首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.

Background

mTOR, which can form mTOR Complex 1 (mTORC1) or mTOR Complex 2 (mTORC2) depending on its binding partners, is frequently deregulated in the pulmonary neoplastic conditions and interstitial lung diseases of the patients treated with rapalogs. In this study, we investigated the relationship between mTOR signaling and epithelial mesenchymal transition (EMT) by dissecting mTOR pathways.

Methods

Components of mTOR signaling pathway were silenced by shRNA in a panel of non-small cell lung cancer cell lines and protein expression of epithelial and mesenchymal markers were evaluated by immunoblotting and immunocytochemistry. mRNA level of the E-cadherin repressor complexes were evaluated by qRT-PCR.

Results

IGF-1 treatment decreased expression of the E-cadherin and rapamycin increased its expression, suggesting hyperactivation of mTOR signaling relates to the loss of E-cadherin. Genetic ablation of rapamycin-insensitive companion of mTOR (Rictor), a component of mTORC2, did not influence E-cadherin expression, whereas genetic ablation of regulatory-associated protein of mTOR (Raptor), a component of mTORC1, led to a decrease in E-cadherin expression at the mRNA level. Increased phosphorylation of AKT at Ser473 and GSK-3β at Ser9 were observed in the Raptor-silenced NSCLC cells. Of the E-cadherin repressor complexes tested, Snail, Zeb2, and Twist1 mRNAs were elevated in raptor-silenced A549 cells, and Zeb2 and Twist1 mRNAs were elevated in Raptor-silenced H2009 cells. These findings were recapitulated by treatment with the GSK-3β inhibitor, LiCl. Raptor knockdown A549 cells showed increased expression of N-cadherin and vimentin with mesenchymal phenotypic changes.

Conclusions

In conclusion, selective inhibition of mTORC1 leads to hyperactivation of the AKT/GSK-3β pathway, inducing E-cadherin repressor complexes and EMT. These findings imply the existence of a feedback inhibition loop of mTORC1 onto mTORC2 that plays a role in the homeostasis of E-cadherin expression and EMT, requiring caution in the clinical use of rapalog and selective mTORC1 inhibitors.  相似文献   

3.
4.
5.
Ligand-of-Numb protein X (LNX) was initially characterized as a RING finger type E3 ubiquitin ligase that targeted the intrinsic cell fate determinant Numb for ubiquitination dependent degradation. However, the physiological function of LNX remains largely unknown. In the present study, we demonstrate that ectopic expression of LNX in human proximal tubular epithelial cells (HK-2 cells) significantly enhanced TGF-β1 induced epithelial to mesenchymal transition (EMT). The EMT-promoting effect of LNX manifested as strong inhibition of E-cadherin expression, enhanced expression of vimentin, fibronectin or PAI-1, and increased cell migration. This function of LNX was shown to be independent of its ligase activity because ectopic expression of a mutant form of LNX (C48ALNX) that lacks E3 ligase activity had the similar effect as the wild-type LNX. Overexpression of E-cadherin could inhibit LNX augmented EMT. This study suggests a potential role for LNX in promoting EMT in human proximal tubular epithelial cells.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
Epithelial to mesenchymal transition (EMT) is a key process during embryonic development and disease development and progression. During EMT, epithelial cells lose epithelial features and express mesenchymal cell markers, which correlate with increased cell migration and invasion. Transforming growth factor-β (TGF-β) is a multifunctional cytokine that induces EMT in multiple cell types. The TGF-β pathway is regulated by microRNAs (miRNAs), which are small non-coding RNAs regulating the translation of specific messenger RNAs.Herein, we identified mir-99a and mir-99b as two novel TGF-β target miRNA genes, the expression of which increased during TGF-β induced EMT of NMUMG cells. Mir-99a and mir-99b inhibition decreased TGF-β activity by inhibiting SMAD3 phosphorylation, resulting in decreased migration and increased proliferation in response to TGF-β. However, mir-99a and mir-99b inhibition was insufficient to block TGF-β induced EMT of NMUMG cells.Mir-99a and mir-99b over-expression in epithelial NMUMG cells resulted in increased proliferation, migration and fibronectin expression, while E-cadherin and ZO-1 expression were negatively regulated.In conclusion, we identified mir-99a and mir-99b as two novel modulators of TGF-β pathway that alter SMAD3 phosphorylation, in turn altering cell migration and adhesion of mesenchymal NMUMG cells. The effect of mir-99a and mir-99b over-expression on NMUMUG proliferation is dependent upon the epithelial or mesenchymal status of the cells. Our study suggests that mir-99a and mir-99b may function as modulators within a complex network of factors regulating TGF-β induced breast epithelial to mesenchymal transition, as well as proliferation and migration of breast cancer cells, providing a possible target for future translationally oriented studies in this area.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号