首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hordeum vulgare cv. California Mariout was grown for 50 d insand culture at 100 mol m–3 NaCl. Xylem sap was collectedthrough incisions at the base of individual leaves along thestem axis by applying pressure to the root system. K+ concentrationsin the xylem sap reaching individual leaves increased towardsthe apex, while concentrations of Na+, NO3, and Cldeclined. Phloem exudate was obtained by collecting into Li2EDTAfrom the base of excised leaves. K/Na ratios of phloem exudatesincreased from older to younger leaves. K/Na ratios in xylem sap and phloem exudate were combined withchanges in ion content between two harvests (38 and 45 d aftergermination) and the direction of phloem export from individualleaves, to construct an empirical model of K+ and Na+ net flowswithin the xylem and phloem of the whole plant. This model indicatesthat in old leaves, phloem export of K+ greatly exceeded xylemimport. In contrast, Na+ export was small compared to importand Na+ once imported was retained within the leaf. The direction of export strongly depended on leaf age. Old,basal leaves preferentially supplied the root, and most of theK+ retranslocated to the roots was transferred to the xylemand subsequently became available to the shoot. Upper leavesexported to the apex. Young organs were supplied by xylem andphloem, with the xylem preferentially delivering Na+ , and thephloem most of the K+ . For the young ear, which was still coveredby the sheath of the flag leaf, our calculation predicts phloemimport of ions to such an extent that the surplus must havebeen removed by an outward flow in the xylem. Within the culm,indications for specific transfers of K+ and Na+ between xylemand phloem and release or absorption of these ions by the tissuewere obtained. The sum of these processes in stem internodes and leaves ledto a non-uniform distribution of Na+ and K+ within the shoot,Na+ being retained in old leaves and basal stem internodes,and K+ being available for growth and expansion of young tissues. Key words: Hordeum vulgare L., K+, Na+, stem, salt stress  相似文献   

2.
Uptake and partitioning through the xylem and phloem of K+,Na+, Mg2+ , Ca2+ and Cl were studied over a 9 d intervalduring late vegetative growth of castor bean (Ricinus communisL.) plants exposed to a mean salinity stress of 128 mol m–3NaCl. Empirically based models of flow and utilization of eachion within the whole plant were constructed using informationon ion increments of plant parts, molar ratios of ions to carbonin phloem sap sampled from petioles and stem internodes andpreviously derived information on carbon flow between plantsparts in xylem and phloem in identical plant material. Salientfeatures of the plant budget for K+ were prominent depositionin leaves, high mobility of K+ in phloem, high rates of cyclingthrough leaves and downward translocation of K+ providing theroot with a large excess of K+ . Corresponding data for Na+showed marked retention in the root, lateral uptake from xylemby hypocotyl, stem internodes and petioles leading to low intakeby young leaf laminae and substantial cycling from older leavesback to the root. The partitioning of the anionic componentof NaCl salinity, Cl, contrasted to that of Na+ in thatit was not substantially retained in the root, but depositedmore or less uniformly in stem, petiole and leaf lamina tissues.The flow pattern for Mg2+ showed relatively even depositionthrough the plant but some preferential uptake by young leaves,generally lesser export than import by leaf laminae, and a returnflow of Mg2+ from shoot to root considerably less than the recordedincrement of the root. Ca2+ partitioning contrasted with thatof the other ions in showing extremely poor phloem mobility,leading to progressive preferential accumulation in leaf laminaeand negligible cycling of the element through leaves or root.Features of the response of Ricinus to salinity shown in thepresent study were discussed with data from similar modellingstudies on white lupin (Lupinus albus L.) and barley (Hordeumvulgare L.) Key words: Ricinus communis L, potassium, sodium, chloride, calcium, magnesium, phloem, xylem, transport, partitioning, salinity  相似文献   

3.
Plants of Lupinus albus L., cv. Ultra, were grown hydroponicallywith NO3-nutrition for 51 d under control (0.05 mol m–3Na+ and 10 mol m–3 Cl) and saline (40 mol m–3NaCI) conditions. Plants were harvested 41 and 51 d after germinationand analysed for content and net increment of C, N and the mineralcations K+, Na+, Mg2+, and Ca2+ and the anions Cl, NOJ,malate, phosphate, and SO42–. Roots, stem interaodes,petioles and leaflets were analysed separately. During the studyperiod net photosynthesis, respiratory losses of CO2 from shootand root and the composition of the spontaneously bleeding phloemsap and the root pressure xylem exudate were also determined.Using molar ratios of C over N in the transport fluids, incrementsof C and N, and photosynthetic gains as well as respiratorylosses of C, the net flows of C and N in the xylem and phloemwere then calculated as in earlier studies (Pate, Layzell andMcNeill, 1979a). Knowing the carbon flows, the ratios of ionto carbon in the phloem sap, and ion increments in individualorgans, net flows of K+, Na+, and Cl over the study periodwere also calculated. Salt stress led to a general decrease of all partial componentsof C and N partitioning indicating that inhibitions were notdue to specific effects of NaCI salinity on photosynthesis oron NO3 uptake. However, there were differences between variouslyaged organs, and net phloem export of nitrogenous compoundsfrom ageing leaves was substantially enhanced under saline conditions.In addition, NO3reduction in the roots was specificallyinhibited. Uptake and xylem transport of K+ was more severelyinhibited than photosynthetic carbon gain or NO3 uptakeby the root. K+ transport in the phloem was even more severelyrestricted under saline conditions. Na+ and Cl flowsand uptake, on the other hand, were substantially increasedin the presence of salt and, in particular, there were thenmassive flows of Na in the phloem. The results are discussedin relation to the causes of salt sensitivity of Lupinus albus.The data suggest that both a restriction of K+ supply and astrongly increased phloem translocation of Na+ contribute tothe adverse effects of salt in this species. Restriction ofK+ supply occurs by diminished K+ uptake and even more by reducedK+ cycling within the plant. Key words: Lupinus albus, salt stress, phloem transport, xylem transport, partitioning, carbon, nitrogen, K+, Na+, CI  相似文献   

4.
Na+, K+ and Cl- in Xylem Sap Flowing to Shoots of NaCl-Treated Barley   总被引:7,自引:0,他引:7  
Munns, R. 1985. Na+, K+ and Cl in xylem sap flowing toshoots of NaCl-treated barley.—J. exp. Bot. 36: 1032–1042. Na+, Cl and K+ concentrations were measured in xylemsap obtained by applying pressure to the roots of decapitatedbarley plants grown at external [NaCl] of 0, 25, 50, 100, 150and 200 mol m–3. For any given NaCl treatment, ion concentrationsin the xylem sap were hyperbolically related to the flux ofwater. Ion concentrations in sap collected at very low volumefluxes (without applied pressure) were 5–10 times higherthan in sap collected at moderate fluxes (under pressure). Fora given moderate volume flux, Na+ concentration in the xylemsap, [Na+]x, was only 4.0 mol m–3 at external [NaCl] of25–150 mol m–3, and increased to 7.0 mol m–3at 200 mol m–3. [Cl-]x showed a similar pattern. Thisshows there would be little difference in the rate of uptaketo the shoot of plants at 25–150 mol m–3 externalNaCl and indicates little change even at 200 mol m-3 NaCl becausetranspiration rates would be much lower. Thus the reduced growthof the shoot of plants at high NaCl concentrations is not dueto higher uptake rates of Na+ or Cl. The fluxes of Na+, Cl and K increased non-linearlywith increasing volume flux indicating little movement of saltin the apoplast. The flux of K+ increased even when [K+]x wasgreater than external [K+], indicating that membrane transportprocesses modify the K+ concentration in the transpiration streamas it flows through the root system. Key words: -Xylem sap, Na+, K+, Cl fluxes, salinity, barley  相似文献   

5.
The growth of Atriplex amnicola, its water and ion relations,and carbohydrate use were investigated in response to the interactiveeffects of salinity and root zone hypoxia in an experiment conductedin nutrient culture. One week of hypoxia in the root zone atboth 50 and 400 mol m–3 NaCl caused the cessation of rootgrowth, a reduction in shoot growth, and adversely affectedwater relations, but not ion relations or carbohydrate concentrations.Two weeks of hypoxia at 400 mol m–3 NaCl resulted in thedeath of root tips, a 20–fold increase in the resistanceto water flow from the exterior of the roots to the leaves,and a further deterioration in water relations. There was alsoa doubling of Cl concentrations in the xylem sap anda doubling of Na+ and Cl concentrations in the leaves.An increase in the concentration of starch in the leaves, andsugars in the leaves, stems and roots, indicated that therewere problems with carbohydrate use rather than supply. Underthe prevailing conditions of low vapour pressure deficit, iontoxicity was the most probable cause of injury to A. amnicolain hypoxic solutions at high salinity. The response of A. amnicolato the interactive effects of salinity and hypoxia were similarto those reported for non-halophytes, but occurred at highersalinities. Key words: Atriplex, hypoxia, salinity, water relations, ion transport, carbohydrate  相似文献   

6.
An experimentally-based modelling technique was developed todescribe quantitatively the uptake, flow, storage and utilizationof NO3-N over a 9 d period in mid-vegetative growth of sandcultured castor bean (Ricinus communis L.) fed 12 mol m–3nitrate and exposed to a mean salinity stress of 128 mol m–3NaCl. Model construction used information on increments or lossesof NO3-N or total reduced N in plant parts over the study periodand concentration data for NO3-N and reduced (amino acid) Nin phloem sap and pressure-induced xylem exudates obtained fromstem, petiole and leaf lamina tissue at various levels up ashoot. The resulting models indicated that the bulk (87%) of incomingnitrate was reduced, 51% of this in the root, the remainderprincipally in the laminae of leaves. The shoot was 60% autotrophicfor N through its own nitrate assimilation, but was oversuppliedwith surplus reduced N generated by the root and fed to theshoot through the xylem. The equivalent of over half (53%) ofthis N returned to the root as phloem translocate and, mostly,then cycled back to the shoot via xylem. Nitrate comprised almosthalf of the N of most xylem samples, but less than 1% of phloemsap N. Laminae of leaves of different age varied greatly inN balance. The fully grown lower three leaves generated a surplusof reduced N by nitrate assimilation and this, accompanied byreduced N cycling by xylem to phloem exchange, was exportedfrom the leaf. Leaf 4 was gauged to be just self-sufficientin terms of nitrate reduction, while also cycling reduced N.The three upper leaves (5–7) met their N balance to varyingextents by xylem import, phloem import (leaves 6 and 7 only)and assimilation of nitrate. Petioles and stem tissue generallyshowed low reductase activities, but obtained most of theirN by abstraction from xylem and phloem streams. The models predictedthat nodal tissue of lower parts of the stem abstracted reducedN from the departing leaf traces and transferred this, but notnitrate, to xylem streams passing further up the shoot. As aresult, xylem sap was predicted to become more concentratedin N as it passed up the shoot, and to decrease the ratio ofNO3-N to reduced N from 0·45 to 0·21 from thebase to the top of the shoot. These changes were reflected inthe measured N values for pressure-induced xylem exudates fromdifferent sites on the shoot. Transfer cells, observed in thexylem of leaf traces exiting from nodal tissue, were suggestedto be involved in the abstraction process. Key words: Ricinus communis, nitrogen, nitrate, nitrate reduction, partitioning, phloem, xylem, flow models  相似文献   

7.
Seedlings of Ricinus communis L. were cultivated in quartz sandand supplied with media which contained either different concentrationsof nitrate or ammonium nitrogen and were treated with a lowsalt stress. The concentration of ABA was determined in tissuesand in xylem and phloem saps. Between 41 and 51 day after sowing,abscisic acid (ABA) flows between roots and shoots were modelled.Long-distance transport of ABA was not stimulated under conditionsof nitrate deficiency (0.2 mol m–3). However, when ammoniumwas given as the only N source (1.0 mol m–3), ABA transportin both xylem and phloem was increased significantly. Mild saltstress (40 mol m–3 NaCl) increased ABA transport in nitrate-fedplants, but not in ammonium-fed plants. The leaf conductancewas lowered by salt treatment with both nitrogen sources, butit was always lower in ammonium-fed compared to nitrate-fedplants. A negative correlation of leaf conductance to ABA levelsin leaves or flow in xylem was found only in comparison of ammonium-fedto nitrate-fed plants. Key words: Abscisic acid, ammonium, Ricinus communis, phloem, xylem, transport, nitrate, nitrogen nutrition  相似文献   

8.
HOCKING  P. J. 《Annals of botany》1980,45(6):633-643
The composition of xylem sap and exudate from stem incisionsof Nicotiana glauca Grah. was compared in detail. Exudationfrom stem incisions occurred over a 5 min period in certainplants, enabling collection of 5–30 µl of sap. Therate of exudation showed an exponential decline. Exudate hada high dry matter content (170–196 mg ml–1) andhigh sugar (sucrose) levels. Xylem sap had a low pH (5.8) andexudate a pH of 7.9. Glutamine dominated the amino compoundsin xylem sap and exudate, and K+ was the major cation. Totalamino compounds in stem exudate reached 10.8 mg ml–1 whereasxylem sap contained much lower levels (0.28 mg ml–1).All mineral elements and amino compounds with the exceptionof calcium were more concentrated in stem exudate than in xylemsap. Sucrose was labelled heavily in stem exudate following pulsingof an adjacent leaf with 14CO2. A concentration gradient ofsugar (2.1 bar m–1) was recorded for stems. Levels ofsucrose, amino compounds and K+ ions in stem exudate showeda diurnal periodicity. Each commodity reached maximum concentrationat or near noon and minimum concentration about dawn. The evidencesuggests that exudate from stem incisions of N. glauca is arepresentative sample of solutes translocated in the phloem. Nicotiana glauca Grah., phloem sap, xylem sap, sucrose, amino compounds, mineral ions  相似文献   

9.
Allen, S. and Smith, J A. C. 1986. Ammonium nutrition in Ricinuscommunis: its effect on plantgrowth and the chemical compositionof the whole plant, xylem and phloem saps.—J. exp. Bot.37: 1599–1610. The growth and chemical composition of Ricinus communis cultivatedhydroponically on 12 mol m – 3 NO3-N were comparedwith plants raised on a range of NH4+-N concentrations. At NH4+-Nconcentrations between 0·5 and 4·0 mol m–3,fresh- and dry-weight yields of 62-d-old plants were not significantlydifferent from those of the NO3-N controls. Growth wasreduced at 0·2 mol m–3 NH4+-N and was associatedwith increased root. shoot and C: organic N ratios, suggestingthat the plants were N-limited. At 8·0 mol m–3NH4+-N, growth was greatly restricted and the plants exhibitedsymptoms of severe ‘NH4+ toxicity’. Plants growingon NH4+-N showed marked acidification of the rooting medium,this effect being greatest on media supporting the highest growthrates. Shoot carboxylate content per unit dry weight was lower at mostNH4+-N concentrations than in the NO3-N controls, althoughit increased at the lowest NH4+-N levels. Root carboxylate contentwas comparable on the two N sources, but also increased substantiallyat the lowest NH4+-N levels. N source had little effect on inorganic-cationcontent at the whole-plant level, while NO3 and carboxylatewere replaced by Cl as the dominant anion in the NH4+-N plants.This was reflected in the ionic composition of the xylem andleaf-cell saps, the latter containing about 100 mol m–3Cl in plants on 8·0 mol m–3 NH4+. Xylem-saporganic-N concentration increased more than threefold with NH4+-N(with glutamine being the dominant compound irrespective ofN source) while in leaf-cell sap it increased more than 12-foldon NH4+-N media (with arginine becoming the dominant species).In the phloem, N source had little or no effect on inorganic-cation,sucrose or organic-N concentrations or sap pH, but sap fromNH4+-N plants contained high levels of Cl and serine. Collectively, the results suggested that the toxic effects ofhigh NH4+ concentrations were not the result of medium acidification,reduced inorganic-cation or carboxylate levels, or restrictedcarbohydrate availability, as is commonly supposed. Rather,NH4+ toxicity in R. communis is probably the result of changesin protein N turnover and impairment of the photorespiratoryN cycle. Key words: Ricinus, ammonium nutrition, nitrate, whole-plant composition, xylem, Phloem, amino acids, carboxylate  相似文献   

10.
Plants of Lupinus albus were grown for 51 d under control (1.1mol m–3 NaCl) and saline (40 mol m–3 NaCl) conditions.Plants were harvested and changes of carbon, nitrogen and abscisicacid (ABA) contents of individual organs were determined 41d and 51 d after germination. In the period between the twoharvests xylem and phloem saps were collected and respirationand photosynthesis of individual organs were measured. Usingflows of carbon, C/ABA ratios and increments of ABA flows ofABA in phloem and xylem and rates of biosynthesis and degradationof ABA were calculated. Both under control and saline conditionsnet biosynthesis occurred in the root, the basal strata of leavesand in the inflorescence. Metabolic degradation of ABA tookplace in the stem internodes and apical leaf strata. Salt stress increased xylem transport of ABA up to 10-fold andphloem transport to the root up to 5-fold relative to that ofthe controls. A considerable amount of ABA in the xylem saporiginated from biosynthesis in the roots, i.e. 55% in salt-treatedand smaller than 28% in control plants. The remaining part ofABA in the xylem sap originated from the shoot: it was translocatedin the phloem from fully differentiated leaves towards the rootand from there it was recirculated back to the aerial partsof the plant. The data suggest that ABA may serve as a hormonalstress signal from the root system. Key words: Lupinus albus, salt stress, abscisic acid, long distance transport  相似文献   

11.
The tetraammonium salt of the K+ binding fluorescent dye benzofuranisophthalate (PBFI) was used to investigate the influence ofpotassium nutrition (0.1–2.1 mol m–3) on apoplasticK+ inVicia faba leaves by means of ratio imaging. As a referencethe infiltration-centrifugation method was used. Both methodsreflected the influence of K+ supply on apoplastic K+ concentration.The abaxial leaf side revealed significantly higher K+ concentrations(20-25 mol m–3) than the adaxial side (5–8 mol m–3).Application of CCCP led to an immediate increase in apoplasticK+ demonstrating the reliability of the PBFI method. Key words: Vicia faba, leaf, apoplast, K+, PBFI, ratio imaging, ratiometric fluorescence microscopy  相似文献   

12.
Seedlings of Ricinus communis L. cultivated in quartz sand weresupplied with a nutrient solution containing either 1 mol m–3NO3 or 1 mol m–3 NH+4 as the nitrogen source. Duringthe period between 41 and 51 d after sowing, the flows of N,C and inorganic ions between root and shoot were modelled andexpressed on a fresh weight basis. Plant growth was clearlyinhibited in the presence of NH+4. In the xylem sap the majornitrogenous solutes were nitrate (74%) or glutamine (78%) innitrate or ammonium-fed plants, respectively. The pattern ofamino acids was not markedly influenced by nitrogen nutrition;glutamine was the dominant compound in both cases. NH+4 wasnot transported in significant amounts in both treatments. Inthe phloem, nitrogen was transported almost exclusively in organicform, glutamine being the dominant nitrogenous solute, but theN-source affected the amino acids transported. Uptake of nitrogenand carbon per unit fresh weight was only slightly decreasedby ammonium. The partitioning of nitrogen was independent ofthe form of N-nutrition, although the flow of nitrogen and carbonin the phloem was enhanced in ammonium-fed plants. Cation uptakerates were halved in the presence of ammonium and lower quantitiesof K+, Na+ and Ca2+ but not of Mg2+ were transported to theshoot. As NH+4 was balanced by a 30-fold increase in chloride in thesolution, chloride uptake was increased 6-fold under ammoniumnutrition. We concluded that ammonium was predominantly assimilated inthe root. Nitrate reduction and assimilation occurred in bothshoot and root. The assimilation of ammonium in roots of ammonium-fedplants was associated with a higher respiration rate. Key words: Ricinus communis, nitrogen nutrition (nitrate/ammonium), phloem, xylem, transport, partitioning, nitrogen, carbon, potassium, sodium, magnesium, calcium, chloride  相似文献   

13.
Wolterbeek, H. Th. and De Bruin, M. 1986. The import and redistributionof several cations and anions in tomato leaves.—J. exp.Bot. 37: 331–340. The upward movements in the xylem and redistribution from theleaf of Na+ , K+ , Rb+, Cs+ and four anions were examined insub-systems of tomato plants (Lycopersicon esculentum, Mill.cv. Tiny Tim). There was a delay with respect to the redistributionof newly imported elements from the source leaf of about 16–20h for all four alkali ions. This is considerably less than theapparent delay for the anions Sb(SO4) WO42– Mo7O246–and AsO43– The prolonged delay for the anions is suggestedto be a consequence of metabolic transformation in the leaf.Reduction of the source-sink activity ratio did not decreasethe delay period from the source leaf, but apparently causedincreased Na+ transfer from the xylem. It is concluded thatthe application of a detailed mathematical descnption of upwardelement movement has considerable potential possibilities forunderstanding circulation of nutrients in the plant. Key words: Alkali ions, anions, xylem, phloem, redistribution, tomato  相似文献   

14.
Salt Tolerance in the Succulent, Coastal Halophyte, Sarcocornia natalensis   总被引:2,自引:0,他引:2  
The effects of 0, 50, 100, 200, 300, 400 and 500 mol m–3NaCl on growth and ion accumulation in the succulent, coastalhalophyte Sarcocornia natalensis (Bunge ex Ung.-Sternb.) A.J. Scott were investigated. Increase in salinity from 0 to 300 mol m–3 NaCl stimulatedproduction of fresh, dry, and organic dry mass, increased succulenceand shifted resource allocation from roots to shoots. Growthwas optimal at 300 mol m–3 and decreased with furtherincrease in salinity. Water contributed to a large proportion of the increase in freshmass. Inorganic ions, especially Na+ and Cl– contributedsubstantially to the dry mass. At 300 mol m–3 NaCl inorganicions contributed to 37% of total dry mass and NaCl concentrationin the shoots was 482 mol m–3. Expressed sap osmotic potentialsdecreased from –2.10 to –3.95 MPa as salinity increasedfrom 0 to 300 mol m–3 NaCl. Massive accumulation of inorganicions, especially Na+ and Cl, accounted for 86% of theosmotic adjustment at 300 mol m–3 NaCl. Salinity treatments decreased the concentrations of K+ in shoots.Plant Na+ :K+ ratios increased steadily with salinity and reacheda maximum of 16.6 at 400 mol m3 NaCl. It is suggested that the exceptional salt tolerance of S. natalensisis achieved by massive inorganic ion accumulation which providessufficient solutes for osmoregulation, increased water fluxand turgor-induced growth. Key words: Sarcocornia natalensis, salt tolerance, halophyte  相似文献   

15.
Ion (K+, Na+, Mg2+, Ca2+ and Cl) flows and partitioning in thepetiole and lamina of leaf 6 of castor bean {Ricinus communisL.) plants growing in the presence of a mean of 71 mol m–3NaCl were described by an empirical modelling technique. Thiscombined data on changes in ion contents of petiole and lamina,ion: carbon molar ratios of phloem bleeding sap and pressure-inducedxylem exudates of the leaf with previously described informationon the economies of C and N in identical leaf material. Datawere expressed as daily exchanges of ions in xylem and phloem,or depicted as models of ion balance and transport activityof petiole and lamina during four consecutive phases of leaflife. The early import phase was characterized by high intakeof K and Mg through phloem, and of Ca mainly through xylem,but only limited intake of Na and Cl. The next phase up to fullleaf expansion showed similar relative differences in xylemintake between ions and the onset of rapid phloem export fromthe lamina of K and Mg, some export of Na and Cl but scarcelyany of Ca. The next mature phase, marked by maximal photosynthesisand transpiration by the leaf, showed high xylem intake of allions in xylem. This was more than matched by phloem export ofMg and K, but by only fractional re-export of Na and Cl andagain very limited cycling through the leaf of Ca. The finalpre-senescence phase exhibited similar behaviour, but with generallygreater contribution to phloem transport from mobilization ofion reserves of the lamina. The petiole retained particularlylarge amounts of Na and Cl in its early growth, thereby protectingthe lamina from excessive entry of salt, but these petiolarpools, together with those or other nutrient ions, were laterpartially mobilized to the lamina via the xylem stream. Datawere discussed in relation to the relatively high salt toleranceexhibited by the species. Key words: Ricinus communis, xylem and phloem transport, ion balance, K+ economy, Na+ exclusion, NaCl-stress, salt tolerance, leaf development  相似文献   

16.
Nitrate reductase activity (NRA, in vivo assay) and nitrate(NO-3) content of root and shoot and NO-3 and reduced nitrogencontent of xylem sap were measured in five temperate cerealssupplied with a range of NO-3 concentrations (0·1–20mol m–3) and three temperate pasture grasses suppliedwith 0·5 or 5 0 mol m–3 NO-3 For one cereal (Hordeumvulgare L ), in vitro NRA was also determined The effect ofexternal NO-3 concentration on the partitioning of NO-3 assimilationbetween root and shoot was assessed All measurements indicatedthat the root was the major site of NO3 assimilation in Avenasatwa L, Hordeum vulgare L, Secale cereale L, Tnticum aestivumL and x Triticosecale Wittm supplied with 0·1 to 1·0mol m–3 NO-3 and that for all cereals, shoot assimilationincreased in importance as applied NO-3 concentration increasedfrom 1.0 to 20 mol m–3 At 5.0–20 mol m–3 NO3,the data indicated that the shoot played an important if notmajor role in NO-3 assimilation in all cereals studied Measurementson Lolium multiflorum Lam and L perenne L indicated that theroot was the main site of NO-3 assimilation at 0.5 mol m–3NO-3 but shoot assimilation was predominant at 5.0 mol m–3NO-3 Both NRA distribution data and xylem sap analysis indicatedthat shoot assimilation was predominant in Dactylis glomerataL supplied with 0.5 or 5.0 mol m–3 NO-3 Avena sativa L., oats, Hordeum vulgare L., barley, Secale cereale L., rye, x Triticosecale Wittm., triticale, Triticum aestivum L., wheat, Dactylis glomerata L., cocksfoot, Lolium multiflorum Lam., Italian ryegrass, Lolium perenne L., perennial ryegrass, nitrate, nitrate assimilation, nitrate reductase activity, xylem sap  相似文献   

17.
Changes in net photosynthesis, respiration, transpiration andcontents of total C, NO3-N and reduced N were followed throughoutthe life of leaf 6 of nitrate-dependent plants of castor beanexposed to moderate salinity stress (71 mol m–3 NaCl).Salt treatment was applied for measuring mineral flows in aparallel study (Jeschke and Pate, 1991b). Concurrent measurementswere made of solute composition and C: N molar ratios and concentrationsof reduced N and collected NO3-N in phloem sap bleeding fromshallow incisions in the top and at the base of petioles andin xylem exudates from flaps of proximal leaf midribs followingpressurization of the root system. The resulting data were usedto construct empirical models of the respective economies ofC, total N, NO3 and reduced N for a sequence of defined phasesof leaf life. Water use efficiency increased 3-fold from emergenceto a maximum of 1·5 mmol CO2 mol–1 H2O before decliningto 0·5 mmol CO2 mol–1 H2O at senescence. Xylemmolar ratios of C:N varied from 1·2–2·8,with nitrate always a smaller component than reduced N. Phloemsap C:N increased from 10–40 with leaf expansion and wasthen maintained in the range of 40–50 until falling steeplyto 20 at leaf senescence. Nitrate comprised less than 1% oftotal N in all phloem sap samples. The models of C uptake, flow,and utilization showed a major role of phloem import and thenincreasingly of laminar photosynthesis in providing C for leafgrowth. The carbon budget was thereafter characterized by ratesof phloem export closely matched to net rates of CO2 fixationby the lamina. Corresponding data for total N depicted an earlymajor role of both xylem and phloem import, but the eventualdominance of xylem import as the N source for leaf growth. Cyclingof N by xylem to phloem exchange commenced before the leaf hadachieved maximum N content, and was the major contributor tophloem export until leaf senescence when mobilized N providedmost exported N. The nitrate economy of the leaf was characterizedby early establishment of tissue pools of the ion in the petioleand to a lesser extent in the lamina, continued high rates ofnitrate reduction in the lamina but negligible assimilationin the petiole, and a release through xylem of previously accumulatedNO3 from petiole to lamina. Related data for reduced N illustratedthe much greater importance of this form of N than nitrate intransport, storage and cycling of N at all stages of leaf andpetiole life. Xylem to phloem interchanges of reduced N in petiolewere minimal in comparison with cycling through the lamina.The ratio of CO2 reduction to NO3 reduction in the lamina wasat first low (57 mol mol–1) increasing to a peak valueof 294 during mature leaf functioning before declining to 190during the presenescence phase of leaf development. This patternreflected age-related effects on water use efficiency, changesin NO3 levels in the xylem stream entering the lamina, and therelatively low photosynthetic performances of very young andsenescent laminae. Key words: Ricinus communis, leaf development, phloem transport, xylem transport, carbon, nitrogen, nitrate, reduced nitrogen, nitrate reduction, partitioning  相似文献   

18.
Proton Fluxes and the Activity of a Stelar Proton Pump in Onion Roots   总被引:6,自引:2,他引:4  
The xylem vessels of excised adventitious roots of onion, Alliumcepa, were perfused with unbuffered nutrient solution adjustedinitially to either pH 9·3 or 3·9; the pH of thesolution after passage through the xylem, at rates not lessthan 2 xylem volume changes min–1, was close to pH 6·5in both instances. The flux of H+ across the xylem/symplastboundary into mildly alkaline, phosphate-buffered solutionsperfusing the vessels could be increased greatly with increasingbuffer strength, up to a maximum value between 0·5–1·0pmol H+ mm–2 s–1. The apparent neutralization ofacidic malic acid buffers had a slightly lower maximum capacity,equivalent to –0·3 to –0·5 pmol H+mm–2 s–1. The addition of 5·0 pmol m–3fusicoccin (FC) to the xylem perfusion solution stimulated theentry of H+ into the xylem; in unbuffered perfusion solutionsthe pH fell to pH 3·6 after a lag of 25–35 min.FC additions to phosphate-buffered solutions also stimulatedthe H+ flux to an extent similar to that in unbuffered solution,viz. 0·2–0·4 pmol mm–2 s–1. The release of K+ (36Rb-labelled) into xylem sap transientlyincreased as the [K+] in weakly buffered perfusion solutionswas raised stepwise; a very marked increase being seen whenthe concentration was raised to 100 mol m–3 from 40 molm–3. The addition of 5·0 mmol m–3 FC to theperfusing solution containing 100 mol m–3 K+ rapidly decreasedthe K+ flux to the xylem as the H+ flux increased. Fusicoccinalso inhibited the flux of K+ into unbuffered perfusion solutionsbut the effect appeared reversible. Addition of 10 mmol m–3abscisic acid (ABA) to the perfusion solution quickly producedtransient increases in both K+ and H+ fluxes into the xylem.In this and other experiments using weakly phosphate-bufferedperfusing solutions, H+ fluxes were comparable in size to thoseof K+ The results are consistent with the idea that the stele of onionroots contains a proton trarislocating ATPase whose activityresponds to the pH of the xylem sap. It is evident that theactivity of the proton secreting and proton neutralizing mechanismsin the xylem parenchyma control the movement of other ions acrossthe xylem/symplast boundary. Key words: Xylem perfusion, fusicoccin, abscisic acid, pH gradient  相似文献   

19.
The abscisic acid (ABA)-deficient mutant of barley, Az34, exhibiteda much reduced rate of leaf expansion at a bulk density of 1.6g cm–3 as compared to the isogenic wild-type variety,Steptoe. Az34 had a consistently lower xylem sap ABA concentrationat 7 d and 14 d after emergence (DAE). The xylem sap data suggestthat ABA present at Steptoe concentrations may have a directrole in maintaining leaf expansion at the sub-critical bulkdensity (1.6 g cm–3 To test this hypothesis, additionof synthetic ABA either to the rooting environment (100 nM)or directly to the xylem sap (5 pg µl–1 to reproducethe xylem sap ABA concentrations found in Steptoe, increasedleaf expansion in Az34 to the wild-type level. Furthermore,feeding Steptoe xylem sap to Az34 produced similar effects.These experiments provide direct evidence of a positive rolefor ABA as a root-to-shoot signal which assists in maintainingleaf growth in plants experiencing subcritical levels of compactionstress. Key words: ABA-deficient mutant, leaf expansion, xylem sap, ABA  相似文献   

20.
Bowling, D. J. F. 1987. Measurement of the apoplastic activityof K+ and Cl in the leaf epidermis of Commelina communisin relation to stomatal activity.–J. exp. Bot. 38: 1351–1355. Ionic activity of K+ and Cl in the apoplast of the lowerepidermis of the leaf of Commelina communis was measured usingion selective micro-electrodes. Large gradients across the stomatalcomplex were observed which were related to stomatal aperture.On stomatal closure the activity of K+ and Cl in theapoplast of the guard cell rose from 3·0 mol m–3to 100 mol m–3 and 33 mol m–3 respectively. It wasconcluded that the apoplast is an important pathway for iontransport between the cells. Key words: Stomata, ionic activity, leaves, apoplast  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号