首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A set of semi-rigid cyclic and acyclic bis-quaternary ammonium analogs, which were part of a drug discovery program aimed at identifying antagonists at neuronal nicotinic acetylcholine receptors, were investigated to determine structural requirements for affinity at the blood–brain barrier choline transporter (BBB CHT). This transporter may have utility as a drug delivery vector for cationic molecules to access the central nervous system. In the current study, a virtual screening model was developed to aid in rational drug design/ADME of cationic nicotinic antagonists as BBB CHT ligands. Four 3D-QSAR comparative molecular field analysis (CoMFA) models were built which could predict the BBB CHT affinity for a test set with an r2 <0.5 and cross-validated q2 of 0.60, suggesting good predictive capability for these models. These models will allow the rapid in silico screening of binding affinity at the BBB CHT of both known nicotinic receptor antagonists and virtual compound libraries with the goal of informing the design of brain bioavailable quaternary ammonium analogs that are high affinity selective nicotinic receptor antagonists.  相似文献   

2.
The nicotinic acetylcholine receptor (nAChR) is a receptor, ion channel complex composed of five polypeptide subunits. There are many different nAChR subtypes constructed from a variety of different subunit combinations. This structural diversity contributes to the varied roles of nAChRs in the peripheral and central nervous system, and this diversity offers an excellent opportunity for chemists who are producing ligands. Subunit specific ligands could have wide and varied effects in the laboratory as experimental tools and in the clinic as therapeutic agents. Because presynaptic nAChRs have been shown to enhance the release of many neurotransmitters, new nicotinic ligands that potentiate nAChR activity would be very useful. Such ligands could enhance the release of various neurotransmitters during degenerative diseases that cause neurotransmitter systems to decrease their output. For example, boosting the release from cholinergic neurons would help patients with Alzheimer's disease, and boosting the release from dopaminergic neurons would help patients with Parkinson's disease.  相似文献   

3.
In the pentameric ligand-gated ion channel family, transmitter binds in the extracellular domain and conformational changes result in channel opening in the transmembrane domain. In the muscle nicotinic receptor and other heteromeric members of the family one subunit does not contribute to the canonical agonist binding site for transmitter. A fundamental question is whether conformational changes occur in this subunit. We used records of single channel activity and rate-equilibrium free energy relationships to examine the β1 (non-ACh-binding) subunit of the muscle nicotinic receptor. Mutations to residues in the extracellular domain have minimal effects on the gating equilibrium constant. Positions in the channel lining (M2 transmembrane) domain contribute strongly and relatively late during gating. Positions thought to be important in other subunits in coupling the transmitter-binding to the channel domains have minimal effects on gating. We conclude that the conformational changes involved in channel gating propagate from the binding-site to the channel in the ACh-binding subunits and subsequently spread to the non-binding subunit.  相似文献   

4.
The ability of phencyclidine (PCP), a noncompetitive antagonist of NMDA receptor-mediated neurotransmission, to precipitate a schizophreniform psychosis in susceptible individuals is consistent with the hypothesized pathologic occurrence of NMDA receptor hypofunction in this disorder. Because the psychosis caused by PCP resembles schizophrenia in all of the relevant domains of psychopathology, investigators have sought to characterize animal models of NMDA receptor hypofunction. MK-801 (dizocilpine) binds to the same hydrophobic channel domain in the NMDA receptor-associated ionophore as PCP, and has been shown to elicit intense irregular episodes of jumping behavior in mice, termed "popping." MK-801-elicited mouse popping is an animal model of NMDA receptor hypofunction that has been used to screen novel candidate compounds for the treatment of schizophrenia. Recently, a selective abnormality in the transduction of the acetylcholine signal at the level of the alpha 7 nicotinic receptor has been described in schizophrenia. The existence of a nicotinic cholinergic abnormality in schizophrenia has stimulated interest in a potential therapeutic role for positive allosteric modulation of nicotinic receptors. Galantamine is a compound that possesses two interesting properties: inhibition of acetylcholinesterase and positive allosteric modulation of nicotinic neurotransmission. Theoretically, galantamine would be expected to increase the efficiency or likelihood that acetylcholine will promote channel opening and ionic conductance at nicotinic receptors. As expected, in the current investigation statistically significant popping behavior was elicited by MK-801 in mice (T(22) = 2.16, P < 0.05). This MK-801-elicited popping was significantly attenuated by 100 mg/kg of galantamine (T(22) = 2.24, P < 0.05). The data show that nicotinic interventions can influence NMDA receptor-mediated neurotransmission in the intact mouse.  相似文献   

5.
Free RB  Wenger BW  McKay DB 《Life sciences》2000,68(4):373-385
The importance of disulfide bridges in muscle nicotinic receptors is well established; however, for neuronal nicotinic receptors, the effects of sulfhydryl modification are less definitive. In these studies the effects of treatment with the mild reducing agent, dithiothreitol, on adrenal nicotinic receptors are described. We have found that following dithiothreitol treatment, adrenal chromaffin cells retained the ability to be stimulated by a variety of nicotinic receptor agonists including nicotine, acetylcholine, cytisine, epibatidine, and bromoacetylcholine. However, with dithiothreitol treatment, changes in apparent affinities were seen with two agonists, epibatidine and bromoacetylcholine. These effects of dithiothreitol on apparent affinities were concentration-dependent and reversible upon treatment with an oxidizing agent. Dithiothreitol treatment also produced effects on secretion that were independent of nicotinic receptor activation. Our results are unlike those in other tissues containing nicotinic receptors and suggest that subunit composition of nicotinic receptors influences the functional outcome of sulfhydryl modification.  相似文献   

6.
To gain an insight into the molecular basis of ion permeation mechanism through the nicotinic acetylcholine receptor (AChR) channel, we have determined permeability ratios of organic cations relative to Na+ of specifically mutated Torpedo californica AChR channels expressed in Xenopus oocytes. The mutations involved mainly the side chains of the amino acid residues in the intermediate ring, where mutations have been found to exert strong effects on single-channel conductance and ion selectivity among alkali metal cations. The results obtained reveal that both the size and the net charge of the side chains of the intermediate ring are involved in determining the permeability, and provide experimental evidence that the pore size at the intermediate ring is a critical determinant of permeability. Our findings further suggest that changes in net charge exert effects on permeability by affecting the pore size of the channel.  相似文献   

7.
Abstract: Developmental changes in the pharmacological properties of the GABAA receptor have been suggested to result from changes in the subunit composition of the receptor complex. The nicotinic acetylcholine receptor is structurally related to the GABAA receptor and undergoes a developmental subunit switch at the neuromuscular synapse. To examine the mechanistic similarities between these systems we sought to find whether the changes in GABAA receptor subunits are controlled by changes in messenger RNA levels, as they are for the nicotinic acetylcholine receptor. We found a 10-fold increase in the level of α1-subunit mRNA, and a small increase in levels of GABAA/benzodiazepine receptors from day 1 to day 24 of rat cerebellar development. We also found that the levels of α1-subunit mRNA were higher than the levels of mRNA encoding other α subunits at all developmental time points. The low levels of messenger RNA for α2, α3, and α5 subunits are inconsistent with the high levels of type II benzodiazepine binding in the rat cerebellum at birth because these α subunits have been shown to form GABAA receptors with type II benzodiazepine binding. These findings are inconsistent with simple models that would explain the developmental differences in GABAA receptor pharmacology simply as a result of changes in α-subunit gene expression.  相似文献   

8.
Control of receptor sensitivity at the mRNA level   总被引:2,自引:0,他引:2  
  相似文献   

9.
The topography of the channel binding site in glutamate receptors (AMPA and NMDA types of rat brain neurons, receptors of molluscan neurons and insect muscle), and in two subtypes of nicotinic cholinoreceptors (in frog muscle and cat sympathetic ganglion), has been investigated by comparison of the blocking effects of mono- and dicationic derivatives of adamantane and phenylcyclohexyl. The channels studied can be divided into two groups. The first one includes AMPA receptor and glutamate receptors of mollusc and insect, and is characterised by the absence of activity of monocationic drugs and the strong dependence of dicationic once on the internitrogen distance in the drug molecule. The second group includes NMDA receptor and both nicotinic cholinoreceptors. Contrary, here the blocking potency of monocations and dications are practically equal irrespective of molecule length. The data obtained suggest that hydrophobic and nucleophilic components of the binding site are located close to each other in the channels of the NMDA receptor type but are separated by approximately 10 A in the AMPA receptor channel.  相似文献   

10.
Nicotinic receptor subtypes and cognitive function   总被引:26,自引:0,他引:26  
Nicotinic receptor systems are involved in a wide variety of behavioral functions including cognitive function. Nicotinic medications may provide beneficial treatment for cognitive dysfunction such as Alzheimer's disease, schizophrenia, and attention deficit hyperactivity disorder (ADHD). Nicotine has been shown to improve attentional performance in all of these disorders. Better efficacy with fewer side effects might be achieved with novel nicotinic ligands selective for particular nicotinic subtypes. To develop these novel selective nicotinic ligands it is important to use animal models to determine the critical neurobehavioral bases for nicotinic involvement in cognitive function. Nicotine-induced cognitive improvement in rats is most consistently seen in working memory tasks. We have found that both acute and chronic nicotine administration significantly improves working memory performance of rats in the radial-arm maze. The pharmacologic and anatomic mechanisms for this effect have been examined in our laboratory in a series of local drug infusion studies. Both alpha 4 beta 2 and alpha 7 nicotinic receptors in the ventral hippocampus and basolateral amygdala are involved in working memory function. Working memory impairments were caused by local infusion of either alpha 4 beta 2 or alpha 7 antagonists. Ventral hippocampal alpha 4 beta 2 blockade-induced working memory deficits are reversed by chronic systemic nicotine treatment, while ventral hippocampal alpha 7 blockade-induced working memory deficits were not found to be reversed by the same nicotine regimen. Interestingly, alpha 4 beta 2 and alpha 7 induced deficits were not found to be additive in either the ventral hippocampus or the basolateral amygdala. In fact, in the amygdala, alpha 7 antagonist cotreatment actually reversed the working memory impairment caused by alpha 4 beta 2 antagonist administration. These studies of the neural nicotinic mechanisms underlying cognitive function are key for opening avenues for development of safe and effective nicotinic treatments for cognitive dysfunction.  相似文献   

11.
The nicotinic acetylcholine (ACh) receptor channel mediates synaptic transmission at the neuromuscular junction. During the development of skeletal muscle, ACh receptors undergo changes in distribution, antigenic determinants, degradation rate, and function. Now that these developmental hallmarks have been identified, attention has turned toward understanding both the structural bases for such changes and the role of nerve in triggering these changes. Recently, a much clearer understanding of one of these developmental processes, namely, the alterations in channel function, has emerged through both sensitive patch-clamp measurements and the application of recombinant DNA technology. In light of these new advances, we now reevaluate the processes governing the developmental changes in the functional properties of the ACh receptor.  相似文献   

12.
The effects of the acetylcholinesterase inhibitors physostigmine and tacrine on alpha4beta2 and alpha4beta4 subtypes of neuronal nicotinic acetylcholine (ACh) receptors, expressed in Xenopus laevis oocytes, have been investigated. In voltage-clamp experiments low concentrations of physostigmine and tacrine potentiate ion currents induced by low concentrations of ACh, whereas at high concentrations they inhibit ACh-induced ion currents. These dual effects result in bell-shaped concentration-effect curves. Physostigmine and tacrine, by themselves, do not act as nicotinic receptor againsts. The larger potentiation is observed with 10 microM: physostigmine on alpha4beta4 nicotinic receptors and amounts to 70% at 1 microM: ACh. The mechanism underlying the effects of physostigmine on alpha4beta4 ACh receptors has been investigated in detail. Potentiation of ACh-induced ion current by low concentrations of physostigmine is surmounted at elevated concentrations of ACh, indicating that this is a competitive effect. Conversely, inhibition of ACh-induced ion current by high concentrations of physostigmine is not surmounted at high concentrations of ACh, and this effect appears mainly due to noncompetitive, voltage-dependent ion channel block. Radioligand binding experiments demonstrating displacement of the nicotinic receptor agonist (125)I-epibatidine from its recognition sites on alpha4beta4 ACh receptors by physostigmine confirm that physostigmine is a competitive ligand at these receptors. A two-site equilibrium receptor occupation model, combined with noncompetitive ion channel block, accounts for the dual effects of physostigmine and tacrine on ACh-induced ion currents. It is concluded that these acetylcholinesterase-inhibiting drugs interact with the ACh recognition sites and are coagonists of ACh on alpha4-containing nicotinic ACh receptors.  相似文献   

13.
The heptapeptide IQTTWSR (IQ), recently reported as inhibitor of the beta-amyloid (Abeta) binding to nicotinic acetylcholine receptors (nAChrs), was docked to the homology model of the alpha7 nicotinic acetylcholine receptor. The most representative models were further subjected to molecular dynamics simulations. The data obtained here suggest that Abeta needs highly specific structural motifs to bind to the alpha7nAChR. These structural motifs are located principally in the upper and lower surroundings of loop C, including loop F and sheets beta1, beta2, beta6, beta9, and beta10 of the receptor. Overall, these results suggest that IQ can be mimicked by more bioavailable, stable compounds that would be helpful for the understanding of the Abeta binding site and its dynamics, and for the design of novel agents to be used as an effective alternative against Alzheimer's disease.  相似文献   

14.
Nicotine is the main psychoactive substance present in tobacco, targeting neuronal nicotinic acetylcholine receptors. The main effects of nicotine associated with smoking are nicotinic receptor activation, desensitization, and upregulation, with the subsequent modulation of the mesocorticolimbic dopaminergic system. However, there is a lack of a comprehensive explanation of their roles that effectively makes clear how nicotine dependence might be established on those grounds. Receptor upregulation is an unusual effect for a drug of abuse, because theoretically this implies less need for drug consumption. Receptor upregulation and receptor desensitization are commonly viewed as opposite, homeostatic mechanisms. We here review the available information on smoking addiction, especially under a recently presented model of nicotine dependence. In this model both receptor upregulation and receptor desensitization are responsible for establishing a biochemical mechanism of nicotine dependence, which have an important role in starting and maintaining tobacco addiction.  相似文献   

15.
The ligand binding domain (LBD) of the nicotinic acetylcholine receptor has served as a prototype for understanding molecular recognition in the family of neurotransmitter-gated ion channels. During the past fifty years, studies progressed from fundamental electrophysiological analyses of ACh-evoked ion flow, to biochemical purification of the receptor protein, pharmacological measurements of ligand binding, molecular cloning of receptor subunits, site-directed mutagenesis combined with functional analysis and recently, atomic structural determination. The emerging picture of the nicotinic receptor LBD is a specialized pocket of aromatic and hydrophobic residues formed at interfaces between protein subunits that changes conformation to convert agonist binding into gating of an intrinsic ion channel.  相似文献   

16.
The ligand-gated ion channel superfamily plays a critical role in neuronal excitability. The functions of glycine receptor (GlyR) and nicotinic acetylcholine receptor are modulated by G protein betagamma subunits. The molecular determinants for this functional modulation, however, are still unknown. Studying mutant receptors, we identified two basic amino acid motifs within the large intracellular loop of the GlyR alpha(1) subunit that are critical for binding and functional modulation by Gbetagamma. Mutations within these sequences demonstrated that all of the residues detected are important for Gbetagamma modulation, although both motifs are necessary for full binding. Molecular modeling predicts that these sites are alpha-helixes near transmembrane domains 3 and 4, near to the lipid bilayer and highly electropositive. Our results demonstrate for the first time the sites for G protein betagamma subunit modulation on GlyRs and provide a new framework regarding the ligand-gated ion channel superfamily regulation by intracellular signaling.  相似文献   

17.
Molecular studies of the neuronal nicotinic acetylcholine receptor family   总被引:16,自引:0,他引:16  
Nicotinic acetylcholine receptors on neurons are part of a gene family that includes nicotinic acetylcholine receptors on skeletal muscles and neuronal alpha bungarotoxin-binding proteins that in many species, unlike receptors, do not have an acetylcholine-regulated cation channel. This gene superfamily of ligand-gated receptors also includes receptors for glycine and gamma-aminobutyric acid. Rapid progress on neuronal nicotinic receptors has recently been possible using monoclonal antibodies as probes for receptor proteins and cDNAs as probes for receptor genes. These studies are the primary focus of this review, although other aspects of these receptors are also considered. In birds and mammals, there are subtypes of neuronal nicotinic receptors. All of these receptors differ from nicotinic receptors of muscle pharmacologically (none bind alpha bungarotoxin, and some have very high affinity for nicotine), structurally (having only two types of subunits rather than four), and, in some cases, in functional role (some are located presynaptically). However, there are amino acid sequence homologies between the subunits of these receptors that suggest the location of important functional domains. Sequence homologies also suggest that the subunits of the proteins of this family all evolved from a common ancestral protein subunit. The ligand-gated ion channel characteristic of this superfamily is formed from multiple copies of homologous subunits. Conserved domains responsible for strong stereospecific association of the subunits are probably a fundamental organizing principle of the superfamily. Whereas the structure of muscle-type nicotinic receptors appears to have been established by the time of elasmobranchs and has evolved quite conservatively since then, the evolution of neuronal-type nicotinic receptors appears to be in more rapid flux. Certainly, the studies of these receptors are in rapid flux, with the availability of monoclonal antibody probes for localizing, purifying, and characterizing the proteins, and cDNA probes for determining sequences, localizing mRNAs, expressing functional receptors, and studying genetic regulation. The role of nicotinic receptors in neuromuscular transmission is well understood, but the role of nicotinic receptors in brain function is not. The current deluge of data using antibodies and cDNAs is beginning to come together nicely to describe the structure of these receptors. Soon, these techniques may combine with others to better reveal the functional roles of neuronal nicotinic receptors.  相似文献   

18.
Role of a key cysteine residue in the gating of the acetylcholine receptor   总被引:6,自引:0,他引:6  
We have examined changes in single-channel behavior that result from conservative amino acid substitutions at the Cys230 residue in the putative first transmembrane region (M1) of the murine nicotinic acetylcholine receptor. Mutations made in the gamma subunit altered the energy barrier for a single closing rate constant in proportion to the size of the substituted side chain. One of these substitutions, when made in the alpha subunits, had no effect on gating. No mutations altered permeation. We conclude that the region surrounding the M1 Cys is involved in the gating of the nicotinic acetylcholine receptor and that the gamma subunit contributes significantly to the control of channel closure.  相似文献   

19.
Application of solid supported membranes (SSMs) for the functional investigation of ion channels is presented. SSM-based electrophysiology, which has been introduced previously for the investigation of active transport systems, is expanded for the analysis of ion channels. Membranes or liposomes containing ion channels are adsorbed to an SSM and a concentration gradient of a permeant ion is applied. Transient currents representing ion channel transport activity are recorded via capacitive coupling. We demonstrate the application of the technique to liposomes reconstituted with the peptide cation channel gramicidin, vesicles from native tissue containing the nicotinic acetylcholine receptor, and membranes from a recombinant cell line expressing the ionotropic P2X2 receptor. It is shown that stable ion gradients, both inside as well as outside directed, can be applied and currents are recorded with an excellent signal/noise ratio. For the nicotinic acetylcholine receptor and the P2X2 receptor excellent assay quality factors of Z′ = 0.55 and Z′ = 0.67, respectively, are obtained. This technique opens up new possibilities in cases where conventional electrophysiology fails like the functional characterization of ion channels from intracellular compartments. It also allows for robust fully automatic assays for drug screening.  相似文献   

20.
The study of southern bean mosaic virus protein coat high resolution model revealed a structure with properties of a natural protein-ion channel. Coat protein pentamers form a 30-Å long channel and the amino acid composition of its wall bears some homology with the pentameric structure proposed for the nicotinic acetylcholine receptor channel. Ion transport properties were analyzed by computing ion-protein interaction energies on the basis of quantum chemistry methods. Energy maps show a channel attractive for cations, fully permeable to Li+ and a narrow barrier for other cations and water. The energy profiles found are similar to the profiles determined for the K+ channel of the sarcoplasmic reticulum. Comparisons with other icosahedral virus structures, including picornaviruses, suggest that ion channels would be a common feature of viral capsids. Biological roles for these channels are proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号