首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Avian influenza A virus continues to pose a global threat with occasional H5N1 human infections, which is emphasized by a recent severe human infection caused by avian-origin H7N9 in China. Luckily these viruses do not transmit efficiently in human populations. With a few amino acid substitutions of the hemagglutinin H5 protein in the laboratory, two H5 mutants have been shown to obtain an air-borne transmission in a mammalian ferret model. Here in this study one of the mutant H5 proteins developed by Kawaoka’s group (VN1203mut) was expressed in a baculovirus system and its receptor-binding properties were assessed. We herein show that the VN1203mut had a dramatically reduced binding affinity for the avian α2,3- linkage receptor compared to wild type but showed no detectable increase in affinity for the human α2,6-linkage receptor, using Surface Plasmon Resonance techonology. Further, the crystal structures of the VN1203mut and its complexes with either human or avian receptors demonstrate that the VN1203mut binds the human receptor in the same binding manner (cis conformation) as seen for the HAs of previously reported 1957 and 1968 pandemic influenza viruses. Our receptor binding and crystallographic data shown here further confirm that the ability to bind the avian receptor has to decrease for a higher human receptor binding affinity. As the Q226L substitution is shown important for obtaining human receptor binding, we suspect that the newly emerged H7N9 binds human receptor as H7 has a Q226L substitution.  相似文献   

2.
The binding specificities of a panel of avian influenza virus subtype H5 hemagglutinin (HA) proteins bearing mutations at key residues in the receptor binding site were investigated. The results demonstrate that two simultaneous mutations in the receptor binding site resulted in H5 HA binding in a pattern similar to that shown by human viruses. Coexpression of the ion channel protein, M2, from most avian and human strains tested protected H5 HA conformation during trafficking, indicating that no genetic barrier to the reassortment of the H5 surface antigen gene with internal genes of human viruses existed at this level.  相似文献   

3.
Influenza A viruses attach to alpha-sialosides on the target cell surface by their hemagglutinins, which strictly recognize the difference in sialic acid-galactose linkage. Why does avian virus H3 subtype bind to avian receptor Neu5Ac(alpha2-3)Gal stronger than to human receptor Neu5Ac(alpha2-6)Gal? Why does avian H3 mutated Gln226 to Leu preferentially bind to human receptor? In this paper, we theoretically answer the questions by molecular mechanics and ab initio fragment molecular orbital (FMO) calculations. The binding energy between avian H3 and avian receptor is 8.2kcal/mol larger than that of the avian H3-human receptor complex estimated at the FMO-HF/STO-3G level, which is a reason that avian H3 binds to avian receptor stronger than to human receptor. Avian Leu226 H3 clashes to Gal unit on the avian receptor to quite decrease its binding affinity. In contrast, Gal unit on the human receptor forms intermolecular hydrophobic interaction with avian Leu226 H3 to afford moderate binding affinity.  相似文献   

4.
Interspecies transmission (host switching/jumping) of influenza viruses is a key scientific question that must be addressed. In addition to the vigorous research on highly pathogenic avian influenza viruses (HPAIVs), studies of the mechanism of interspecies transmission of low-pathogenic avian influenza viruses (LPAIVs) could also provide insights into host tropism and virulence evolution. Influenza A viruses harboring hemagglutinin (HA) H13 (e.g., H13N6) are LPAIVs. In this study, soluble H13 HA glycoprotein was purified, and its receptor binding activity was characterized. The results revealed that H13 exclusively binds the avian α2-3-linked sialic acid receptor; no binding to the mammalian α2-6-linked sialic acid receptor was detected. Furthermore, the molecular basis of the H13 receptor binding specificity was revealed by comparative analysis of the crystal structures of both receptor-bound H13 and H5 HAs, which might be contributed by the hydrophobic residue V186. Work with an H13N186 mutant confirmed the importance of V186 in the receptor binding specificity of H13 HA, which shows that the mutant protein reduced the binding of an avian receptor analog but increased the binding of a human receptor analog. Detailed structural analysis also demonstrated that the conserved binding sites of the recently well-studied broadly neutralizing human monoclonal antibodies targeting the HA2 domain are found in H13. Our results expand our understanding of virulence evolution, receptor binding preference, and species tropism of the LPAIVs and HPAIVs.  相似文献   

5.
In March 2013, the Chinese Center for Disease Control and Prevention reported human infections with an H7N9 influenza virus, and by 20 July 2013, the numbers of laboratory-confirmed cases had climbed to 134, including 43 fatalities and 127 hospitalizations. The newly emerging H7N9 viruses constitute an obvious public health concern because of the apparent severity of this outbreak. Here we focus on the hemagglutinins (HAs) of these viruses and assess their receptor binding phenotype in relation to previous HAs studied. Glycan microarray and kinetic analyses of recombinant A(H7N9) HAs were performed to compare the receptor binding profile of wild-type receptor binding site variants at position 217, a residue analogous to one of two positions known to switch avian to human receptor preference in H2N2 and H3N2 viruses. Two recombinant A(H7N9) HAs were structurally characterized, and a mutational study of the receptor binding site was performed to analyze important residues that can affect receptor preference and affinity. Results highlight a weak human receptor preference of the H7N9 HAs, suggesting that these viruses require further adaptation in order to adapt fully to humans.  相似文献   

6.
The receptor‐binding specificity of influenza A viruses is a major determinant for the host tropism of the virus, which enables interspecies transmission. In 2013, the first human case of infection with avian influenza A (H6N1) virus was reported in Taiwan. To gather evidence concerning the epidemic potential of H6 subtype viruses, we performed comprehensive analysis of receptor‐binding properties of Taiwan‐isolated H6 HAs from 1972 to 2013. We propose that the receptor‐binding properties of Taiwan‐isolated H6 HAs have undergone three major stages: initially avian receptor‐binding preference, secondarily obtaining human receptor‐binding capacity, and recently human receptor‐binding preference, which has been confirmed by receptor‐binding assessment of three representative virus isolates. Mutagenesis work revealed that E190V and G228S substitutions are important to acquire the human receptor‐binding capacity, and the P186L substitution could reduce the binding to avian receptor. Further structural analysis revealed how the P186L substitution in the receptor‐binding site of HA determines the receptor‐binding preference change. We conclude that the human‐infecting H6N1 evolved into a human receptor preference.  相似文献   

7.
The recent emergence of a novel avian A/H7N9 influenza virus in poultry and humans in China, as well as laboratory studies on adaptation and transmission of avian A/H5N1 influenza viruses, has shed new light on influenza virus adaptation to mammals. One of the biological traits required for animal influenza viruses to cross the species barrier that received considerable attention in animal model studies, in vitro assays, and structural analyses is receptor binding specificity. Sialylated glycans present on the apical surface of host cells can function as receptors for the influenza virus hemagglutinin (HA) protein. Avian and human influenza viruses typically have a different sialic acid (SA)‐binding preference and only few amino acid changes in the HA protein can cause a switch from avian to human receptor specificity. Recent experiments using glycan arrays, virus histochemistry, animal models, and structural analyses of HA have added a wealth of knowledge on receptor binding specificity. Here, we review recent data on the interaction between influenza virus HA and SA receptors of the host, and the impact on virus host range, pathogenesis, and transmission. Remaining challenges and future research priorities are also discussed.  相似文献   

8.
Avian influenza viruses of subtype H5N1 circulating in animals continue to pose threats to human health. The binding preference of the viral surface protein hemagglutinin (HA) to sialosaccharides of receptors is an important area for understanding mutations in the receptor binding site that could be the cause for avian-to-human transmission. In the present work, we studied the effect of two receptor binding site mutations, S221P singly and in combination with another mutation K216E in the HA protein of influenza A H5N1 viruses. Docking of sialic acid ligands corresponding to both avian and human receptors and molecular dynamics simulations of the complexes for wild and mutant strains of H5N1 viruses were carried out. The H5N1 strain possessing the S221P mutation indicated decreased binding to α2,3-linked sialic acids (avian receptor, SAα2,3Gal) when compared to the binding of the wild-type strain that did not possess the HA-221 mutation. The binding to α2,6-linked sialic acids (human receptor, SAα2,6Gal) was found to be comparable, indicating that the mutant strain shows limited dual receptor specificity. On the other hand, the S221P mutation in synergism with the K216E mutation in the binding site, resulted in increased binding affinity for SAα2,6Gal when compared to SAα2,3Gal, indicative of enhanced binding to human receptors. The in-depth study of the molecular interactions in the docked complexes could explain how co-occurring mutations in the HA viral protein can aid in providing fitness advantage to the virus, in the context of host receptor specificity in emerging variants of H5N1 influenza viruses.  相似文献   

9.
Human infections with subtype H7 avian influenza viruses have been reported as early as 1979. In 1996, a genetically stable 24-nucleotide deletion emerged in North American H7 influenza virus hemagglutinins, resulting in an eight amino acid deletion in the receptor-binding site. The continuous circulation of these viruses in live bird markets, as well as its documented ability to infect humans, raises the question of how these viruses achieve structural stability and functionality. Here we report a detailed molecular analysis of the receptor binding site of the North American lineage subtype H7N2 virus A/New York/107/2003 (NY107), including complexes with an avian receptor analog (3′-sialyl-N-acetyllactosamine, 3′SLN) and two human receptor analogs (6′-sialyl-N-acetyllactosamine, 6′SLN; sialyllacto-N-tetraose b, LSTb). Structural results suggest a novel mechanism by which residues Arg220 and Arg229 (H3 numbering) are used to compensate for the deletion of the 220-loop and form interactions with the receptor analogs. Glycan microarray results reveal that NY107 maintains an avian-type (α2-3) receptor binding profile, with only moderate binding to human-type (α2-6) receptor. Thus despite its dramatically altered receptor binding site, this HA maintains functionality and confirms a need for continued influenza virus surveillance of avian and other animal reservoirs to define their zoonotic potential.  相似文献   

10.
Adaptation of avian influenza viruses for replication and transmission in the human host is believed to require mutations in the hemagglutinin glycoprotein (HA) which enable binding to human α2-6 sialosides and concomitant reduction in affinity for avian α2-3 linked sialosides. Here, we show by glycan microarray analyses that the two mutations responsible for such specificity changes in 1957 H2N2 and 1968 H3N2 pandemic viruses, when inserted into recombinant HAs or intact viruses of some recent avian H5N1 isolates (clade 2.2), impart such attributes. This propensity to adapt to human receptors is primarily dependent on arginine at position 193 within the receptor-binding site, as well as loss of a vicinal glycosylation site. Widespread occurrence of these susceptible H5N1 clade 2.2 influenza strains has already occurred in Europe, the Middle East, and Africa. Thus, these avian strains should be considered high-risk, because of their significantly lower threshold for acquiring human receptor specificity and, therefore, warrant increased surveillance and further study.  相似文献   

11.
Interspecies transmission of influenza A viruses circulating in wild aquatic birds occasionally results in influenza outbreaks in mammals, including humans. To identify early changes in the receptor binding properties of the avian virus hemagglutinin (HA) after interspecies transmission and to determine the amino acid substitutions responsible for these alterations, we studied the HAs of the initial isolates from the human pandemics of 1957 (H2N2) and 1968 (H3N2), the European swine epizootic of 1979 (H1N1), and the seal epizootic of 1992 (H3N3), all of which were caused by the introduction of avian virus HAs into these species. The viruses were assayed for their ability to bind the synthetic sialylglycopolymers 3'SL-PAA and 6'SLN-PAA, which contained, respectively, 3'-sialyllactose (the receptor determinant preferentially recognized by avian influenza viruses) and 6'-sialyl(N-acetyllactosamine) (the receptor determinant for human viruses). Avian and seal viruses bound 6'SLN-PAA very weakly, whereas the earliest available human and swine epidemic viruses bound this polymer with a higher affinity. For the H2 and H3 strains, a single mutation, 226Q-->L, increased binding to 6'SLN-PAA, while among H1 swine viruses, the 190E-->D and 225G-->E mutations in the HA appeared important for the increased affinity of the viruses for 6'SLN-PAA. Amino acid substitutions at positions 190 and 225 with respect to the avian virus consensus sequence are also present in H1 human viruses, including those that circulated in 1918, suggesting that substitutions at these positions are important for the generation of H1 human pandemic strains. These results show that the receptor-binding specificity of the HA is altered early after the transmission of an avian virus to humans and pigs and, therefore, may be a prerequisite for the highly effective replication and spread which characterize epidemic strains.  相似文献   

12.
In the context of recently emerged novel influenza strains through reassortment, avian influenza subtypes such as H5N1, H7N7, H7N2, H7N3 and H9N2 pose a constant threat in terms of their adaptation to the human host. Among these subtypes, it was recently demonstrated that mutations in H5 and H9 hemagglutinin (HA) in the context of lab-generated reassorted viruses conferred aerosol transmissibility in ferrets (a property shared by human adapted viruses). We previously demonstrated that the quantitative binding affinity of HA to α2→6 sialylated glycans (human receptors) is one of the important factors governing human adaptation of HA. Although the H7 subtype has infected humans causing varied clinical outcomes from mild conjunctivitis to severe respiratory illnesses, it is not clear where the HA of these subtypes stand in regard to human adaptation since its binding affinity to glycan receptors has not yet been quantified. In this study, we have quantitatively characterized the glycan receptor-binding specificity of HAs from representative strains of Eurasian (H7N7) and North American (H7N2) lineages that have caused human infection. Furthermore, we have demonstrated for the first time that two specific mutations; Gln226→Leu and Gly228→Ser in glycan receptor-binding site of H7 HA substantially increase its binding affinity to human receptor. Our findings contribute to a framework for monitoring the evolution of H7 HA to be able to adapt to human host.  相似文献   

13.
H5N1 highly pathogenic avian influenza virus has been endemic in poultry in Egypt since 2008, notwithstanding the implementation of mass vaccination and culling of infected birds. Extensive circulation of the virus has resulted in a progressive genetic evolution and an antigenic drift. In poultry, the occurrence of antigenic drift in avian influenza viruses is less well documented and the mechanisms remain to be clarified. To test the hypothesis that H5N1 antigenic drift is driven by mechanisms similar to type A influenza viruses in humans, we generated reassortant viruses, by reverse genetics, that harbored molecular changes identified in genetically divergent viruses circulating in the vaccinated population. Parental and reassortant phenotype viruses were antigenically analyzed by hemagglutination inhibition (HI) test and microneutralization (MN) assay. The results of the study indicate that the antigenic drift of H5N1 in poultry is driven by multiple mutations primarily occurring in major antigenic sites at the receptor binding subdomain, similarly to what has been described for human influenza H1 and H3 subtype viruses.  相似文献   

14.
Influenza viruses of gallinaceous poultry and wild aquatic birds usually have distinguishable receptor-binding properties. Here we used a panel of synthetic sialylglycopolymers and solid-phase receptor-binding assays to characterize receptor-binding profiles of about 70 H7 influenza viruses isolated from aquatic birds, land-based poultry, and horses in Eurasia and America. Unlike typical duck influenza viruses with non-H7 hemagglutinin (HA), all avian H7 influenza viruses, irrespective of the host species, displayed a poultry-virus-like binding specificity, i.e., preferential binding to sulfated oligosaccharides Neu5Acα2-3Galβ1-4(6-O-HSO(3))GlcNAc and Neu5Acα2-3Galβ1-4(Fucα1-3)(6-O-HSO(3))GlcNAc. This phenotype correlated with the unique amino acid sequence of the amino acid 185 to 189 loop of H7 HA and seemed to be dependent on ionic interactions between the sulfate group of the receptor and Lys193 and on the lack of sterical clashes between the fucose residue and Gln222. Many North American and Eurasian H7 influenza viruses displayed weak but detectable binding to the human-type receptor moiety Neu5Acα2-6Galβ1-4GlcNAc, highlighting the potential of H7 influenza viruses for avian-to-human transmission. Equine H7 influenza viruses differed from other viruses by preferential binding to the N-glycolyl form of sialic acid. Our data suggest that the receptor-binding site of contemporary H7 influenza viruses in aquatic and terrestrial birds was formed after the introduction of their common precursor from ducks to a new host, presumably, gallinaceous poultry. The uniformity of the receptor-binding profile of H7 influenza viruses in various wild and domestic birds indicates that there is no strong receptor-mediated host range restriction in birds on viruses with this HA subtype. This notion agrees with repeated interspecies transmission of H7 influenza viruses from aquatic birds to poultry.  相似文献   

15.
A novel avian influenza A (H7N9) virus recently emerged in the Yangtze River delta and caused diseases, often severe, in over 130 people. This H7N9 virus appeared to infect humans with greater ease than previous avian influenza virus subtypes such as H5N1 and H9N2. While there are other potential explanations for this large number of human infections with an avian influenza virus, we investigated whether a lack of conserved T-cell epitopes between endemic H1N1 and H3N2 influenza viruses and the novel H7N9 virus contributes to this observation. Here we demonstrate that a number of T cell epitopes are conserved between endemic H1N1 and H3N2 viruses and H7N9 virus. Most of these conserved epitopes are from viral internal proteins. The extent of conservation between endemic human seasonal influenza and avian influenza H7N9 was comparable to that with the highly pathogenic avian influenza H5N1. Thus, the ease of inter-species transmission of H7N9 viruses (compared with avian H5N1 viruses) cannot be attributed to the lack of conservation of such T cell epitopes. On the contrary, our findings predict significant T-cell based cross-reactions in the human population to the novel H7N9 virus. Our findings also have implications for H7N9 virus vaccine design.  相似文献   

16.
【背景】自2014年以来,H5N6禽流感病毒在我国家禽和活禽市场持续进化,成为人类和动物健康的重大威胁。【目的】对2017–2019年中国南方地区93株高致病性H5N6禽流感病毒的HA基因进行分子进化分析。【方法】接种9–11日龄鸡胚分离核酸检测阳性的H5N6标本,运用下一代测序平台对病毒分离物进行全基因组测序,从NCBI和GISAID数据库下载参考序列,利用BLAST、MEGA6.1及Clustal X等软件进行序列分析。【结果】2017–2019年,从189份江苏省H5亚型禽类/环境标本和1名H5N6患者咽拭子标本中共分离到43株病毒,完成了33株H5N6病毒的全基因组测序。下载网上同时期中国其他地区流行的H5N6毒株序列,对总计93株H5N6病毒的HA基因进行分子进化分析。93株H5N6病毒中有78株属于Clade 2.3.4.4h,9株病毒属于Clade 2.3.4.4e,4株H5N6病毒属于Clade 2.3.4.4b,1株属于Clade 2.3.4.4f,1株属于Clade 2.3.4.4g。所有93株病毒HA蛋白的裂解位点含有多个碱性氨基酸,表明它们都属于高致病性禽流感病...  相似文献   

17.
In 1997, 18 confirmed cases of human influenza arising from multiple independent transmissions of H5N1 viruses from infected chickens were reported from Hong Kong. To identify possible phenotypic changes in the hemagglutinin (HA) and neuraminidase (NA) of the H5 viruses during interspecies transfer, we compared the receptor-binding properties and NA activities of the human and chicken H5N1 isolates from Hong Kong and of H5N3 and H5N1 viruses from wild aquatic birds. All H5N1 viruses, including the human isolate bound to Sia2-3Gal-containing receptors but not to Sia2-6Gal-containing receptors. This finding formally demonstrates for the first time that receptor specificity of avian influenza viruses may not restrict initial avian-to-human transmission. The H5N1 chicken viruses differed from H5 viruses of wild aquatic birds by a 19-amino-acid deletion in the stalk of the NA and the presence of a carbohydrate at the globular head of the HA. We found that a deletion in the NA decreased its ability to release the virus from cells, whereas carbohydrate at the HA head decreased the affinity of the virus for cell receptors. Comparison of amino acid sequences from GenBank of the HAs and NAs from different avian species revealed that additional glycosylation of the HA and a shortened NA stalk are characteristic features of the H5 and H7 chicken viruses. This finding indicates that changes in both HA and NA may be required for the adaptation of influenza viruses from wild aquatic birds to domestic chickens and raises the possibility that chickens may be a possible intermediate host in zoonotic transmission.  相似文献   

18.
Highly pathogenic avian influenza A virus subtype H5N1 is currently widespread in Asia, Europe, and Africa, with 60% mortality in humans. In particular, since 2009 Egypt has unexpectedly had the highest number of human cases of H5N1 virus infection, with more than 50% of the cases worldwide, but the basis for this high incidence has not been elucidated. A change in receptor binding affinity of the viral hemagglutinin (HA) from α2,3- to α2,6-linked sialic acid (SA) is thought to be necessary for H5N1 virus to become pandemic. In this study, we conducted a phylogenetic analysis of H5N1 viruses isolated between 2006 and 2009 in Egypt. The phylogenetic results showed that recent human isolates clustered disproportionally into several new H5 sublineages suggesting that their HAs have changed their receptor specificity. Using reverse genetics, we found that these H5 sublineages have acquired an enhanced binding affinity for α2,6 SA in combination with residual affinity for α2,3 SA, and identified the amino acid mutations that produced this new receptor specificity. Recombinant H5N1 viruses with a single mutation at HA residue 192 or a double mutation at HA residues 129 and 151 had increased attachment to and infectivity in the human lower respiratory tract but not in the larynx. These findings correlated with enhanced virulence of the mutant viruses in mice. Interestingly, these H5 viruses, with increased affinity to α2,6 SA, emerged during viral diversification in bird populations and subsequently spread to humans. Our findings suggested that emergence of new H5 sublineages with α2,6 SA specificity caused a subsequent increase in human H5N1 influenza virus infections in Egypt, and provided data for understanding the virus's pandemic potential.  相似文献   

19.
To elucidate the molecular mechanisms of transmission of influenza viruses between different host species, such as human and birds, binding properties of sialic acid-containing carbohydrates that are recognized by human and/or avian influenza viruses were characterized by the surface plasmon resonance (SPR) method. Differences in the binding of influenza viruses to three gangliosides were monitored in real-time and correlated with receptor specificity between avian and human viruses. SPR analysis with ganglioside-containing lipid bilayers demonstrated the recognition profile of influenza viruses to not only sialic acid linkages, but also core carbohydrate structures on the basis of equilibrated rate constants. Kinetic analysis showed different binding preferences to gangliosides between avian and human strains. An avian strain bound to Neu5Acα2-3nLc4Cer with much slower dissociation rate than its sialyl-linkage analog, Neu5Acα2-6nLc4Cer, on the lipid bilayer. In contrast, a human strain bound equally to both gangliosides. An avian strain, but not a human strain, also interacted with GM3 carrying a shorter carbohydrate chain. Our findings demonstrated the remarkable distinction in the binding kinetics of sialic acid-containing carbohydrates between avian and human influenza viruses on the lipid bilayer.  相似文献   

20.
Influenza A virus specificity for the host is mediated by the viral surface glycoprotein hemagglutinin (HA), which binds to receptors containing glycans with terminal sialic acids. Avian viruses preferentially bind to alpha2-3-linked sialic acids on receptors of intestinal epithelial cells, whereas human viruses are specific for the alpha2-6 linkage on epithelial cells of the lungs and upper respiratory tract. To define the receptor preferences of a number of human and avian H1 and H3 viruses, including the 1918 H1N1 pandemic strains, their hemagglutinins were analyzed using a recently described glycan array. The array, which contains 200 carbohydrates and glycoproteins, not only revealed clear differentiation of receptor preferences for alpha2-3 and/or alpha2-6 sialic acid linkage, but could also detect fine differences in HA specificity, such as preferences for fucosylation, sulfation and sialylation at positions 2 (Gal) and 3 (GlcNAc, GalNAc) of the terminal trisaccharide. For the two 1918 HA variants, the South Carolina (SC) HA (with Asp190, Asp225) bound exclusively alpha2-6 receptors, while the New York (NY) variant, which differed only by one residue (Gly225), had mixed alpha2-6/alpha2-3 specificity, especially for sulfated oligosaccharides. Only one mutation of the NY variant (Asp190Glu) was sufficient to revert the HA receptor preference to that of classical avian strains. Thus, the species barrier, as defined by the receptor specificity preferences of 1918 human viruses compared to likely avian virus progenitors, can be circumvented by changes at only two positions in the HA receptor binding site. The glycan array thus provides highly detailed profiles of influenza receptor specificity that can be used to map the evolution of new human pathogenic strains, such as the H5N1 avian influenza.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号