首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tyrosine-57 (Y57) and methionine-107 (M107) have been identified in the binding site of the sex steroid binding protein (SBP) (or sex hormone binding globulin) of human plasma by replacing the two amino acids with a number of residues of varying structure. Replacement of Y57 with phenylalanine resulted in a fourfold increase in the K(d) of 5 alpha-dihydrotestosterone but left the K(d) of 17 beta-estradiol unchanged. Except in two cases, no further loss in binding took place when replacing Y57 with other residues, suggesting that the phenolic group of Y57 may form a hydrogen bond with the ligand. Replacement of M107 with isoleucine increased the 5 alpha-dihydrotestosterone K(d) fourfold to a value equal to that of rabbit SBP, which contains isoleucine at the corresponding position; however, the K(d) of 17 beta-estradiol remained unchanged. Replacement of M107 with threonine resulted in a tenfold decrease in 5 alpha-dihydrotestosterone binding affinity, whereas replacement with leucine left the K(d) unchanged. These data indicate that substitutions on the beta-carbon of the amino acid side-chain at position 107 causes significant loss of binding affinity but, as in the case of Y57, the activity was not totally eliminated. We conclude that Y57 and M107 form part of a structural motif within the steroid binding site and specifically contribute binding energy to ring A of 5 alpha-dihydrotestosterone but not to ring A of 17 beta-estradiol. We also propose that the integrated contribution of several side chains may be required to optimize the ligand affinity of the steroid binding site. This proposal may fit a 'lock and key' model where little movement of the side chains occurs during binding as might be expected for a rigid structure like the steroid nucleus.  相似文献   

2.
MauG is a diheme enzyme responsible for the post-translational formation of the catalytic tryptophan tryptophylquinone (TTQ) cofactor in methylamine dehydrogenase (MADH). MauG can utilize hydrogen peroxide, or molecular oxygen and reducing equivalents, to complete this reaction via a catalytic bis-Fe(IV) intermediate. Crystal structures of diferrous, Fe(II)-CO, and Fe(II)-NO forms of MauG in complex with its preMADH substrate have been determined and compared to one another as well as to the structure of the resting diferric MauG-preMADH complex. CO and NO each bind exclusively to the 5-coordinate high-spin heme with no change in ligation of the 6-coordinate low-spin heme. These structures reveal likely roles for amino acid residues in the distal pocket of the high-spin heme in oxygen binding and activation. Glu113 is implicated in the protonation of heme-bound diatomic oxygen intermediates in promoting cleavage of the O-O bond. Pro107 is shown to change conformation on the binding of each ligand and may play a steric role in oxygen activation by positioning the distal oxygen near Glu113. Gln103 is in a position to provide a hydrogen bond to the Fe(IV)═O moiety that may account for the unusual stability of this species in MauG.  相似文献   

3.
Alpha(1)-acid glycoprotein (AGP) is a glycoprotein that consists of 183 amino acid residues and five carbohydrate chains and binds to neutral and basic drugs. We examined the structural properties and ligand-binding capacity of AGP in interactions with reverse micelles. Also, detailed information was obtained by comparing several different states of AGP. Interaction with reverse micelles induced a unique conformational transition (beta-sheet to alpha-helices) in AGP and decreased the binding capacity for the basic drug, chlorpromazine and the steroid hormone, progesterone to AGP. These structural conformations are very similar to those observed under conditions of acidity and high ionic strength (pH 2.0, 1.5 M NaCl). This structure seems to be an intermediate between the native state and the denatured state, possibly a molten globule. The present results suggest that when AGP interacts with the biomembrane, it undergoes a structural transition to a unique structure that differs from the native and denatured states and has a reduced ligand-binding capacity.  相似文献   

4.
Fourier transform infrared (FTIR) spectroscopy in the CO stretch bands combined with temperature derivative spectroscopy (TDS) was used to characterize intermediate states obtained by photolysis of two sperm whale mutant myoglobins, YQR (L29(B10)Y, H64(E7)Q, T67(E10)R) and YQRF (with an additional I107(G8)F replacement). Both mutants assume two different bound-state conformations, A(0) and A(3), which can be distinguished by their different CO bands near 1965 and 1933 cm(-1). They most likely originate from different conformations of the Gln-64 side chain. Within each A substate, a number of photoproduct states have been characterized on the basis of the temperature dependence of recombination in TDS experiments. Different locations and orientations of the ligand within the protein can be distinguished by the infrared spectra of the photolyzed CO. Recombination from the primary docking site, B, near the heme dominates below 50 K. Above 60 K, ligand rebinding occurs predominantly from a secondary docking site, C', in which the CO is trapped in the Xe4 cavity on the distal side, as shown by crystallography of photolyzed YQR and L29W myoglobin CO. Another kinetic state (C") has been identified from which rebinding occurs around 130 K. Moreover, a population appearing above the solvent glass transition at approximately 180 K (D state) is assigned to rebinding from the Xe1 cavity, as suggested by the photoproduct structure of the L29W sperm whale myoglobin mutant. For both the YQR and YQRF mutants, rebinding from the B sites near the heme differs for the two A substates, supporting the view that the return of the ligand from the C', C", and D states is not governed by the recombination barrier at the heme iron but rather by migration to the active site. Comparison of YQR and YQRF shows that access to the Xe4 site (C') is severely restricted by introduction of the bulky Phe side chain at position 107.  相似文献   

5.
Crystallographic studies of the aspartyl-tRNA synthetase-tRNA(Asp)complex from yeast identified on the enzyme a number of residues potentially able to interact with tRNA(Asp). Alanine replacement of these residues (thought to disrupt the interactions) was used in the present study to evaluate their importance in tRNA(Asp)recognition and acylation. The results showed that contacts with the acceptor A of tRNA(Asp)by amino acid residues interacting through their side-chain occur only in the acylation transition state, whereas those located near the G73 discriminator base occur also during initial binding of tRNA(Asp). Interactions with the anticodon bases provide the largest free energy contribution to stability of the enzyme-tRNA complex in its ground state. These contacts also favour catalysis, by acting connectively with each other and with those of G73, as shown by multiple mutant analysis. This implies structural communication transmitting the anticodon recognition signal to the distally located acylation site. This signal might be conveyed via tRNA(Asp)as suggested by the observed conformational change of this molecule upon interaction with AspRS. From binding free energy values corresponding to the different AspRS-tRNA(Asp)interaction domains, it might be concluded that upon complex formation, the anticodon interacts first. Finally, acylation efficiencies of AspRS mutants in the presence of pure tRNA(Asp)and non-fractionated tRNAs indicate that residues involved in the binding of identity bases also discriminate against non-cognate tRNAs.  相似文献   

6.
We present a new method for predicting protein–ligand-binding sites based on protein three-dimensional structure and amino acid conservation. This method involves calculation of the van der Waals interaction energy between a protein and many probes placed on the protein surface and subsequent clustering of the probes with low interaction energies to identify the most energetically favorable locus. In addition, it uses amino acid conservation among homologous proteins. Ligand-binding sites were predicted by combining the interaction energy and the amino acid conservation score. The performance of our prediction method was evaluated using a non-redundant dataset of 348 ligand-bound and ligand-unbound protein structure pairs, constructed by filtering entries in a ligand-binding site structure database, LigASite. Ligand-bound structure prediction (bound prediction) indicated that 74.0 % of predicted ligand-binding sites overlapped with real ligand-binding sites by over 25 % of their volume. Ligand-unbound structure prediction (unbound prediction) indicated that 73.9 % of predicted ligand-binding residues overlapped with real ligand-binding residues. The amino acid conservation score improved the average prediction accuracy by 17.0 and 17.6 points for the bound and unbound predictions, respectively. These results demonstrate the effectiveness of the combined use of the interaction energy and amino acid conservation in the ligand-binding site prediction.  相似文献   

7.
The type 1 sigma receptor (sigmaR1) has been shown to participate in a variety of functions in the central nervous system. To identify the specific regions of the brain that are involved in sigmaR1 function, we analyzed the expression pattern of the receptor mRNA in the mouse brain by in situ hybridization. SigmaR1 mRNA was detectable primarily in the cerebral cortex, hippocampus, and Purkinje cells of cerebellum. To identify the critical anionic amino acid residues in the ligand-binding domain of sigmaR1, we employed two different approaches: chemical modification of anionic amino acid residues and site-directed mutagenesis. Chemical modification of anionic amino acids in sigmaR1 with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide reduced the ligand-binding activity markedly. Since it is known that a splice variant of this receptor which lacks exon 3 does not have the ability to bind sigma ligands, the ligand-binding domain with its critical anionic amino acid residues is likely to be present in or around the region coded by exon 3. Therefore, each of the anionic amino acids in this region was mutated individually and the influence of each mutation on ligand binding was assessed. These studies have identified two anionic amino acids, D126 and E172, that are obligatory for ligand binding. Even though the ligand-binding function was abolished by these two mutations, the expression of these mutants was normal at the protein level. These results show that sigmaR1 is expressed at high levels in specific areas of the brain that are involved in memory, emotion and motor functions. The results also provide important information on the chemical nature of the ligand-binding site of sigmaR1 that may be of use in the design of sigmaR1-specific ligands with potential for modulation of sigmaR1-related brain functions.  相似文献   

8.
Existing crystal structure data has indicated that 1alpha,25-dihydroxyvitamin D(3) (1alpha,25(OH)(2) D(3)) and its analogues bind the ligand-binding pocket (LBP) of the human vitamin D receptor in a very similar fashion. Because docking of a ligand into the LBP is a more flexible process than crystallography can monitor, we analyzed 1alpha,25(OH)(2)D(3), its 20-epi derivative MC1288, the two side-chain analogues Gemini and Ro43-83582 (a hexafluoro-derivative) by molecular dynamics simulations in a complex with the vitamin D receptor ligand-binding domain and a co-activator peptide. Superimposition of the structures showed that the side chain of MC1288, the first side chain of the conformation II of Gemini, the second side chain of Ro43-83582 in conformation I and the first side chain of Ro43-83582 in conformation II take the same agonistic position as the side chain of 1alpha,25(OH)(2)D(3). Compared with the LBP of the natural hormone MC1288 reduced the volume by 17%, and Gemini expanded it by 19%. The shrinking of the LBP of MC1288 and its expansion to accommodate the second side chain of Gemini or Ro43-83582 is the combined result of minor movements of more than 30 residues and major movements of a few critical amino acids. The agonist-selective recognition of anchoring OH groups by the conformational flexible residues Ala-303, Leu-309, and His-397 was confirmed by in vitro assays. In summary, variations in the volume of agonists lead to adaptations in the volume of the LBP and alternative contacts of anchoring OH-groups.  相似文献   

9.
Structural factors to regulate the heme reorientation reaction in myoglobin were examined and we found that the side chain at position 107 (Ile107), which is located between the 2-vinyl and 3-methyl groups of heme, forms a kinetic barrier for the heme rotation about the alpha-gamma axis. The phenylalanine-substituted mutant showed an extremely slow heme reorientation rate, compared to that of the wild-type protein, while replacement by the decreased side chain, valine, at position 107 accelerated the reorientation reaction. Considering that the spectroscopic data show only minor structural changes in the heme environments of the Ile107 mutants, the side chain at position 107 sterically interacts with the heme peripheral groups in the activation state for the heme reorientation, which supports the intramolecular mechanism that the heme rotates about the alpha-gamma axis without leaving the "protein cage."  相似文献   

10.
The study of backbone and side-chain internal motions in proteins and peptides is crucial to having a better understanding of protein/peptide "structure" and to characterizing unfolded and partially folded states of proteins and peptides. To achieve this, however, requires establishing a baseline for internal motions and motional restrictions for all residues in the fully, solvent-exposed "unfolded state." GXG-based tripeptides are the simpliest peptides where residue X is fully solvent exposed in the context of an actual peptide. In this study, a series of GXG-based tripeptides has been synthesized with X being varied to include all twenty common amino acid residues. Proton-coupled and -decoupled (13)C-nmr relaxation measurements have been performed on these twenty tripeptides and various motional models (Lipari-Szabo model free approach, rotational anisotropic diffusion, rotational fluctuations within a potential well, rotational jump model) have been used to analyze relaxation data for derivation of angular variances and motional correlation times for backbone and side-chain chi(1) and chi(2) bonds and methyl group rotations. At 298 K, backbone motional correlation times range from about 50 to 85 ps, whereas side-chain motional correlation times show a much broader spread from about 18 to 80 ps. Angular variances for backbone phi,psi bond rotations range from 11 degrees to 23 degrees and those for side chains vary from 5 degrees to 24 degrees for chi(1) bond rotations and from 5 degrees to 27 degrees for chi(2) bond rotations. Even in these peptide models of the "unfolded state," side-chain angular variances can be as restricted as those for backbone and beta-branched (valine, threonine, and isoleucine) and aromatic side chains display the most restricted motions probably due to steric hinderence with backbone atoms. Comparison with motional data on residues in partially folded, beta-sheet-forming peptides indicates that side-chain motions of at least hydrophobic residues are less restricted in the partially folded state, suggesting that an increase in side-chain conformational entropy may help drive early-stage protein folding. Copyright 1999 John Wiley & Sons, Inc.  相似文献   

11.
The tuning of the pKa of ionizable residues plays a critical role in various protein functions, such as ligand-binding, catalysis, and allostery. Proteins harness the free energy of folding to position ionizable groups in highly specific environments that strongly affect their pKa values. To investigate the interplay among protein folding kinetics, thermodynamics, and pKa modulation, we introduced a pair of Asp residues at neighboring interior positions of a coiled-coil. A single Asp residue was replaced for an Asn side chain at the a-position of the coiled-coil from GCN4, which was also crosslinked at the C-terminus via a flexible disulfide bond. The thermodynamic and kinetic stability of the system was measured by circular dichroism and stopped-flow fluorescence as a function of pH and concentration of guanidine HCl. Both sets of data are consistent with a two-state equilibrium between fully folded and unfolded forms. Distinct pKa values of 6.3 and 5.35 are assigned to the first and second protonation of the Asp pair; together they represent an energetic difference of 5 kcal/mol relative to the protonation of two Asp residues with unperturbed pKa values. Analysis of the rate data as a function of pH and denaturant concentration allowed calculation of the kinetic constants for the conformational transitions of the peptide with the Asp residues in the doubly protonated, singly protonated, and unprotonated forms. The doubly and singly protonated forms fold rapidly, and a ϕ-value analysis shows that their contribution to folding occurs subsequent to the transition state ensemble for folding. By contrast, the doubly charged state shows a reduced rate of folding and a ϕ-value near 0.5 indicative of a repulsive interaction, and possibly also heterogeneity in the transition state ensemble.  相似文献   

12.
Escherichia coli has closely related amino acid chemoreceptors with distinct ligand specificity, Tar for l-aspartate and Tsr for l-serine. Crystallography of the ligand-binding domain of Tar identified the residues interacting with aspartate, most of which are conserved in Tsr. However, swapping of the nonconserved residues between Tsr and Tar did not change ligand specificity. Analyses with chimeric receptors led us to hypothesize that distinct three-dimensional arrangements of the conserved ligand-binding residues are responsible for ligand specificity. To test this hypothesis, the structures of the apo- and serine-binding forms of the ligand-binding domain of Tsr were determined at 1.95 and 2.5 Å resolutions, respectively. Some of the Tsr residues are arranged differently from the corresponding aspartate-binding residues of Tar to form a high affinity serine-binding pocket. The ligand-binding pocket of Tsr was surrounded by negatively charged residues, which presumably exclude negatively charged aspartate molecules. We propose that all these Tsr- and Tar-specific features contribute to specific recognition of serine and aspartate with the arrangement of the side chain of residue 68 (Asn in Tsr and Ser in Tar) being the most critical.  相似文献   

13.
14.
The folding pathway of human FKBP12, a 12 kDa FK506-binding protein (immunophilin), has been characterised. Unfolding and refolding rate constants have been determined over a wide range of denaturant concentrations and data are shown to fit to a two-state model of folding in which only the denatured and native states are significantly populated, even in the absence of denaturant. This simple model for folding, in which no intermediate states are significantly populated, is further supported from stopped-flow circular dichroism experiments in which no fast "burst" phases are observed. FKBP12, with 107 residues, is the largest protein to date which folds with simple two-state kinetics in water (kF=4 s(-1)at 25 degrees C). The topological crossing of two loops in FKBP12, a structural element suggested to cause kinetic traps during folding, seems to have little effect on the folding pathway.The transition state for folding has been characterised by a series of experiments on wild-type FKBP12. Information on the thermodynamic nature of, the solvent accessibility of, and secondary structure in, the transition state was obtained from experiments measuring the unfolding and refolding rate constants as a function of temperature, denaturant concentration and trifluoroethanol concentration. In addition, unfolding and refolding studies in the presence of ligand provided information on the structure of the ligand-binding pocket in the transition state. The data suggest a compact transition state relative to the unfolded state with some 70 % of the surface area buried. The ligand-binding site, which is formed mainly by two loops, is largely unstructured in the transition state. The trifluoroethanol experiments suggest that the alpha-helix may be formed in the transition state. These results are compared with results from protein engineering studies and molecular dynamics simulations (see the accompanying paper).  相似文献   

15.
Mittermaier A  Korzhnev DM  Kay LE 《Biochemistry》2005,44(47):15430-15436
A major challenge to the study of protein folding is the fact that intermediate states along the reaction pathway are generally unstable and thus difficult to observe. Recently developed NMR relaxation dispersion experiments present an avenue to accessing such states, providing kinetic, thermodynamic, and structural information for intermediates with small (greater than or equal to approximately 1%) populations at equilibrium. We have employed these techniques to study the three-state folding reaction of the G48M Fyn SH3 domain. Using (13)C-, (1)H-, and (15)N-based methods, we have characterized backbone and side-chain interactions in the folded, unfolded, intermediate, and transition states, thereby mapping the energy landscape of the protein. We find that the intermediate, populated to approximately 1%, contains nativelike structure in a central beta-sheet, and is disordered at the amino and carboxy termini. The intermediate is stabilized by side-chain van der Waals contacts, yet (13)C chemical shifts indicate that methyl-containing residues remain disordered. This state has a partially structured backbone and a collapsed yet mobile hydrophobic core and thus closely resembles a molten globule. Nonpolar side-chain contacts are formed in the unfolded-intermediate transition state; these interactions are disrupted in the intermediate-folded transition state, possibly allowing side chains to rearrange as they adopt the native packing configuration. This work illustrates the power of novel relaxation dispersion experiments in characterizing excited states that are "invisible" in even the most sensitive of NMR experiments.  相似文献   

16.
17.
18.
Kinetics of refolding and unfolding of staphylococcal nuclease and its six mutants, each carrying single or double amino acid substitutions, are studied by stopped-flow circular dichroism measurements. A transient kinetic intermediate formed within 10 ms after refolding starts possesses a substantial part of the N-domain core β-structure, whereas helices are formed at the later stages. The structure of the kinetic intermediate is less organized than the structure that is known to be formed by a nuclease 1-136 fragment. Only the refolding kinetics are affected by the mutations in all the mutants except two in which the mutations have changed the native structure. From this result and also from the locations of the mutation sites, the major N-terminal domain of the nuclease in the transition state of folding has a structure nearly identical to the native one. On the other hand, the minor C-terminal domain has previously been shown to be still disorganized in the transition state. The effects of the amino acid substitutions on the stability of the native and the transition states are in good agreement with the changes in the hydration free energy, expected for the corresponding amino acid replacements in the unfolded polypeptide. Since side chains of all the mutated residues are not accessible to solvent in the native structure, the result suggests that it is the unfolded state that is mainly affected by the mutations. © 1995 Wiley-Liss, Inc.  相似文献   

19.
Time courses for NO, O2, CO, methyl and ethyl isocyanide rebinding to native and mutant sperm whale myoglobins were measured at 20 degrees C following 17-ns and 35-ps laser excitation pulses. His64 (E7) was replaced with Gly, Val, Leu, Phe, and Gln, and Val68 (E11) was replaced with Ala, Ile, and Phe. For both NO and O2, the effective picosecond quantum yield of unliganded geminate intermediates was roughly 0.2 and independent of the amino acids at positions 64 and 68. Geminate recombination of NO was very rapid; 90% rebinding occurred within 0.5-1.0 ns for all of the myoglobins examined; and except for the Gly64 and Ile68 mutants, the fitted recombination rate parameters were little influenced by the size and polarity of the amino acid at position 64 and the size of the residue at position 68. The rates of NO recombination and ligand movement away from the iron atom in the Gly64 mutant increased 3-4-fold relative to native myoglobin. For Ile68 myoglobin, the first geminate rate constant for NO rebinding decreased approximately 6-fold, from 2.3 x 10(10) s-1 for native myoglobin to 3.8 x 10(9) s-1 for the mutant. No picosecond rebinding processes were observed for O2, CO, and isocyanide rebinding to native and mutant myoglobins; all of the observed geminate rate constants were less than or equal to 3 x 10(8) s-1. The rebinding time courses for these ligands were analyzed in terms of a two-step consecutive reaction scheme, with an outer kinetic barrier representing ligand movement into and out of the protein and an inner barrier representing binding to the heme iron atom by ligand occupying the distal portion of the heme pocket. Substitution of apolar amino acids for His64 decreased the absolute free energies of the outer and inner kinetic barriers and the well for non-covalently bound O2 and CO by 1 to 1.5 kcal/mol, regardless of size. In contrast, the His64 to Gln mutation caused little change in the barrier heights for all ligands, showing that the polar nature of His64 inhibits both the bimolecular rate of ligand entry into myoglobin and the unimolecular rate of binding to the iron atom from within the protein. Increasing the size of the position 68(E11) residue in the series Ala to Val (native) to Ile caused little change in the rate of O2 migration into myoglobin or the equilibrium constant for noncovalent binding but did decrease the unimolecular rate for iron-O2 bond formation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Many existing derivations of knowledge-based statistical pair potentials invoke the quasichemical approximation to estimate the expected side-chain contact frequency if there were no amino acid pair-specific interactions. At first glance, the quasichemical approximation that treats the residues in a protein as being disconnected and expresses the side-chain contact probability as being proportional to the product of the mole fractions of the pair of residues would appear to be rather severe. To investigate the validity of this approximation, we introduce two new reference states in which no specific pair interactions between amino acids are allowed, but in which the connectivity of the protein chain is retained. The first estimates the expected number of side-chain contracts by treating the protein as a Gaussian random coil polymer. The second, more realistic reference state includes the effects of chain connectivity, secondary structure, and chain compactness by estimating the expected side-chain contrast probability by placing the sequence of interest in each member of a library of structures of comparable compactness to the native conformation. The side-chain contact maps are not allowed to readjust to the sequence of interest, i.e., the side chains cannot repack. This situation would hold rigorously if all amino acids were the same size. Both reference states effectively permit the factorization of the side-chain contact probability into sequence-dependent and structure-dependent terms. Then, because the sequence distribution of amino acids in proteins is random, the quasichemical approximation to each of these reference states is shown to be excellent. Thus, the range of validity of the quasichemical approximation is determined by the magnitude of the side-chain repacking term, which is, at present, unknown. Finally, the performance of these two sets of pair interaction potentials as well as side-chain contact fraction-based interaction scales is assessed by inverse folding tests both without and with allowing for gaps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号