability. Three IPCC emission scenarios were used: (i) IS92a, giving 790 ppm CO2 by 2100, (ii) CO2 stabilization at 750 ppm by 2225, and (iii) CO2 stabilization at 550 ppm by 2150. Land use and future N deposition were not included. In the IS92a scenario, boreal and tropical lands warmed 4.5 °C by 2100 with rainfall decreased in parts of the tropics, where temperatures increased over 6 °C in some years and vapour pressure deficits (VPD) doubled. Stabilization at 750 ppm CO2 delayed these changes by about 100 years while stabilization at 550 ppm limited the rise in global land surface temperature to 2.5 °C and lessened the appearance of relatively hot, dry areas in the tropics. Present‐day global predictions were 645 PgC in vegetation, 1190 PgC in soils, a mean carbon residence time of 40 years, NPP 47 PgC y?1 and NEP (the terrestrial sink) about 1 PgC y?1, distributed at both high and tropical latitudes. With IS92a emissions, the high latitude sink increased to the year 2100, as forest NPP accelerated and forest vegetation carbon stocks increased. The tropics became a source of CO2 as forest dieback occurred in relatively hot, dry areas in 2060–2080. High VPDs and temperatures reduced NPP in tropical forests, primarily by reducing stomatal conductance and increasing maintenance respiration. Global NEP peaked at 3–4 PgC y?1 in 2020–2050 and then decreased abruptly to near zero by 2100 as the tropical source offset the high‐latitude sink. The pattern of change in NEP was similar with CO2 stabilization at 750 ppm, but was delayed by about 100 years and with a less abrupt collapse in global NEP. CO2 stabilization at 550 ppm prevented sustained tropical forest dieback and enabled recovery to occur in favourable years, while maintaining a similar time course of global NEP as occurred with 750 ppm stabilization. By lessening dieback, stabilization increased the fraction of carbon emissions taken up by the land. Comparable studies and other evidence are discussed: climate‐induced tropical forest dieback is considered a plausible risk of following an unmitigated emissions scenario.  相似文献   

9.
Deforestation and agricultural expansion in the tropics affect local and regional climatic conditions, leading to synergistic negative impacts on land ecosystems. Climatic changes manifest in increased inter‐ and intraseasonal variations and frequency of extreme climatic events (i.e., droughts and floods), which have evident consequences for aboveground biodiversity. However, until today, there have been no studies on how land use affects seasonal variations below ground in tropical ecosystems, which may be more buffered against climatic variation. Here, we analyzed seasonal variations in soil parameters, basal respiration, microbial communities, and abundances of soil invertebrates along with microclimatic conditions in rainforest and monocultures of oil palm and rubber in Sumatra, Indonesia. About 75% (20 out of 26) of the measured litter and soil, microbial, and animal parameters varied with season, with seasonal changes in 50% of the parameters depending on land use. Land use affected seasonal variations in microbial indicators associated with carbon availability and cycling rate. The magnitude of seasonal variations in microbial parameters in the soil of monocultures was almost 40% higher than in the soil of rainforest. Measured parameters were associated with short‐term climatic conditions (3‐day period air humidity) in plantations, but not in rainforest, confirming a reduced soil buffering ability in plantations. Overall, our findings suggest that land use temporally shifts and increases the magnitude of seasonal variations of the belowground ecosystem compartment, with microbial communities responding most strongly. The increased seasonal variations in soil biota in plantations likely translate into more pronounced fluctuations in essential ecosystem functions such as nutrient cycling and carbon sequestration, and these ramifications ultimately may compromise the stability of tropical ecosystems in the long term. As the observed seasonal dynamics is likely to increase with both local and global climate change, these shifts need closer attention for the long‐term sustainable management of plantation systems in the tropics.  相似文献   

10.
该研究2011年1月开始在鼎湖山针阔叶混交林(混交林)进行模拟酸雨实验,设置4个不同处理水平,即对照(CK)(pH为4.5左右的天然湖水)、T_1(pH=4.0)、T_2(pH=3.25)和T_3(pH=2.5)。2013年1—12月对不同酸雨强度处理下的森林凋落物CO_2释放速率进行为期1 a的连续观测,探讨酸雨对混交林凋落物C排放的影响。结果表明:凋落物CO2释放通量在对照样方为(1 507.41±155.19) g CO_2·m~(-2)·a~(-1),其中湿季和旱季分别占年通量的68.7%和31.3%。模拟酸雨抑制了森林凋落物CO_2释放,与CK相比,T_2和T_3处理下的CO_2释放通量分别显著降低15.4%和42.7%(P0.05);且这种抑制作用具有季节差异性,处理间的显著差异只出现在湿季。凋落物CO_2释放速率与土壤温度和土壤湿度分别呈显著指数相关和显著直线相关,同时,酸雨处理降低了凋落物CO_2释放的温度敏感性。混交林凋落物CO_2释放在模拟酸雨下的抑制效应与土壤累积酸化而导致的土壤微生物活性变化有关,表现为模拟酸雨作用下土壤pH值和微生物量碳显著下降。上述结果说明酸雨是影响混交林土壤碳循环的重要因子之一。  相似文献   

11.
Increased atmospheric [CO2] could theoretically lead to increased forest productivity (‘CO2 fertilization’). This mechanism was hypothesized as a possible explanation for biomass increases reported from tropical forests in the last 30+ years. We used unique long‐term records of annually measured stands (eighteen 0.5 ha plots, 10 years) and focal tree species (six species, 24 years) to assess the effects of rainfall, temperature, and atmospheric [CO2] on annual wood production in a neotropical rain forest. Our study area was a meso‐scale section (600 ha) of old‐growth Tropical Wet Forest in NE Costa Rica. Using the repeated remeasurements we directly assessed the relative effects of interannual climatic variation and increasing atmospheric [CO2] on wood production. A remarkably simple two‐factor model explained 91% of the interannual variance in stand‐level tree growth; the statistically independent factors were total dry season rainfall (positive effect, r2=0.85) and night‐time temperature (negative effect, r2=0.42). Stand‐level tree mortality increased significantly with night‐time temperature. After accounting for dry season rainfall and night‐time temperature, there was no effect of annual [CO2] on tree growth in either the stand or focal species data. Tree growth in this Tropical Wet Forest was surprisingly sensitive to the current range of dry season conditions and to variations in mean annual night‐time temperature of 1–2°. Our results suggest that wood production in the lowland rainforests of NE Costa Rica (and by extension in other tropical regions) may be severely reduced in future climates that are only slightly drier and/or warmer.  相似文献   

12.
Climate models suggest that extreme rainfall events will become more common with increased atmospheric warming. Consequently, changes in the size and frequency of rainfall will influence biophysical drivers that regulate the strength and timing of soil CO2 efflux – a major source of terrestrial carbon flux. We used a rainfall manipulation experiment during the summer monsoon season (July–September) to vary both the size and frequency of precipitation in an arid grassland 2 years before and 2 years after a lightning‐caused wildfire. Soil CO2 efflux rates were always higher under increased rainfall event size than under increased rainfall event frequency, or ambient precipitation. Although fire reduced soil CO2 efflux rates by nearly 70%, the overall responses to rainfall variability were consistent before and after the fire. The overall sensitivity of soil CO2 efflux to temperature (Q10) converged to 1.4, but this value differed somewhat among treatments especially before the fire. Changes in rainfall patterns resulted in differences in the periodicity of soil CO2 efflux with strong signals at 1, 8, and 30 days. Increased rainfall event size enhanced the synchrony between photosynthetically active radiation and soil CO2 efflux over the growing season before and after fire, suggesting a change in the temporal availability of substrate pools that regulate the temporal dynamics and magnitude of soil CO2 efflux. We conclude that arid grasslands are capable of rapidly increasing and maintaining high soil CO2 efflux rates in response to increased rainfall event size more than increased rainfall event frequency both before and after a fire. Therefore, the amount and pattern of multiple rain pulses over the growing season are crucial for understanding CO2 dynamics in burned and unburned water‐limited ecosystems.  相似文献   

13.
Lianas are an important component of most tropical forests, where they vary in abundance from high in seasonal forests to low in aseasonal forests. We tested the hypothesis that the physiological ability of lianas to fix carbon (and thus grow) during seasonal drought may confer a distinct advantage in seasonal tropical forests, which may explain pan-tropical liana distributions. We compared a range of leaf-level physiological attributes of 18 co-occurring liana and 16 tree species during the wet and dry seasons in a tropical seasonal forest in Xishuangbanna, China. We found that, during the wet season, lianas had significantly higher CO2 assimilation per unit mass (A mass), nitrogen concentration (N mass), and δ13C values, and lower leaf mass per unit area (LMA) than trees, indicating that lianas have higher assimilation rates per unit leaf mass and higher integrated water-use efficiency (WUE), but lower leaf structural investments. Seasonal variation in CO2 assimilation per unit area (A area), phosphorus concentration per unit mass (P mass), and photosynthetic N-use efficiency (PNUE), however, was significantly lower in lianas than in trees. For instance, mean tree A area decreased by 30.1% from wet to dry season, compared with only 12.8% for lianas. In contrast, from the wet to dry season mean liana δ13C increased four times more than tree δ13C, with no reduction in PNUE, whereas trees had a significant reduction in PNUE. Lianas had higher A mass than trees throughout the year, regardless of season. Collectively, our findings indicate that lianas fix more carbon and use water and nitrogen more efficiently than trees, particularly during seasonal drought, which may confer a competitive advantage to lianas during the dry season, and thus may explain their high relative abundance in seasonal tropical forests.  相似文献   

14.
N cycling in tropical dry forests is driven by rainfall seasonality but the mechanisms involved are not well understood. We studied the seasonal variation in N dynamics and microbial biomass in the surface litter of a tropical dry forest ecosystem in Mexico over a 2-year period. Litter was collected at 4 different times of the year to determine changes in total, soluble, and microbial C and N concentrations. Additionally, litter from each sampling date was incubated under laboratory conditions to determine potential C mineralization rate, net N mineralization, net C and N microbial immobilization, and net nitrification. Litter C concentrations were highest in the early-dry season and lowest in the rainy season, while the seasonal changes in N concentrations varied between years. Litter P was higher in the rainy than in the early-dry season. Water-soluble organic C (WSOC) and water-soluble N concentrations were highest during the early- and late-dry seasons and represented up to 4.1 and 5.9% of the total C and N, respectively. NH4+ and NO3 showed different seasonal and annual variations. They represented an average 23% of soluble N. Microbial C was generally higher in the dry than in the wet seasons, while microbial N was lowest in the late-dry and highest in the early-rainy seasons. Incubations showed that lowest potential C mineralization rates and C and N microbial immobilization occurred in rainy season litter, and were positively correlated to WSOC. Net nitrification was highest in rainy season litter. Our results showed that the seasonal pattern in N dynamics was influenced by rainfall seasonality and labile C availability, and not by microbial biomass. We propose a conceptual model to hypothesize how N dynamics in the litter layer of the Chamela tropical dry forest respond to the seasonal variation in rainfall.  相似文献   

15.
To investigate the consequences of land use on carbon and energy exchanges between the ecosystem and atmosphere, we measured CO2 and water vapour fluxes over an introduced Brachiara brizantha pasture located in the Cerrado region of Central Brazil. Measurements using eddy covariance technique were carried out in field campaigns during the wet and dry seasons. Midday CO2 net ecosystem exchange rates during the wet season were ?40 μmol m?2 s?1, which is more than twice the rate found in the dry season (?15 μmol m?2 s?1). This was observed despite similar magnitudes of irradiance, air and soil temperatures. During the wet season, inferred rates of canopy photosynthesis did not show any tendency to saturate at high solar radiation levels, with rates of around 50 μmol m?2 s?1 being observed at the maximum incoming photon flux densities of 2200 μmol m?2 s?1. This contrasted strongly to the dry period when light saturation occurred with 1500 μmol m?2 s?1 and with maximum canopy photosynthetic rates of only 20 μmol m?2 s?1. Both canopy photosynthetic rates and night‐time ecosystem CO2 efflux rates were much greater than has been observed for cerrado native vegetation in both the wet and dry seasons. Indeed, observed CO2 exchange rates were also much greater than has previously been reported for C4 pastures in the tropics. The high rates in the wet season may have been attributable, at least in part, to the pasture not being grazed. Higher than expected net rates of carbon acquisition during the dry season may also have been attributable to some early rain events. Nevertheless, the present study demonstrates that well‐managed, productive tropical pastures can attain ecosystem gas exchange rates equivalent to fertilized C4 crops growing in the temperate zone.  相似文献   

16.
Tropical rainforest woody plants have been thought to have uniformly low resistance to hydraulic failure and to function near the edge of their hydraulic safety margin (HSM), making these ecosystems vulnerable to drought; however, this may not be the case. Using data collected at 30 tropical forest sites for three key traits associated with drought tolerance, we show that site-level hydraulic diversity of leaf turgor loss point, resistance to embolism (P50), and HSMs is high across tropical forests and largely independent of water availability. Species with high HSMs (>1 MPa) and low P50 values (< −2 MPa) are common across the wet and dry tropics. This high site-level hydraulic diversity, largely decoupled from water stress, could influence which species are favoured and become dominant under a drying climate. High hydraulic diversity could also make these ecosystems more resilient to variable rainfall regimes.  相似文献   

17.
Predicted climate changes in the US Central Plains include altered precipitation regimes with increased occurrence of growing season droughts and higher frequencies of extreme rainfall events. Changes in the amounts and timing of rainfall events will likely affect ecosystem processes, including those that control C cycling and storage. Soil carbon dioxide (CO2) flux is an important component of C cycling in terrestrial ecosystems, and is strongly influenced by climate. While many studies have assessed the influence of soil water content on soil CO2 flux, few have included experimental manipulation of rainfall amounts in intact ecosystems, and we know of no studies that have explicitly addressed the influence of the timing of rainfall events. In order to determine the responses of soil CO2 flux to altered rainfall timing and amounts, we manipulated rainfall inputs to plots of native tallgrass prairie (Konza Prairie, Kansas, USA) over four growing seasons (1998–2001). Specifically, we altered the amounts and/or timing of growing season rainfall in a factorial combination that included two levels of rainfall amount (100% or 70% of naturally occurring rainfall quantity) and two temporal patterns of rain events (ambient timing or a 50% increase in length of dry intervals between events). The size of individual rain events in the altered timing treatment was adjusted so that the quantity of total growing season rainfall in the ambient and altered timing treatments was the same (i.e. fewer, but larger rainfall events characterized the altered timing treatment). Seasonal mean soil CO2 flux decreased by 8% under reduced rainfall amounts, by 13% under altered rainfall timing, and by 20% when both were combined (P<0.01). These changes in soil CO2 flux were consistent with observed changes in plant productivity, which was also reduced by both reduced rainfall quantity and altered rainfall timing. Soil CO2 flux was related to both soil temperature and soil water content in regression analyses; together they explained as much as 64% of the variability in CO2 flux across dates under ambient rainfall timing, but only 38–48% of the variability under altered rainfall timing, suggesting that other factors (e.g. substrate availability, plant or microbial stress) may limit CO2 flux under a climate regime that includes fewer, larger rainfall events. An analysis of the temperature sensitivity of soil CO2 flux indicated that temperature had a reduced effect (lower correlation and lower Q10 values) under the reduced quantity and altered timing treatments. Recognition that changes in the timing of rainfall events may be as, or more, important than changes in rainfall amount in affecting soil CO2 flux and other components of the carbon cycle highlights the complex nature of ecosystem responses to climate change in North American grasslands.  相似文献   

18.
Are tundra ecosystems currently a carbon source or sink? What is the future trajectory of tundra carbon fluxes in response to climate change? These questions are of global importance because of the vast quantities of organic carbon stored in permafrost soils. In this meta‐analysis, we compile 40 years of CO2 flux observations from 54 studies spanning 32 sites across northern high latitudes. Using time‐series analysis, we investigated if seasonal or annual CO2 fluxes have changed over time, and whether spatial differences in mean annual temperature could help explain temporal changes in CO2 flux. Growing season net CO2 uptake has definitely increased since the 1990s; the data also suggest (albeit less definitively) an increase in winter CO2 emissions, especially in the last decade. In spite of the uncertainty in the winter trend, we estimate that tundra sites were annual CO2 sources from the mid‐1980s until the 2000s, and data from the last 7 years show that tundra continue to emit CO2 annually. CO2 emissions exceed CO2 uptake across the range of temperatures that occur in the tundra biome. Taken together, these data suggest that despite increases in growing season uptake, tundra ecosystems are currently CO2 sources on an annual basis.  相似文献   

19.
Outbreaks of crown‐of‐thorns starfish (COTS), Acanthaster planci, contribute to major declines of coral reef ecosystems throughout the Indo‐Pacific. As the oceans warm and decrease in pH due to increased anthropogenic CO2 production, coral reefs are also susceptible to bleaching, disease and reduced calcification. The impacts of ocean acidification and warming may be exacerbated by COTS predation, but it is not known how this major predator will fare in a changing ocean. Because larval success is a key driver of population outbreaks, we investigated the sensitivities of larval A. planci to increased temperature (2–4 °C above ambient) and acidification (0.3–0.5 pH units below ambient) in flow‐through cross‐factorial experiments (3 temperature × 3 pH/pCO2 levels). There was no effect of increased temperature or acidification on fertilization or very early development. Larvae reared in the optimal temperature (28 °C) were the largest across all pH treatments. Development to advanced larva was negatively affected by the high temperature treatment (30 °C) and by both experimental pH levels (pH 7.6, 7.8). Thus, planktonic life stages of A. planci may be negatively impacted by near‐future global change. Increased temperature and reduced pH had an additive negative effect on reducing larval size. The 30 °C treatment exceeded larval tolerance regardless of pH. As 30 °C sea surface temperatures may become the norm in low latitude tropical regions, poleward migration of A. planci may be expected as they follow optimal isotherms. In the absence of acclimation or adaptation, declines in low latitude populations may occur. Poleward migration will be facilitated by strong western boundary currents, with possible negative flow‐on effects on high latitude coral reefs. The contrasting responses of the larvae of A. planci and those of its coral prey to ocean acidification and warming are considered in context with potential future change in tropical reef ecosystems.  相似文献   

20.
This study demonstrates unequivocally the presence of crassulacean acid metabolism (CAM) in a species of the Rubiaceae, the fourth largest angiosperm plant family. The tropical Australian endemic epiphytic ant-plant, Myrmecodia beccarii Hook.f., exhibits net CO2 uptake in the dark and a concomitant accumulation of titratable acidity in plants in the field and in cultivation. Plants growing near Cardwell, in a north Queensland coastal seasonally dry forest of Melaleuca viridiflora Sol. ex Gaertn., accumulated ~50 % of their 24 h carbon gain in the dark during the warm wet season. During the transition from the wet season to the dry season, 24 h carbon gain was reduced whilst the proportion of carbon accumulated during the dark increased. By mid dry season many plants exhibited zero net carbon uptake over 24 h, but CO2 uptake in the dark was observed in some plants following localised rainfall. In a shade-house experiment, droughted plants in which CO2 uptake in the light was absent and dark CO2 uptake was reduced, were able to return to relatively high rates of CO2 uptake in the light and dark within 12 h of rewatering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号