首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, the uptake of 14C-labeled ascorbate (ASC) into highly purified bean (Phaseolus vulgaris L.) plasma membrane vesicles was demonstrated in our laboratory. However, the question of the redox status of the transported molecule (ASC or dehydroascorbate [DHA]) remained unanswered. In this paper we present evidence that DHA is transported through the plasma membrane. High-performance liquid chromatography analysis of the redox status of ASC demonstrated that freshly purified plasma membranes exhibit a high ASC oxidation activity. Although it is not yet clear whether this activity is enzymatic, it complicates the interpretation of ASC-transport experiments in vitro and in vivo. In an attempt to correlate the ASC redox status to transport of the molecule, the ability of different compounds to reduce DHA was analyzed and their effect on ASC-transport activity tested. Administering of various reductants resulted in different levels of inhibition of ASC uptake (dithiothreitol > dithioerythritol > [beta]-mercaptoethanol > [beta]-mercaptopropanol). Glutathione, cysteine, dithionite, and thiourea did not significantly affect ASC transport. Statistical analysis indicated a strong correlation of the Spearman rank correlation coefficient (Rs) of 0.919 (P = 0.0005, n = 9) between the level of ASC oxidation and the amount of transported molecules into the vesicles. The administering of ASC oxidants such as ferricyanide and ASC oxidase resulted in a stimulated ASC uptake into the plasma membrane vesicles. Together, our results demonstrate that a vitamin C carrier in purified bean plasma membranes translocates DHA from the apoplast to the cytosol.  相似文献   

2.
Amino acid transport in Madin-Darby canine kidney (MDCK) cells, grown in a defined medium, was investigated as a function of cell density, exposure to specific growth factors, and transformation. MDCK cells were found to transport neutral amino acids by systems similar to the A, ASC, L, and N systems which have been characterized using other cell lines. Experimental conditions were developed for MDCK cells which allowed independent measurement of A, ASC, and L transport activities. The activity of the L system was measured as Na+-independent leucine or methionine uptake at pH 7.4. The activity of the A system was measured as Na+-dependent α(methylamino)isobutyric acid (mAIB) uptake at pH 7.4, the activity of the ASC system was measured as Na+-dependent alanine uptake in the presence of 0.1 mM mAIB at pH 6.0, and the activity of system N was observed by measuring Na+-dependent glutamine uptake at pH 7.4 in the presence of high concentrations of A and ASC system substrates. The L transport system responded minimally to changes in growth state, but Na+-dependent amino add transport responded to regulation by growth factors, cell density, and transformation. The activities of the A and ASC systems both decreased at high cell density, but these activities responded dissimilarly under other conditions. The activity of the A system was stimulated by insulin, was inhibited by PGE1, and was elevated 3–7 fold in the transformed cell line, MDCK-T1. The activity of the ASC system was slightly stimulated by insulin and by PGE1, but was unchanged after chemical transformation. Changes in cellular growth were monitored and were found to correlate best with the activity of the A system. These results suggested that MDCK cell growth may be more closely related to the activity of the A than of the ASC system.  相似文献   

3.
Cell cycle, cell size and rhodamine 123 fluorescence in cell populations of two batch cultures were analysed and quantified with a fluorescence-activated cell sorter (FACS). Two cultures derived from either exponential or stationary phase innocula were investigated in order to demonstrate the dependency of the subsequent cell growth on innoculum condition. The results demonstrated that the level of activity of cells in the innoculum culture could have a significant effect on cellular activity during the initial phase of the inoculated culture, as it advances through its growth cycle. Positive correlation was found between the cell size and mitochondrial activity (as measured by rhodamine 123 uptake) with S and G2 fractions as the cell progressed through the cell cycle. The enumeration of the fractions of cell cycle phases has helped in prediction of the changes in cell numbers following perturbation of the culture condition.  相似文献   

4.
The effects of ascorbate (ASC) and dehydroascorbate (DHA) on cell proliferation were examined in the tobacco Bright Yellow 2 (TBY-2) cell line to test the hypothesis that the ASC-DHA pair is a specific regulator of cell division. The hypothesis was tested by measuring the levels of ASC and DHA or another general redox pair, glutathione (GSH) and glutathione disulfide (GSSG), during the exponential-growth phase of TBY-2 cells. A peak in ASC, but not GSH, levels coincided with a peak in the mitotic index. Moreover, when the cells were enriched with ascorbate, a stimulation of cell division occurred whereas, when the cells were enriched with DHA, the mitotic index was reduced. In contrast, glutathione did not affect the mitotic-index peak during this exponential-growth phase. The data are consistent in showing that the ASC-DHA pair acts as a specific redox sensor which is part of the mechanism that regulates cell cycle progression in this cell line.  相似文献   

5.
Summary The effects of ascorbate (ASC) and dehydroascorbate (DHA) on cell proliferation were examined in the tobacco Bright Yellow 2 (TBY-2) cell line to test the hypothesis that the ASC-DHA pair is a specific regulator of cell division. The hypothesis was tested by measuring the levels of ASC and DHA or another general redox pair, glutathione (GSH) and glutathione disulfide (GSSG), during the exponential-growth phase of TBY-2 cells. A peak in ASC, but not GSH, levels coincided with a peak in the mitotic index. Moreover, when the cells were enriched with ascorbate, a stimulation of cell division occurred whereas, when the cells were enriched with DHA, the mitotic index was reduced. In contrast, glutathione did not affect the mitotic-index peak during this exponential-growth phase. The data are consistent in showing that the ASC-DHA pair acts as a specific redox sensor which is part of the mechanism that regulates cell cycle progression in this cell line.  相似文献   

6.
7.
Ascorbate transport from the apoplast to the symplast in intact leaves   总被引:4,自引:0,他引:4  
Infiltration of reduced ascorbate (ASC) into the leaves of Betula pendula Roth and subsequent measurement of its loss therein after incubation allowed us to follow ascorbate transport from apoplast to symplast in intact leaves. All of the ascorbate extracted from the native apoplast was in fully oxidized form, dehydroascorbate (DHA). When 5 m M of ASC was infiltrated into the leaves, its intense decay occurred, but only 55% of ASC lost was recovered in apoplast as DHA. When ASC was added to the freshly extracted intercellular washing fluid (IWF), ASC oxidation occurred as well. However, all oxidized ASC was recovered as DHA, indicating that further decomposition of DHA did not occur. Similarly, all of the ASC infiltrated into the leaves was found therein either as ASC or DHA after incubation of leaves for up to 60 min. On this base the ascorbate infiltrated into the leaves and not recovered in the IWF was interpreted as ascorbate taken up into the symplast. The calculated uptake rates of ascorbate at different ASC concentrations followed saturation kinetics with the maximum uptake rate of 300 nmol m−2 plasma membrane (PM) area min−1 and Michaelis constant of 12.8 m M . The uptake of ascorbate was significantly inhibited by the addition of dithiothreitol or by PM H+ ATPase inhibitor erythrosin B. Thus, our results support the previous observations that DHA is preferably transported from the apoplastic to the cytoplasmic side of the membrane and show that this process is dependent upon PM proton gradient.  相似文献   

8.
Growth factors and cytokines initiate multiple signal transduction pathways that lead to cell survival, cell cycle progression or differentiation. A common feature of these pathways is increased cellular metabolism and glucose uptake. Furthermore, the energy requirements of many cancers and transformed cell lines are met by constitutive upregulation of glucose uptake. Relationships among transforming events, glucose uptake and cell cycle progression are not well understood. Here we investigated the regulation of glucose transport during the cell cycle of growth factor-dependent 32D cells, primary T-cells, src-transformed 32D cells and Jurkat cells. Cells were enriched in the G1, S and G2/M phases of the cell cycle, and glucose transporter expression and 2-deoxyglucose uptake were measured. Glucose transporter expression increased with cell volume as cells progressed through the cell cycle. Growth factor-dependent 32D cells and T-lymphocytes were characterised by increased 2-deoxyglucose uptake from G1 to S and reduced uptake at G2/M, with the highest specific activity of transporters in the S phase. In contrast, src-transformed 32D cells and Jurkat cells showed increased 2-deoxyglucose uptake from S to G2/M, with the highest glucose transporter specific activity in G2/M. Our results show that glucose transport is regulated in a cell cycle-dependent manner and suggest that this regulation may be altered in transformed cells.  相似文献   

9.
The objective of this study is to investigate the activity of methylthioadenosine phosphorylase (MTA-Pase) in mammalian cells stimulated by serum to proliferate and during their cell cycle. A direct correlation between growth rate and MTA-Pase activity in chinese hamster ovary (CHO) cells was observed. High MTA-Pase activity was observed during the exponential growth phase followed by a low enzyme activity during plateau phase of growth. To understand whether the fluctuations in the enzyme activity was cell cycle dependent, initially the activity of MTA-Pase was studied in plateau phase (G0) CHO cells as they synchronously go into S phase upon plating in fresh medium. The MTA-Pase activity in G0 cells before initiation of growth was 10.3 n.mol/mg protein/30'. A peak activity of 16.0 n.mol/mg/30 min was found at 12 hr after stimulation of proliferation by serum. These results indicate a peak MTA-Pase activity between 10-12 hr after stimulation of proliferation coinciding with the initiation of DNA synthesis. The activity of the enzyme slowly decreased as the cells completed their DNA synthesis. To understand whether these fluctuations are cell cycle specific, HeLa cells were synchronized in different phases and MTA-Pase activity was studied. The specific activities of the enzyme were 2.76, 2.99, 3.97, 3.28 and 3.65 n.moles/mg/30 min. in mitosis, early G1, late G1, S and G2 phases of the cell cycle respectively. These results indicate that MTA-Pase activity peaks in late G1 phase before the initiation of DNA synthesis, similar to the polyamine biosynthetic enzymes and might play a role in the initiation of DNA synthesis by salvage of adenine into nucleotide pools.  相似文献   

10.
Recombinant mammalian cultures for heterologous gene expression typically involve cells traversing the cell cycle. Studies were conducted to characterize rates of accumulation of intracellular foreign protein in single cells during the cell cycle of Chinese hamster ovary (CHO) cells transfected with an expression vector containing the gene for dihydrofolate reductase (dhfr) and the lacZ gene for bacterial beta-galactosidase (a nonsecreated protein). The lacZ gene was under the control of the constitutive cytomegalovirus promoter. These normally attachment-grown cells were adapted to suspension culture in 10(-7) M methotrexate, and a dual-laser flow cytometer was used to simultaneously determine the DNA and foreign protein (beta-galactosidase) content of single living cells. Expression of beta-galactosidase as a function of cell cycle phase was evaluated for cells in the exponential growth phase, early plateau phase, and inhibited traverse of the cell cycle during exponential growth. The results showed that the beta-galactosidase production rate is higher in the S phase than that in the G1 or G2/M phases. Also, when cell cycle progression was stopped at the S phase by addition of aphidicolin, beta-galactosidase content in single cells was higher than that in exponential phase or plateau phase cells and increased with increasing culture time. Although the cells did not continue to divide after aphidicolin addition, the production of beta-galactosidase per unit volume of culture was very similar to that in normal exponential growth. (c) 1993 John Wiley & Sons, Inc.  相似文献   

11.
Escherichia coli K-12 cells grown to early and late exponential, and early and late stationary phases were treated with CA2+ and analysed for the ability of exogenous 14C-DNA uptake and genetic transformation. DNA-membrane complexes were detected detected by isopicnic centrifugation of cell lysates in sucrose density gradient. It is found that 1) during all the tested phases of the growth cycle, E. coli cells attain the ability of enhanced DNA uptake after Ca2+ treatment; 2) exogenous and host DNAs are associated with the cell membrane during all tested growth phases; 3) nevertheless, the ability to form transformants is strongly time-dependent: the cells can be transformed during logarithmic phase only; 4) Ca2+ protects exogenous DNA against its degradation by bovine pancreatic DNAase. The peculiarities of Ca2+-induced competence, actual and possible interference of Ca2+ at different transformation steps are briefly discussed.  相似文献   

12.
The possible involvement of glucose (Glc) carriers in the uptake of vitamin C in plant cells is still a matter of debate. For the first time, it was shown here that plant cells exclusively take up the oxidised dehydroascorbate (DHA) form. DHA uptake is not affected by 6-bromo-6-deoxy-ascorbate, an ascorbate (ASC) analogue, specifically demonstrating ASC uptake in animal cells. There is no competition between Glc and DHA uptake. Moreover, DHA and Glc carriers respond in the opposite manner to different inhibitors (cytochalasin B, phloretin and genistein). In conclusion, the plant plasma membrane DHA carrier is distinct from the plant Glc transporters.  相似文献   

13.
Glutathione is generally accepted as the principal electron donor for dehydroascorbate (DHA) reduction. Moreover, both glutathione and DHA affect cell cycle progression in plant cells. But other mechanisms for DHA reduction have been proposed. To investigate the connection between DHA and glutathione, we have evaluated cellular ascorbate and glutathione concentrations and their redox status after addition of dehydroascorbate to medium of tobacco (Nicotiana tabacum) L. cv Bright Yellow-2 (BY-2) cells. Addition of 1 mm DHA did not change the endogenous glutathione concentration. Total glutathione depletion of BY-2 cells was achieved after 24-h incubation with 1 mm of the glutathione biosynthesis inhibitor l-buthionine sulfoximine. Even in these cells devoid of glutathione, complete uptake and internal reduction of 1 mm DHA was observed within 6 h, although the initial reduction rate was slower. Addition of DHA to a synchronized BY-2 culture, or depleting its glutathione content, had a synergistic effect on cell cycle progression. Moreover, increased intracellular glutathione concentrations did not prevent exogenous DHA from inducing a cell cycle shift. It is therefore concluded that, together with a glutathione-driven DHA reduction, a glutathione-independent pathway for DHA reduction exists in vivo, and that both compounds act independently in growth control.  相似文献   

14.
The properties of Na+-dependent L-alanine transport in human erythrocytes were investigated using K+ as the Na+ substitute. Initial rates of Na+-dependent L-alanine uptake (0.2 mM extracellular amino acid) for erythrocytes from 22 donors ranged from 40 to 180 mumol/litre of cells per h at 37 degrees C. Amino acid uptake over the concentration range 0.1-8 mM was consistent with a single saturable component of Na+-dependent L-alanine transport. Apparent Km and Vmax. values at 37 and 5 degrees C measured in erythrocytes from the same donor were 0.27 and 0.085 mM respectively, and 270 and 8.5 mumol/litre of cells per h respectively. The transporter responsible for this uptake was identified as system ASC on the basis of cross-inhibition studies with a series of 42 amino acids and amino acid analogues. Apparent Ki values for glycine, L-alpha-amino-n-butyrate, L-serine and L-leucine as inhibitors of Na+-dependent L-alanine uptake at 37 degrees C were 4.2, 0.12, 0.16 and 0.70 mM respectively. Reticulocytes from a patient with inherited pyruvate kinase deficiency were found to have a 10-fold elevated activity of Na+-dependent L-alanine uptake compared with erythrocytes from normal donors. Separation of erythrocytes according to cell density (cell age) established that even the oldest mature erythrocytes retained significant Na+-dependent L-alanine transport activity. Amino acid transport was, however, a more sensitive indicator of cell age than acetylcholinesterase activity. Erythrocytes were found to accumulate L-alanine against its concentration gradient (distribution ratio approx. 1.5 after 4 h incubation), an effect that was abolished in Na+-free media. Na+-dependent L-alanine uptake was shown to be associated with L-alanine-dependent Na+ influx, the measured coupling ratio being 1:1.  相似文献   

15.
The ascorbate (ASC) and glutathione (GSH) metabolisms were studied in cultured Nicotiana tabacum cv. Bright Yellow 2 (TBY-2) cells. TBY-2 cells were found to be endowed with L-galactono-γ-lactone dehydrogenase (GLDH) (EC 1.3.2.3), an enzyme that converts L-galactono-γ-lactone into ASC. Cellular fractionation of TBY-2 protoplasts indicated that this enzyme is exclusively localised in mitochondria and associated to the membrane fractions. During the growth cycle of TBY-2 cell culture, GLDH transiently increased, reaching the maximum value on the third day of culture, at the beginning of the exponential phase, when the cell proliferative activity was also higher. Similar behaviour has been observed for ASC and GSH contents. The activities of ascorbate peroxidase (APX) (EC 1.11.1.11), ascorbate-free radical reductase (AFRR) (EC 1.6.5.4), dehydroascorbic acid reductase (DHAR) (EC 1.8.5.1) and glutathione reductase (GR) (EC 1.6.4.2) also transiently raised. However, the scale of the increases varied being about 4-fold for APX and AFRR, 2-fold for DHAR and more than 11-fold for GR. The behaviour of the ASC and GSH recycling enzymes allowed TBY-2 cells to maintain both dehydroascorbic acid and glutathione disulphide at low levels, even under conditions of high ASC and GSH utilisation. The relationship between the ASC and GSH metabolisms during the growth cycle of TBY-2 cell suspension cultures is also discussed.  相似文献   

16.
Previous studies have shown a strong correlation between reduced levels of GM3 ganglioside and an increase in the oncogenic transformation of cultured cells. CMP-sialic acid:lactosylceramide sialyltransferase, which catalyzes GM3 synthesis, was characterized in cultured hamster fibroblasts (NIL-8) with respect to substrate binding, pH optimum, detergent requirements, metal ion requirements, activity during cell cycle phases and activity during cell growth phases. The apparent Km values for CMP-sialic acid and lactosylceramide were 0.16 and 0.11 mM, respectively. The enzyme required Mn2+ (15 mM) for maximal, but Mg2+ and Ca2+ were able to substitute to a lesser extent. Triton CF-54 (0.3%, w/v) compared to other nonionic detergents gave the greatest enzyme activation, while ionic detergents inhibited the enzyme. A broad pH optimum (4.5-8.0) was obtained, with maximum activity at pH 6.5 in cacodylate-HCl buffer. No buffer effects on enzyme activity were seen. Sialyltransferase activity was found to be highest in the M and G1 phases of the cell cycle and in the contact-inhibited phase of cell growth.  相似文献   

17.
UDPgalactose inhibits the growth of mouse leukemic L1210 cells. In calf serum supplemented Dulbecco's medium (CS-DMEM), 1.2 mM UDPgalactose (UDPgal) inhibited cell growth by 50% (IC50), and 5 mM UDPgalactose inhibited cell growth by 92%. Other nucleotide sugars as well as galactose, glucose, and galactose-1-phosphate had little or no effect on cell growth. Uridine nucleotides, which inhibit galactosyltransferase activity, protected L1210 cells from the growth inhibitory effect of UDPgalactose when both were added simultaneously to culture media. Unlike mouse 3T12 cells, in which no inhibition of cell growth was observed with heat-inactivated calf serum (HICS)-DMEM, 5 mM UDPgalactose inhibited L1210 cell growth in HICS-DMEM to the same degree as that observed in CS-DMEM. In contrast to 3T12 cells, L1210 cells secrete significant galactosyltransferase activity into the media. Complete inhibition of 3T12 cell growth by UDPgal was observed if HICS-DMEM medium was first conditioned by L1210 cells for 48 hours. No difference in cell growth or [3H]thymidine uptake was detected after 6 hours of exposure to UDPgalactose, but both were significantly decreased at 24 and 48 hours. Flow cytometric analysis of UDPgalactose effects on L1210 cells revealed no differences in the distribution of cells in G1, S, or G2-M of the cell cycle after 6 hours of incubation, but after 16 hours of UDPgalactose treatment, L1210 cells were arrested in early S phase. These cells were completely viable and morphologically similar to control L1210 cells. Normal growth was resumed when UDPgal was removed. The data suggest that UDPgalactose inhibition of cell growth requires extracellular galactosyltransferase activity and that the effect is mediated via the cell membrane.  相似文献   

18.
We have studied the possible correlation between nuclear glutathione distribution and the progression of the cell cycle. The former was studied by confocal microscopy using 5-chloromethyl fluorescein diacetate and the latter by flow cytometry and protein expression of Id2 and p107. In proliferating cells, when 41% of them were in the S+G(2)/M phase of the cell cycle GSH was located mainly in the nucleus. When cells reached confluence (G(0)/G(1)) GSH was localized in the cytoplasm with a perinuclear distribution. The nucleus/cytoplasm fluorescence ratio for GSH reached a maximal mean value of 4.2 +/- 0.8 at 6 h after cell plating. A ratio higher than 2 was maintained during exponential cell growth. In the G(0)/G(1) phase of the cell cycle, the nucleus/cytoplasm GSH ratio decreased to values close to 1. We report here that cells concentrate GSH in the nucleus in the early phases of cell growth, when most of the cells are in an active division phase, and that GSH redistributes uniformly between the nucleus and the cytoplasm when cells reach confluence.  相似文献   

19.
Docosahexaenoic acid (DHA), a PUFA of the n-3 family, inhibited the growth of FM3A mouse mammary cancer cells by arresting their progression from the late-G(1) to the S phase of the cell cycle. DHA upregulated p27(Kip1) levels by inhibiting phosphorylation of mitogen-activated protein (MAP) kinases, i.e., ERK1/ERK2. Indeed, inhibition of ERK1/ERK2 phosphorylation by DHA, U0126 [chemical MAPK extracellularly signal-regulated kinase kinase (MEK) inhibitor], and MEK(SA) (cells expressing dominant negative constructs of MEK) resulted in the accumulation of p27(Kip1). MAP kinase (MAPK) inhibition by DHA did not increase p27(Kip1) mRNA levels. Rather, this fatty acid stabilized p27(Kip1) contents and inhibited MAPK-dependent proteasomal degradation of this protein. DHA also diminished cyclin E phosphorylation, cyclin-dependent kinase-2 (CDK2) activity, and phosphorylation of retinoblastoma protein in these cells. Our study shows that DHA arrests cell growth by modulating the phosphorylation of cell cycle-related proteins.  相似文献   

20.
Sodium butyrate and hydroxyurea, effective inhibitors of DNA synthesis in HeLa cells, cause these cells to produce increased levels of the ectopic glycopeptide hormones human chorionic gonadotropin (hCG), follicle stimulating hormone (FSH), and free alpha chains for these hormones. The objective of this study was an assessment of the role of modulation of cell cycle events in the action of these two chemical agents. A variety of experimental approaches was employed to obtain a clear view of the drugs' effects on cells located initially in all phases of the cell cycle. Cells in early G1, G2, or M phase at time of addition of either inhibitor were not arrested at early time points, but by 48 hours became collected at a location characteristic for each drug, near the G1-S phase boundary. Flow microfluorometry (FMF) and thymidine labeling index revealed that butyrate-treated cells arrested late in G1 phase very close to S phase, while hydroxyurea-blocked cells continued to early S phase. Both inhibitors prevented cells originally in S phase from reaching mitosis. S cells exposed to hydroxyurea were killed by 48 hours, but those growing in 5 mM butyrate progressed to the end of S or G2 phase where they became irreversibly arrested although not removed from the monolayer. Analysis of the cell cycle location and viability of each subpopulation resulting from 48 hour exposure to butyrate or hydroxyurea is important for the study of the function of each cellular subset. Treatment of HeLa cells with lower concentrations of butyrate (1 mM) resulted in slowed yet exponential growth. Fraction labeled mitosis (FLM) analysis shows that this is a result of prolongation of the G1 phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号