首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The effect of bicarbonate (HCO3) on fluid absorption by guinea pig gallbladder was investigatedin vitro. Stimulation of fluid absorption was concentration dependent resulting in a fourfold increase in transport over the range 1 to 50mm. Phosphate, Tris, glycodiazine and glutamine buffers failed to substitutte for HCO3 in stimulating absorption. Unidirectional22Na fluxes were measured across short-circuited sheets of guinea pig and rabbit gallbladders mounted in Ussing-type chambers. In both species the net Na flux was unaffected by serosal HCO3 alone but was stimulated by addition of HCO3 to the mucosal bathing solution. Transepithelial electrical potential difference in rabbit gallbladder was about 1.4 mV (lumen positive) when HCO3 was present in the mucosal or in both compartments. This fell to 0.2 mV under HCO3-free conditions or when HCO3 was present only in the serosal solution. The respective values for guinea pig gallbladder were –1.6 and –0.6 mV (lumen negative). HCO3 stimulation of Na absorption by guinea pig gallbladder was abolished by increasing the bathing pH from 7.4 to 7.8, an effect resulting mainly from a reduction inJ mis Na . Tris buffer (25mm) inhibited HCO3-dependent fluid absorption in this species completely at pH 8.5 and partially at 7.5. These results indicate that HCO3 stimulates gallbladder transport in both species by an action from the mucosal side. This effect cannot be attributed to simple buffering of H+ but may be explained by the participation of HCO3 in the maintenance of intracellular H+ for a Na/H-exchange.  相似文献   

2.
Summary Fluid transport and net fluxes of Na, K, Cl and HCO3 by guinea pig gallbladder were investigatedin vitro. A perfused gallbladder preparation was devised to simultaneously study unidirectional fluxes of22Na and36Cl. The net Cl flux exceeded the net Na flux during fluid absorption in the presence of HCO3. This Cl excess was counter-balanced by a net HCO3 secretion: a HCO3–Cl exchange. PGE1 reversed the direction of fluid transport and abolished the net Cl flux. The magnitude of the HCO3 secretion remained unchanged, but shifted from a HCO3–Cl exchange to a net secretion of NaHCO3 and KHCO3. Furosemide inhibited both the HCO3–Cl exchange and HCO3 secretion after PGE1 without influencing fluid absorption. Ouabain inhibited the HCO3–Cl exchange as well as fluid absorption; only the effect on the HCO3 secretion was entirely reversible. Secreted HCO3 appeared not to be derived from metabolic sources since HCO3 secretion was abolished in a HCO3-free bathing medium. HCO3 secretion was also dependent on the Na concentration of the bathing fluid. Three lines of evidence are presented in favor of an active HCO3 secretion in guinea pig gallbladder. HCO3 is secreted against: (i) a chemical gradient, (ii) an electrical gradient and (iii) the direction of fluid movement under control conditions.  相似文献   

3.
Summary Previous studies have led to the suggestion that salt and water absorption by rabbit and guinea pig gallbladders exposed to Amphotericin B proceeds by a rheogenic Na pump at the basolateral cell membrane. The present studyin vitro was designed to further characterize transport properties of rabbit and guinea pig gallbladders under control conditions and to identify the properties of gallbladder mucosa which are altered by Amphotericin B to allow for the induced serosa-positive electrical potential differences (PD). Potassium is required in the bathing solution at a low concentration to maintain normal tissue O2 consumption, fluid absorption and the ability of the tissue to develop the maximum Amphotericin B-induced PD; the relative effectiveness of alkali metal cations in substituting for K is KRb>Cs>Li>Na. The carrier mechanism for coupled influx of Na and Cl across the mucosal border of gallbladder appears to be functional in the presence of Amphotericin B; in addition, the diffusional influx of chloride is not significantly altered by the antibiotic. The primary action of Amphotericin B which appears to modify rabbit and guinea pig gallbladders from having transmural PD's of less than ±1 mV to having serosa-positive PD's of 5–30 mV is an increase in the mucosal cell membrane permeability to Na. This permeability change has the effect of partially uncoupling NaCl influx. A rheogenic Na pump mechanism at the basolateral membrane, presumably in operation under control conditions also, may account for the PD.  相似文献   

4.
A Cl/HCO3 exchanger mediates HCO3 extrusion across rat jejunal basolateral membrane. Previous studies demonstrated that anion antiport activity is positively affected by Na, but evidence was given that this cation is not translocated by the carrier protein. Basolateral membranes isolated from rat jejunum were used to give more insight on Na effect. Uptake studies, performed together with vesicle sidedness determinations, indicated that the greatest stimulation of Cl-dependent HCO3 uptake occurs when Na is present at both vesicle surfaces. The kinetic dependence of Cl/HCO3 exchange on equal intra- and extravesicular Na concentration showed a hyperbolic relationship, and the calculated kinetic parameters were V max=0.153 ± 0.006 nmol mg protein-1 sec-1, K m =23.0 Mm. Ion replacement studies indicated that Na can be partially substituted only by Li and not by other monovalent cations. Results of this study suggest that Na could act as a nonessential activator of the Cl/HCO3 exchanger. A possible role of the Na-sensitive modifier site in the physiology of jejunal enterocyte is suggested.  相似文献   

5.
Summary Basolateral membrane vesicles isolated from rat jejunal enterocyte and well purified from brush border contamination were tested to examine Cl and HCO3 movements. Uptake experiments provided no evidence for a coupling between Na and HCO3 fluxes; K–HCO3 and K–Cl cotransports also could be excluded. Transport studies revealed the presence of a Cl/HCO3 exchanger accepting other anions and inhibitable by the disulfonic stilbenes SITS and DIDS. We can exclude that the evidenced HCO3-dependent Cl uptake is due to brush border contamination, since in jejunal brush border membranes this mechanism, if present, has a very low transport rate. Besides the Cl/HCO3 antiporter, a Cl-conductive pathway seems to exist in jejunal basolateral membranes.  相似文献   

6.
Basolateral membrane vesicles isolated from rat jejunum were used to characterize a Cl/HCO3 exchange mechanism previously evidenced. Cl uptake experiments provided no evidence for Cl/OH countertransport, confirming anyhow the presence of Cl/HCO3 antiport, which was inhibited by 2 mm furosemide and unaffected by 2 mm amiloride. An outwardly directed Na gradient stimulated Cl uptake and this effect was increased if Na was present at both vesicle surfaces. To investigate the mechanism of coupling between Na and the transport protein, we performed Na uptake experiments. Na uptake was unaffected by cis-bicarbonate and trans-Cl gradients; the reversal of anion gradients was still ineffective. Similar results were obtained when a pH difference across the membrane vesicles was imposed. This study seems to suggest that Na is not transported by the Cl/HCO3 exchanger and that another mode of Na dependence must be taken into account.  相似文献   

7.
Summary Ion transport and electrical properties of rabbit and guinea pig gallbladders were investigated to gain further information about the active transport mechanism that mediates fluid absorption. The intracellular and transepithelial electrical potentials were measured simultaneously using the microelectrode technique. Exposure of the mucosal surface to Amphotericin B resulted in the prompt development of a serosa-positive electrical potential difference (PD) which could not be attributed to an alteration in ion diffusion potentials across either the cell membrane or across the tight junction. Because the Amphotericin B-inducedPD was immediately dependent on warm temperatures and O2, and was independent of NA and K concentration gradients across the cell membrane, it is suggested that active ion transport is directly responsible for thePD. Since thePD was abolished in the absence of Na in the bathing solutions, a rheogenic Na pump is postulated; this pump also appears to be operative in tissue not exposed to Amphotericin B. The specific tissue properties altered by Amphotericin B to produce a serosa-positivePD remain incompletely defined. The results of the present study indicate that ion transport by rabbit gallbladderin vitro is a consequence of a rheogenic active Na transport mechanism at the basolateral membranes which, in conjunction with a coupled NaCl influx process at the mucosal border, ultimately results in absorption of NaCl and water.  相似文献   

8.
Summary Porcine distal colon epithelium was mounted in Ussing chambers and bathed in plasma-like Ringer solution. Tissue conductances ranged from 10 to 15 mS and the short-circuit current (Isc) ranged from-15 to 220 A·cm-2. Variations in basal Isc resulted from differences in the amount of amiloride (10M mucosal addition)-sensitive Na+ absorption. Ion substitution and transepithelial flux experiments showed that 10 M amiloride produced a decrease in the mucosal-to-serosal (M-S) and net Na flux, and that this effect on Isc was independent of Cl- and HCO 3 - replacement. When the concentration of mucosal amiloride was increased from 10 to 100 M, little change in Isc was observed. However, increasing the concentration to 1 mM produced a further inhibition, which often reversed the polarity of the Isc. The decrease in Isc due to 1 mM amiloride was dependent on both Cl- and HCO 3 - , and was attributed to reductions in the M-S and net Na+ fluxes as well as the M-S unidirectional Cl- flux. Ion replacement experiments demonstrated that Cl- substitution reduced the M-S and net Na fluxes, while replacement of HCO 3 - with HEPES abolished net Cl- absorption by reducing the M-S unidirectional Cl- flux. From these data it can be concluded that: (1) Na+ absorption is mediated by two distinct amiloride-sensitive transport pathways, and (2) Cl- absorption is completely HCO 3 - -dependent (presumably mediated by Cl-/HCO 3 - exchange) and occurs independently of Na+ absorption.Abbreviations Gt tissue conductance - HEPES tris (hydroxymethyl) aminomethane - (tris) N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - Isc short-circuit current - Jr residual flux - M-S mucosal-to-scrosal - S-M serosal-to-mucosal - TTX tetrodotoxin  相似文献   

9.
Although HCO3 is known to be required for early embryo development, its exact role remains elusive. Here we report that HCO3 acts as an environmental cue in regulating miR-125b expression through CFTR-mediated influx during preimplantation embryo development. The results show that the effect of HCO3 on preimplantation embryo development can be suppressed by interfering the function of a HCO3-conducting channel, CFTR, by a specific inhibitor or gene knockout. Removal of extracellular HCO3 or inhibition of CFTR reduces miR-125b expression in 2 cell-stage mouse embryos. Knockdown of miR-125b mimics the effect of HCO3 removal and CFTR inhibition, while injection of miR-125b precursor reverses it. Downregulation of miR-125b upregulates p53 cascade in both human and mouse embryos. The activation of miR-125b is shown to be mediated by sAC/PKA-dependent nuclear shuttling of NF-κB. These results have revealed a critical role of CFTR in signal transduction linking the environmental HCO3 to activation of miR-125b during preimplantation embryo development and indicated the importance of ion channels in regulation of miRNAs.  相似文献   

10.
Cyanobacteria possess an inducible mechanism which enables them to concentrate inorganic carbon (Ci) within the cells. An inactivation library was used to raise the high-CO2-requiring mutant of Synechococcus PCC 7942, IL-2, impaired in HCO3 transport. Analysis of the relevant genomic DNA detected several modifications, probably due to the single crossover recombination, leading to inactivation of ORF467 (designated ictB) in IL-2. IctB contains 10 trans-membrane regions and is homologous to several transport-related proteins from various organisms. Kinetic analyses of HCO3 uptake in the wild type and IL-2 suggested the presence of two or three HCO3 carriers exhibiting different affinities to HCO3.  相似文献   

11.
1. 1. The present experiments measure net fluxes of fluid, Cl and HCO3 across de-epithelialised rabbit corneas clamped between half chambers and bathed in Ringer solutions.
2. 2. Net fluxes of HCO3 and fluid occurred together across the cornea from stroma to aqueous when HCO3 and CO2 were present in the bathing solution.
3. 3. No net trans-corneal Cl flux was found
4. 4. The initiation of fluid flow in the presence of HCO3 and CO2 cannot be accounted for by bulk-phase osmotic flow across the cornea.
Keywords: Osmotic coupling; Bicarbonate flux; Fluid flux; Cl flux; (Cornea)  相似文献   

12.
The activity of the Na-H antiporter is inhibited by cyclic AMP-dependent protein kinase A (cAMP.PKA). The inhibitory effect of PKA on the Na-H antiporter is mediated through a regulatory protein that can be dissociated from the antiporter by limited protein digestion. PKA also inhibits the activity of the Na+/ HCO 3 ? cotransporter. We investigated whether the activity of Na+/HCO 3 ? cotransporter and the effect of PKA on this transporter may also be regulated by limited protein digestion. In rabbit renal cortical basolateral membranes (BLM) and in solubilized BLM reconstituted in liposomes (proteoliposomes), trypsin (100 μg) increased 22Na uptake in the presence of HCO3 but not in the presence of gluconate, indicating that trypsin does not alter diffusive 22Na uptake but directly stimulates the Na+/HCO 3 ? cotransporter activity. In proteoliposomes phosphorylated with ATP, the catalytic subunit (CSU) of cAMP-PKA decreased the activity of the Na+/HCO 3 ? cotransporter (expressed as nanomoles/mg protein/3s) from 23 ± 10 to 14 ± 6 (P < 0.01). In the presence of trypsin, the inhibitory effect of CSU of cAMP-PKA on the activity of Na+/HCO 3 ? cotransporter was blunted. To identify a fraction that was responsible for the inhibitory effect of the CSU on the Na+/HCO 3 ? cotransporter activity, solubilized proteins were separated by size exclusion chromatography. The effect of CSU of cAMP-PKA on the Na+/HCO 3 ? cotransporter activity was assayed in proteoliposomes digested with trypsin with the addition of a fraction containing the 42 kDa protein (fraction S+) or without the 42 kDa protein (fraction S?). With the addition of fraction S?, the CSU of cAMP-PKA failed to inhibit the Na+/HCO 3 ? cotransporter activity (control 27 ± 6, CSU 27 ± 3) while the addition of fraction S+ restored the inhibitory effect of CSU (27 ± 6 to 3 ± 0.3 P < 0.01). The CSU of cAMP-PKA phosphorylated several proteins in solubilized protein including a 42 kDa protein. Fluorescein isothiocyanate (FITC) labels components of the Na+/HCO 3 ? cotransporter including the 56 kDa and 42 kDa proteins. In trypsin-treated solubilized protein the 42 kDa protein was not identified with FITC labeling. The results demonstrate that the activity of the Na+/HCO 3 ? cotransporter is regulated by protein(s) which mediates the inhibitory effect of PKA. Limited protein digestion can dissociate this protein from the cotransporter.  相似文献   

13.
14.
Intact cells of the unicellular cyanobacterium Synechococcus UTEX 625 degraded exogenously supplied cyanate (as KOCN) to CO2 and NH3 in a light-dependent reaction. NH3 release to the medium was as high as 80 mol(mgChl)-1h-1 and increased 1.7-fold in the presence of methionine sulfoximine, a glutamine synthetase inhibitor. Cyanate also supporte photosynthetic O2 evolution to a maximum rate of 188 mol O2(mgChl)-1h-1 at pH 8 and 30°C. Cyanate decomposition in cell-free extracts, measured by mass spectrometry as 13CO2 production from KO13CN, occurred in the soluble enzyme fraction, but not in the thylakoid/carboxysome fraction, and was enhanced by HCO3 and inhibited by the dianion oxalate. CO2, rather, than HCO3 , was a product of cyanate decomposition. The ability to decompose cyanate was not dependent upon pre-exposure of cells to cyanate to induce activity. The collective results indicate that Synechococcus UTEX 625 possesses a constitutive, cytosolic cyanase (EC 4.3.99.1), similar in mechanism to that found in some species of heterotrophic bacteria. The reaction catalyzed was: OCN+HCO3+2H+2CO2+NH3. In intact cells, the CO2 produced by the action of cyanase on OCN- was either directly fixed by the Calvin cycle enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase, leading to O2 evolution, or leaked into the medium where it was returned to the cell by the active CO2/HCO3 transport systems for fixation. However, leakage of CO2 from air-grown cells was only observed when the active CO2 transport system was inhibited by darkness or the CO2 analogue carbon oxysulfide.Abbreviations BTP bistrispropane - C i inorganic carbon (=CO2+HCO3 -+CO3 2-) - CA carbonic anhydrase - Chl chlorophyll - COS carbon oxysulfide - MSX methionine sulfoximine - PAR photosynthetically active radiation - Rubisco ribulose bisphosphate carboxylase/oxygenase  相似文献   

15.
Lupins appear to be more sensitive than peas to Fe deficiency. However, when grown in nutrient solutions between pH 5–6, little difference existed between them in their ability to acidify the solution or to release FeIII reducing compounds. This experiment was aimed at determining whether differences between species which occurred when Fe deficiency was induced by withholding Fe from an acid solution, are maintained when Fe deficiency is induced by addition of HCO3 -. Lupins and peas were grown in nutrient solutions at 0, 2 and 6 μM of FeIII EDDHA and either with or without HCO3 - (6 mM). Bicarbonate induced symptoms of Fe deficiency (chlorosis) in both lupins and peas, and markedly decreased the growth of shoots. Symptoms appeared sooner and were more severe in lupins than in peas. Growing plants without HCO3 -, but at the lowest Fe level, decreased the growth and Fe concentration of shoots of lupins but did not induce chlorosis. Growing peas in this treatment, decreased Fe concentrations, but to a lesser extent than in lupins, and did not decrease growth. H+-ion extrusion and release of FeIII reducing compounds was greater in lupins than in peas. Bicarbonate also decreased the growth of roots of lupins but increased the growth of roots of peas. Results indicate that when Fe deficiency is induced by HCO3 -, then the response of lupins and peas are similar to their response in acid solution culture. Differences between species therefore could not be explained by their relative abilities to acidify or release FeIII reducing compounds. Greater control of the distribution of Fe within the shoots, the presence of a pool of Fe within the roots, a lower threshold for Fe uptake, or a higher content of seed-Fe, may therefore be the reason for the lower sensitivity of peas than lupins to Fe deficiency.  相似文献   

16.
We determined the IF1 contents of pig, rabbit, rat, mouse, guinea pig, pigeon, turtle, and frog heart mitochondria and the effects of varying ionic strength upon the IF1-mediated inhibition of the ATPase activity of IF1-depleted rabbit heart mitochondrial particles (RHMP) by IF1-containing extracts from these same eight species. The IF1 binding experiments were run at both species-endogenous IF1 levels and at an IF1 level normalized to that present in rabbit heart mitochondria. When species-endogenous levels of rabbit heart IF1 or either speciesendogenous or normalized levels of pig heart IF1 were incubated with RHMP over a range of KCl concentrations, increasing the [KCl] to 150 mM had relatively little effect on IF1-mediated ATPase inhibition. When either species-endogenous or normalized levels of guinea pig, pigeon, turtle, or frog heart IF1 were incubated with RHMP under the same conditions, increasing [KCl] to 150 mM nearly completely blocked IF1-mediated ATPase inhibition. While species-endogenous levels of rat and mouse heart IF1 inhibited the ATPase activity of RHMP virtually not at all at any [KCl] examined, normalized levels of rat and mouse IF1 inhibited the ATPase activity of RHMP to the same extents as species-endogenous levels of pig and rabbit heart IF1, respectively, in the presence of increasing [KCl]. These experiments suggest that, while pig and rabbit heart mitochondria contain a full complement of higher-affinity IF1, pigeon, guinea pig, turtle, and frog heart mitochondria cell contain essentially a full complement of a lower-affinity form of IF1. In contrast, rat and mouse heart mitochondria contain only low levels of IF1 which exhibit binding characteristics similar to those of the pig and rabbit heart inhibitor. The guinea pig is the only mammal thus far examined that contains a loweraffinity form of IF1. In the present study we also determined the IF1 contents and IF1-to-F1 ATPase activity ratios of cardiac muscle, skeletal muscle, liver, and brain mitochondria of rabbit, pigeon, and rat, species representative of the three homeothermic regulatory classes.  相似文献   

17.
Summary Cells ofChara corallina grown under high CO2 culture conditions were able to utilize exogenous HCO3 to give appreciable rates of net photosynthesis. Since these rates of photosynthesis could be detected within 10 min of being transferred from high-CO2 to normal HCO3 (pH 8.2) culture conditions, it would appear that the HCO3 -accumulating system ofChara is not fully repressed under these high CO2 culture conditions. The membrane potential of these cells also responded to light/dark treatments in a manner consistent with the operation of a HCO3 acquisition system. With prolonged exposure (2–6 days) to CPW/B, net photosynthesis continued to increase towards the expected control rate and, in parallel, the electrical responses elicited by light/dark treatments converged towards those obtained on control (CPW/B-grown)Chara cells. Charasomes were absent in CPW/CO2-grownChara, but redeveloped in mature cells once the culture was returned to CPW/B conditions; a minimum period of 7 days in CPW/B was required before charasomes were detected in tissue examined in the transmission electron microscope. As the above-detailed physiological and electrophysiological features were observed with both axial and whorl cells ofChara in which charasomes were completely absent, we conclude that this specialized organelle is not an essential component for photosynthetic utilization of exogenous HCO3 in this species.Abbreviations CPW/B Chara pond water containing 1.0 mM NaHCO3, pH8.2 - CPW/CO2 Chara pond water containing dissolved CO2, pH 5.5 - DIC dissolved in organic carbon - D.H. dark-induced membrane hyperpolarization - L.H. light-induced membrane hyperpolarization - TEM transmission electron microscopy  相似文献   

18.
Action of Cl? + HCO3 ?1 ions on Mg2+-ATPase from brain plasma membranes of fish and rats has been studied. Maximal effect of the anions on the “basal” Mg2+-ATPase activity is revealed in the presence of 10 mM Cl? and 3 mM HCO3 ?1 at physiological values of pH of incubation medium. The studied Cl?, HCO3 ?-activated Mg2+-ATPases of both animal species, by their sensitivity to SH-reagents (5,5-dithio-bis-nitrobenzoic acid, N-ethylmaleimide), oligomycin, and orthovanadate, are similar to transport ATPase of the P-type, but differ from them by molecular properties and by sensitivity to ligands of GABAA-receptors. It has been established that the sensitive to GABAA-ergic ligands, Cl?, HCO3 ?-activated Mg2+-ATPase from brain of the both animal species is protein of molecular mass around 300 kDa and of Stock’s radius 5.4 nm. In fish the enzyme is composed of one major unit of molecular mass approximately 56 kDa, while in rats-of three subunits of molecular masses about 57, 53, and 45 kDa. A functional and structural coupling of the ATP-hydrolyzing areas of the studied enzyme to sites of binding of GABAA-receptor ligands is suggested.  相似文献   

19.
The possibility of a direct effect of prostaglandins of the E, A, and F series upon renal electrolyte and water transport was assessed using in vitro preparations of rabbit cortical and medullary tubular suspensions as well as cortical renal slices from rat and guinea pig and medullary renal slices from rabbit. Net fluxes of Na, K, Cl and H2O between the intracellular compartment and the extracellular fluid were measured in the presence of PGE1, PGE2, PGA1, PGA2 and PGF in concentrations ranging from 1 × 10?5 to 1 × 10?10M. No inhibitory action was observed with any of these prostaglandins and in fact a slight stimulation of Na transport was seen under some circumstances. We conclude that the natriuresis which follows in vivo administration of some prostaglandins is not the result of a direct inhibition of Na reabsorption at the contraluminal pump site and is most likely secondary to renal vasodilation.We also studied net and isotopic Na fluxes in human erythrocytes. Na transport was not affected by prostaglandins of the E, A or F series using both normal and high sodium erythrocytes. Our results emphasize the need for caution in extrapolating the effects of prostaglandins upon Na transport from one tissue to another since their actions appear to be tissue-specific.  相似文献   

20.
The availability of a complete genome database for the cyanobacterium Synechocystissp. PCC6803 (glucose-tolerant strain) has raised expectations that this organism would become a reference strain for work aimed at understanding the CO2-concentrating mechanism (CCM) in cyanobacteria. However, the amount of physiological data available has been relatively limited. In this report we provide data on the relative contributions of net HCO3 uptake and CO2 uptake under steady state photosynthetic conditions. Cells were compared after growth at high CO2 (2% v/v in air) or limiting CO2 conditions (20 ppm CO2). Synechocystishas a very high dependence on net HCO3 uptake at low to medium concentrations of inorganic carbon (Ci). At high Ci concentrations net CO2 uptake became more important but did not contribute more than 40% to the rate of photosynthetic O2 evolution. The data also confirm that high Ci cells of Synechocystissp. PCC6803 possess a strong capacity for net HCO3 uptake under steady state photosynthetic conditions. Time course experiments show that induction of maximal Ci uptake capacity on a shift from high CO2 to low CO2 conditions was near completion by four hours. By contrast, relaxation of the induced state on return of cells to high CO2, takes in excess of 230 h. Experiments were conducted to determine if Synechocystissp. PCC6803 is able to exhibit a `fast induction' response under severe Ci limitation and whether glucose was capable of causing a rapid inactivation in Ci uptake capacity. Clear evidence for either response was not found. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号