首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Llarrull LI  Mobashery S 《Biochemistry》2012,51(23):4642-4649
A heterologous expression system was used to evaluate activation of BlaR1, a sensor/signal transducer protein of Staphylococcus aureus with a central role in resistance to β-lactam antibiotics. In the absence of other S. aureus proteins that might respond to antibiotics and participate in signal transduction events, we documented that BlaR1 fragmentation is autolytic, that it occurs in the absence of antibiotics, and that BlaR1 directly degrades BlaI, the gene repressor of the system. Furthermore, we disclosed that this proteolytic activity is metal ion-dependent and that it is not modulated directly by acylation of the sensor domain by β-lactam antibiotics.  相似文献   

3.
Staphylococci, a leading cause of infections worldwide, have devised two mechanisms for resistance to beta-lactam antibiotics. One is production of beta-lactamases, hydrolytic resistance enzymes, and the other is the expression of penicillin-binding protein 2a (PBP 2a), which is not susceptible to inhibition by beta-lactam antibiotics. The beta-lactam sensor-transducer (BlaR), an integral membrane protein, binds beta-lactam antibiotics on the cell surface and transduces the information to the cytoplasm, where gene expression is derepressed for both beta-lactamase and penicillin-binding protein 2a. The gene for the sensor domain of the sensor-transducer protein (BlaR(S)) of Staphylococcus aureus was cloned, and the protein was purified to homogeneity. It is shown that beta-lactam antibiotics covalently modify the BlaR(S) protein. The protein was shown to contain the unusual carboxylated lysine that activates the active site serine residue for acylation by the beta-lactam antibiotics. The details of the kinetics of interactions of the BlaR(S) protein with a series of beta-lactam antibiotics were investigated. The protein undergoes acylation by beta-lactam antibiotics with microscopic rate constants (k(2)) of 1-26 s(-1), yet the deacylation process was essentially irreversible within one cell cycle. The protein undergoes a significant conformational change on binding with beta-lactam antibiotics, a process that commences at the preacylation complex and reaches its full effect after protein acylation has been accomplished. These conformational changes are likely to be central to the signal transduction events when the organism is exposed to the beta-lactam antibiotic.  相似文献   

4.
Staphylococcus aureus is among the most prevalent and antibiotic-resistant of pathogenic bacteria. The resistance of S. aureus to prototypal beta-lactam antibiotics is conferred by two mechanisms: (i) secretion of hydrolytic beta-lactamase enzymes and (ii) production of beta-lactam-insensitive penicillin-binding proteins (PBP2a). Despite their distinct modes of resistance, expression of these proteins is controlled by similar regulation systems, including a repressor (BlaI/MecI) and a multidomain transmembrane receptor (BlaR1/MecR1). Resistance is triggered in response to a covalent binding event between a beta-lactam antibiotic and the extracellular sensor domain of BlaR1/MecR1 by transduction of the binding signal to an intracellular protease domain capable of repressor inactivation. This study describes the first crystal structures of the sensor domain of BlaR1 (BlaRS) from S. aureus in both the apo and penicillin-acylated forms. The structures show that the sensor domain resembles the beta-lactam-hydrolyzing class D beta-lactamases, but is rendered a penicillin-binding protein due to the formation of a very stable acyl-enzyme. Surprisingly, conformational changes upon penicillin binding were not observed in our structures, supporting the hypothesis that transduction of the antibiotic-binding signal into the cytosol is mediated by additional intramolecular interactions of the sensor domain with an adjacent extracellular loop in BlaR1.  相似文献   

5.
The integral membrane protein BlaR1 of Staphylococcus aureus senses the presence of β-lactam antibiotics in the milieu and transduces the information to its cytoplasmic side, where its activity unleashes the expression of a set of genes, including that for BlaR1 itself, which manifest the antibiotic-resistant phenotype. The x-ray structure of the sensor domain of this protein exhibits an uncanny similarity to those of the class D β-lactamases. The former is a membrane-bound receptor/sensor for the β-lactam antibiotics, devoid of catalytic competence for substrate turnover, whereas the latter are soluble periplasmic enzymes in gram-negative bacteria with avid ability for β-lactam turnover. The two are clearly related to each other from an evolutionary point of view. However, the high resolution x-ray structures for both by themselves do not reveal why one is a receptor and the other an enzyme. It is documented herein that a single amino acid change at position 439 of the BlaR1 protein is sufficient to endow the receptor/sensor protein with modest turnover ability for cephalosporins as substrates. The x-ray structure for this mutant protein and the dynamics simulations revealed how a hydrolytic water molecule may sequester itself in the antibiotic-binding site to enable hydrolysis of the acylated species. These studies document how the nature of the residue at position 439 is critical for the fate of the protein in imparting unique functions on the same molecular template, to result in one as a receptor and in another as a catalyst.  相似文献   

6.
7.
Cha J  Vakulenko SB  Mobashery S 《Biochemistry》2007,46(26):7822-7831
Methicillin-resistant Staphylococcus aureus (MRSA) has evolved two mechanisms for resistance to beta-lactam antibiotics. One is production of a beta-lactamase, and the other is that of penicillin-binding protein 2a (PBP 2a). The expression of these two proteins is regulated by the bla and mec operons, respectively. BlaR1 and MecR1 are beta-lactam sensor/signal transducer proteins, which experience acylation by beta-lactam antibiotics on the cell surface and transduce the signal into the cytoplasm. The C-terminal surface domain of MecR1 (MecRS) has been cloned, expressed, and purified to homogeneity. This protein has been characterized by documenting that it has a critical and unusual Nzeta-carboxylated lysine at position 394. Furthermore, the kinetics of interactions with beta-lactam antibiotics were evaluated, a process that entails conformational changes for the protein that might be critical for the signal transduction event. Kinetics of acylation of MecRS are suggestive that signal sensing may be the step where the two systems are substantially different from one another.  相似文献   

8.
The membrane-spanning protein BlaR is essential for the induction of beta-lactamase in Bacillus licheniformis. Its nature and location were confirmed by the use of an antiserum specific for its carboxy-terminal penicillin sensor, its function was studied by genetic dissection, and the structure of the penicillin sensor was derived from hydrophobic cluster analysis of the amino acid sequence by using, as a reference, the class A beta-lactamases with known three-dimensional structures. During the first 2 h after the addition of the beta-lactam inducer, full-size BlaR, bound to the plasma membrane, is produced, and then beta-lactamase is produced. By 2 h after induction, BlaR is present in various (membrane-bound and cytosolic) forms, and there is a gradual decrease in beta-lactamase production. The penicillin sensors of BlaR and the class D beta-lactamases show strong similarities in primary structures. They appear to have the same basic spatial disposition of secondary structures as that of the class A beta-lactamases, except that they lack several alpha helices and, therefore, have a partially uncovered five-stranded beta sheet and a more readily accessible active site. Alterations of BlaR affecting conserved secondary structures of the penicillin sensor and specific sites of the transducer annihilate beta-lactamase inducibility.  相似文献   

9.
The BlaR1 protein is a penicillin-sensory transducer involved in the induction of the Bacillus licheniformis beta-lactamase. The amino-terminal domain of the protein exhibits four transmembrane segments (TM1-TM4) that form a four-alpha-helix bundle embedded in the plasma bilayer. The carboxyl-terminal domain of 250 amino acids (BlaR-CTD) fused at the carboxyl end of TM4 possesses the amino acid sequence signature of penicillin-binding proteins. This membrane topology suggests that BlaR-CTD and the BlaR-amino-terminal domain are responsible for signal reception and signal transduction, respectively. With the use of phage display experiments, we highlight herein an interaction between BlaR-CTD and the extracellular, 63-amino acid L2 loop connecting TM2 and TM3. This interaction does not occur in the presence of penicillin. This result suggests that binding of the antibiotic to BlaR1 might entail the release of the interaction between L2 and BlaR-CTD, causing a motion of the alpha-helix bundle and transfer of the information to the cytoplasm of the cell. In addition, fluorescence spectroscopy, CD, and Fourier transform IR spectroscopy experiments indicate that in contrast to the behavior of the corresponding Staphylococcus aureus protein, the beta-lactam antibiotic does not induce a drastic conformational change in B. licheniformis BlaR-CTD.  相似文献   

10.
Ras GTPases are signaling switches that control critical cellular processes including gene expression, differentiation, and apoptosis. The major Ras isoforms (K, H, and N) contain a conserved core GTPase domain, but have distinct biological functions. Among the three Ras isoforms there are clear differences in post-translational regulation, which contribute to differences in localization and signaling output. Modification by ubiquitination was recently reported to activate Ras signaling in cells, but the mechanisms of activation are not well understood. Here, we show that H-Ras is activated by monoubiquitination and that ubiquitination at Lys-117 accelerates intrinsic nucleotide exchange, thereby promoting GTP loading. This mechanism of Ras activation is distinct from K-Ras monoubiquitination at Lys-147, which leads to impaired regulator-mediated GTP hydrolysis. These findings reveal that different Ras isoforms are monoubiquitinated at distinct sites, with distinct mechanisms of action, but with a common ability to chronically activate the protein in the absence of a receptor signal or oncogenic mutation.  相似文献   

11.
Wnt signaling pathways are involved in embryonic development and adult tissue maintenance and have been implicated in tumorigenesis. Dishevelled (Dvl/Dsh) protein is one of key components in Wnt signaling and plays essential roles in regulating these pathways through protein-protein interactions. Identifying and characterizing Dvl-binding proteins are key steps toward understanding biological functions. Given that the tripeptide VWV (Val-Trp-Val) binds to the PDZ domain of Dvl, we searched publically available databases to identify proteins containing the VWV motif at the C terminus that could be novel Dvl-binding partners. On the basis of the cellular localization and expression patterns of the candidates, we selected for further study the TMEM88 (target protein transmembrane 88), a two-transmembrane-type protein. The interaction between the PDZ domain of Dvl and the C-terminal tail of TMEM88 was confirmed by using NMR and fluorescence spectroscopy. Furthermore, in HEK293 cells, TMEM88 attenuated the Wnt/β-catenin signaling induced by Wnt-1 ligand in a dose-dependent manner, and TMEM88 knockdown by RNAi increased Wnt activity. In Xenopus, TMEM88 protein is sublocalized at the cell membrane and inhibits Wnt signaling induced by Xdsh but not β-catenin. In addition, TMEM88 protein inhibits the formation of a secondary axis normally induced by Xdsh. The findings suggest that TMEM88 plays a role in regulating Wnt signaling. Indeed, analysis of microarray data revealed that the expression of the Tmem88 gene was strongly correlated with that of Wnt signaling-related genes in embryonic mouse intestines. Together, we propose that TMEM88 associates with Dvl proteins and regulates Wnt signaling in a context-dependent manner.  相似文献   

12.
13.
14.
15.
An increasing number of proteins are being shown to have an N(zeta)-carboxylated lysine in their structures, a posttranslational modification of proteins that proceeds without the intervention of a specific enzyme. The role of the carboxylated lysine in these proteins is typically structural (hydrogen bonding or metal coordination). However, carboxylated lysines in the active sites of OXA-10 and OXA-1 beta-lactamases and the sensor domain of BlaR signal-transducer protein serve in proton transfer events required for the functions of these proteins. These examples demonstrate the utility of this unusual amino acid in acid-base chemistry, in expansion of function beyond those of the 20 standard amino acids. In this study, the ONIOM quantum-mechanical/molecular-mechanical (QM/MM) method is used to study the carboxylation of lysine in the OXA-10 beta-lactamase. Lys-70 and the active site of the OXA-10 beta-lactamase were treated with B3LYP/6-31G(d,p) density functional calculations and the remainder of the enzyme with the AMBER molecular mechanics force field. The barriers for unassisted carboxylation of neutral lysine by carbon dioxide or bicarbonate are high. However, when the reaction with CO2 is catalyzed by a molecule of water in the active site, it is exothermic by about 13 kcal/mol, with a barrier of approximately 14 kcal/mol. The calculations show that the carboxylation and decarboxylation of Lys-70 are likely to be accompanied by deprotonation and protonation of the carbamate, respectively. The analysis may also be relevant for other proteins with carboxylated lysines, a feature that may be more common in nature than previously appreciated.  相似文献   

16.
Cyclic diguanosine monophosphate (c-di-GMP) is a ubiquitous bacterial second messenger that controls the switch from a single-cell lifestyle to surface-attached, multicellular communities called biofilms. PilZ domain proteins are a family of bacterial c-di-GMP receptors, which control various cellular processes. We have solved the solution structure of the Pseudomonas aeruginosa single-domain PilZ protein PA4608 in complex with c-di-GMP by NMR spectroscopy. Isotope labeling by (13)C and (15)N of both the ligand and the protein made it possible to define the structure of c-di-GMP in the complex at high precision by a large number of intermolecular and intraligand NOEs and by two intermolecular hydrogen bond scalar couplings. Complex formation induces significant rearrangements of the C- and N-terminal parts of PA4608. c-di-GMP binds as an intercalated, symmetric dimer to one side of the β-barrel, thereby displacing the C-terminal helix of the apo state. The N-terminal RXXXR PilZ domain motif, which is flexible in the apo state, wraps around the ligand and in turn ties the displaced C terminus in a loose manner by a number of hydrophobic contacts. The recognition of the dimeric ligand is achieved by numerous H-bonds and stacking interactions involving residues Arg(8), Arg(9), Arg(10), and Arg(13) of the PilZ motif, as well as β-barrel residues Asp(35) and Trp(77). As a result of the rearrangement of the N and C termini, a highly negative surface is created on one side of the protein complex. We propose that the movement of the termini and the resulting negative surface form the basis for downstream signaling.  相似文献   

17.
In Bacillus licheniformis 749/I, BlaP β-lactamase is induced by the presence of a β-lactam antibiotic outside the cell. The first step in the induction mechanism is the detection of the antibiotic by the membrane-bound penicillin receptor BlaR1 that is composed of two functional domains: a carboxy-terminal domain exposed outside the cell, which acts as a penicillin sensor, and an amino-terminal domain anchored to the cytoplasmic membrane, which works as a transducer-transmitter. The acylation of BlaR1 sensor domain by the antibiotic generates an intramolecular signal that leads to the activation of the L3 cytoplasmic loop of the transmitter by a single-point cleavage. The exact mechanism of L3 activation and the nature of the secondary cytoplasmic signal launched by the activated transmitter remain unknown. However, these two events seem to be linked to the presence of a HEXXH zinc binding motif of neutral zinc metallopeptidases. By different experimental approaches, we demonstrated that the L3 loop binds zinc ion, belongs to Gluzincin metallopeptidase superfamily and is activated by self-proteolysis.  相似文献   

18.
Protein activities are generally regulated by intramolecular allosteric interactions, by which spatially separated sites in a protein molecule communicate. Intramolecular allosteric interactions in the phospholipase C (PLC)-δ1 pleckstrin homology (PH) domain were investigated by solution NMR spectroscopy for selectively [α-15N]Lys-labeled proteins. The results of NMR analyses indicated that the binding of inositol 1,4,5-trisphosphate (IP3) to the protein induces local environmental changes at all lysine residues, including residues such as Lys-43 spatially separated from the specific IP3 binding site consisting of Lys-30, Lys-32, and Lys-57. IP3 binding also induces conformational stabilization of a characteristic short α-helix (α2) from residues 82 to 87. Mutational analyses indicated that an interaction network mainly consisting of the side chains of Lys-30, Lys-32, and Lys-43 exists in the ligand-free protein, and it was therefore predicted that binding of IP3 to the specific site modifies the interaction network, resulting in formation of a new interaction network, in which the side chains of Lys-57 and Phe-87 contribute to stable IP3 binding. These results provide evidence for intramolecular interactions in the PLC-δ1 PH domain, the function of which could be allosterically regulated by modifications at sites spatially separated from the ligand-binding site through the intramolecular interaction network.  相似文献   

19.
Ras small GTPases undergo dynamic equilibrium of two interconverting conformations, state 1 and state 2, in the GTP-bound forms, where state 2 is recognized by effectors, whereas physiological functions of state 1 have been unknown. Limited information, such as static crystal structures and (31)P NMR spectra, was available for the study of the conformational dynamics. Here we determine the solution structure and dynamics of state 1 by multidimensional heteronuclear NMR analysis of an H-RasT35S mutant in complex with guanosine 5'-(β, γ-imido)triphosphate (GppNHp). The state 1 structure shows that the switch I loop fluctuates extensively compared with that in state 2 or H-Ras-GDP. Also, backbone (1)H,(15)N signals for state 2 are identified, and their dynamics are studied by utilizing a complex with c-Raf-1. Furthermore, the signals for almost all the residues of H-Ras·GppNHp are identified by measurement at low temperature, and the signals for multiple residues are found split into two peaks corresponding to the signals for state 1 and state 2. Intriguingly, these residues are located not only in the switch regions and their neighbors but also in the rigidly structured regions, suggesting that global structural rearrangements occur during the state interconversion. The backbone dynamics of each state show that the switch loops in state 1 are dynamically mobile on the picosecond to nanosecond time scale, and these mobilities are significantly reduced in state 2. These results suggest that multiconformations existing in state 1 are mostly deselected upon the transition toward state 2 induced by the effector binding.  相似文献   

20.
The mammalian Na+/H+ exchange regulatory factor 1 (NHERF1) is a multidomain scaffolding protein essential for regulating the intracellular trafficking and macromolecular assembly of transmembrane ion channels and receptors. NHERF1 consists of tandem PDZ-1, PDZ-2 domains that interact with the cytoplasmic domains of membrane proteins and a C-terminal (CT) domain that binds the membrane-cytoskeleton linker protein ezrin. NHERF1 is held in an autoinhibited state through intramolecular interactions between PDZ2 and the CT domain that also includes a C-terminal PDZ-binding motif (-SNL). We have determined the structures of the isolated and tandem PDZ2CT domains by high resolution NMR using small angle x-ray scattering as constraints. The PDZ2CT structure shows weak intramolecular interactions between the largely disordered CT domain and the PDZ ligand binding site. The structure reveals a novel helix-turn-helix subdomain that is allosterically coupled to the putative PDZ2 domain by a network of hydrophobic interactions. This helical subdomain increases both the stability and the binding affinity of the extended PDZ structure. Using NMR and small angle neutron scattering for joint structure refinement, we demonstrate the release of intramolecular domain-domain interactions in PDZ2CT upon binding to ezrin. Based on the structural information, we show that human disease-causing mutations in PDZ2, R153Q and E225K, have significantly reduced protein stability. Loss of NHERF1 expressed in cells could result in failure to assemble membrane complexes that are important for normal physiological functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号