首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In goldfish, intracerebroventricular (ICV) administration of melanin-concentrating hormone (MCH) inhibits feeding behavior, and fasting decreases hypothalamic MCH-like immunoreactivity. However, while MCH acts as an anorexigenic factor in goldfish, in rodents MCH has an orexigenic effect. Therefore, we examined the involvement of two anorexigenic neuropeptides, alpha-melanocyte-stimulating hormone (alpha-MSH) and corticotropin-releasing hormone (CRH), in the anorexigenic action of MCH in goldfish, using an alpha-MSH receptor antagonist, HS024, and a CRH receptor antagonist, alpha-helical CRH((9-41)). ICV injection of HS024, but not alpha-helical CRH((9-41)), suppressed MCH-induced anorexigenic action for a 60-min observation period. We then examined, using a real-time PCR method, whether MCH affects the levels of mRNAs encoding various orexigenic neuropeptides, including neuropeptide Y (NPY), orexin, ghrelin and Agouti-related peptide (AgRP), in the goldfish diencephalon. ICV administration of MCH at a dose sufficient to inhibit food consumption decreased the expression of mRNAs for NPY and ghrelin, but not for orexin and AgRP. These results indicate that the anorexigenic action of MCH in the goldfish brain is mediated by the alpha-MSH signaling pathway and is accompanied by inhibition of NPY and ghrelin synthesis.  相似文献   

2.
alpha-Melanocyte-stimulating hormone (alpha-MSH) and corticotropin-releasing hormone (CRH) both suppress food intake, and the alpha-MSH- or CRH-signaling pathway has possible potency to mediate anorexigenic actions induced by most other neuropeptides in goldfish. Therefore, using specific receptor antagonists, we examined whether the anorexigenic actions of alpha-MSH and CRH mutually interact. The inhibitory effect of ICV injection of the alpha-MSH agonist, melanotan II (MT II), on food intake was abolished by treatment with a CRH 1/2 receptor antagonist, alpha-helical CRH((9-41)), whereas the anorexigenic action of ICV-injected CRH was not affected by treatment with a melanocortin 4 receptor antagonist, HS024. This led us to investigate whether alpha-MSH-containing neurons in the goldfish brain have direct inputs to CRH-containing neurons, using confocal laser scanning microscopy. alpha-MSH- and CRH-like immunoreactivities were distributed throughout the brain, especially in the diencephalon. alpha-MSH-containing nerve fibers or endings lay in close apposition to CRH-containing neurons in a region of the hypothalamus, the nucleus posterioris periventricularis (NPPv). These results indicate that, in goldfish, alpha-MSH-induced anorexigenic action is mediated by the CRH-signaling pathway, and that CRH plays a crucial role in the regulation of feeding behavior as an integrated anorexigenic neuropeptide in this species.  相似文献   

3.
Intracerebroventricular (ICV) administration of melanin-concentrating hormone (MCH) inhibits food intake in goldfish, unlike the orexigenic action in rodents, via the melanocortin system with suppression of neuropeptide Y (NPY) mRNA expression. We therefore investigated the neuronal relationship between MCH- and NPY-containing neurons in the goldfish brain, using a double-immunofluorescence method and confocal laser scanning microscopy. MCH- and NPY-like immunoreactivities were distributed throughout the brain. In particular, MCH-containing nerve fibers or endings lay in close apposition to NPY-containing neurons in a specific region of the hypothalamus, the nucleus posterioris periventricularis (NPPv). These observations suggest that MCH-containing neurons provide direct input to NPY-containing neurons in the NPPv of goldfish, and that MCH plays a crucial role in the regulation of feeding behavior as an anorexigenic neuropeptide, inhibiting the orexigenic activity of NPY.  相似文献   

4.
Maruyama K  Miura T  Uchiyama M  Shioda S  Matsuda K 《Peptides》2006,27(7):1820-1826
Our recent research has indicated that intracerebroventricular (ICV) injection of pituitary adenylate cyclase-activating polypeptide (PACAP) suppresses food intake and locomotor activity in the goldfish. However, the anorexigenic mechanism of PACAP has not yet been clarified. The aim of this study was to investigate the relationship between the anorexigenic action of PACAP and that of corticotropin-releasing hormone (CRH), which is implicated in the regulation of energy homeostasis as a powerful anorexigenic peptide in the goldfish brain. We first examined feeding-induced changes in the expression of CRH mRNA, and the effect of ICV administration of PACAP on the expression of CRH mRNA in the goldfish brain. Semiquantitative analysis revealed that the expression of CRH mRNA was significantly increased by excessive feeding for 7 days. ICV administration of PACAP at a dose sufficient to suppress food intake induced a significant increase in the expression of CRH mRNA. We also examined the effect of alpha-helical CRH(9-41), a CRH antagonist, on the anorexigenic action of PACAP in the goldfish. The inhibitory effect of PACAP was completely suppressed by treatment with alpha-helical CRH(9-41). We finally investigated the effect of ICV-administered CRH on locomotor activity in the goldfish. CRH at a dose sufficient to suppress food intake induced a significant increase in locomotor activity, unlike ICV-injected PACAP. These results suggest that, in the goldfish, the anorexigenic action of PACAP is related to the CRH neuronal pathway, but that the modulation of locomotor activity by PACAP is independent of modulation by CRH.  相似文献   

5.
Intracerebroventricular (ICV) administration of gonadotropin-releasing hormone II (GnRH II), which plays a crucial role in the regulation of reproduction in vertebrates, markedly reduces food intake in goldfish. However, the neurochemical pathways involved in the anorexigenic action of GnRH II and its interaction with other neuropeptides have not yet been identified. Alpha-melanocyte-stimulating hormone (α-MSH), corticotropin-releasing hormone (CRH) and CRH-related peptides play a major role in feeding control as potent anorexigenic neuropeptides in goldfish. However, our previous study has indicated that the GnRH II-induced anorexigenic action is not blocked by treatment with melanocortin 4 receptor (MC4R) and CRH receptor antagonists. Therefore, in the present study, we further examined whether the anorexigenic effects of α-MSH and CRH in goldfish could be mediated through the GnRH receptor neuronal pathway. ICV injection of the MC4R agonist, melanotan II (80 pmol/g body weight; BW), significantly reduced food intake, and its anorexigenic effect was suppressed by ICV pre-administration of the GnRH type I receptor antagonist, antide (100 pmol/g BW). The CRH-induced (50 pmol/g BW) anorexigenic action was also blocked by treatment with antide. ICV injection of CRH (50 pmol/g BW) induced a significant increase of the GnRH II mRNA level in the hypothalamus, while ICV injection of melanotan II (80 pmol/g BW) had no effect on the level of GnRH II mRNA. These results indicate that, in goldfish, the anorexigenic actions of α-MSH and CRH are mediated through the GnRH type I receptor-signaling pathway, and that the GnRH II system regulates feeding behavior.  相似文献   

6.
The anorexigenic effect of cholecystokinin (CCK) is well documented in mammals, but documentation in neonatal chicks is limited. Thus, the present study investigated the mechanism underlying the anorexigenic effect of CCK in neonatal chicks. Intraperitoneal (IP) injection of sulfated CCK(26-33) (CCK8S) significantly decreased food intake in chicks at 60 and 300 nmol/kg. Non-sulfated CCK(26-33) (CCK8) also significantly decreased food intake, but its anorexigenic effect was observed only at the highest dose (300 nmol/kg) and short-lived. However, CCK(30-33) (CCK4) had no effect on food intake. Also, the intracerebroventricular (ICV) injection of CCK8S (0.2 and 1 nmol) significantly decreased food intake in chicks. Similar to IP administration, the anorexigenic effect of CCK8 was weak and CCK4 did not affect food intake. IP and ICV injections of CCK8S caused conditioned aversion and increased plasma corticosterone concentrations, suggesting that their anorexigenic effects might be related to stress and/or malaise. This might be true in ICV-injected CCK8S because co-injection of astressin, a corticotropin-releasing hormone receptor antagonist, tended to attenuate the effect of CCK8S. The present study revealed that N-terminal amino acids and the sulfation of Tyr are important for the anorexigenic effect of CCK8S after IP and ICV administered in chicks. Additionally, the effect of central CCK8S might be related to stress and/or malaise.  相似文献   

7.
Intracerebroventricular (ICV) injection of melanin-concentrating hormone (MCH) influences feeding behavior in the goldfish and exerts an anorexigenic action in goldfish brain, unlike its orexigenic action in mammals. Despite a growing body of knowledge concerning MCH function in mammals, the role of MCH in appetite has not yet been well studied in fish. The aim of the present study was to investigate the involvement of endogenous MCH in the feeding behavior of the goldfish. We examined the distribution of MCH-like immunoreactivity (MCH-LI) in the goldfish brain and the effect of feeding status upon this distribution. Neuronal cell bodies containing MCH-LI were localized specifically to four areas of the hypothalamus. Nerve fibers with MCH-LI were found mainly in the neurohypophysis, with a few in the telencephalon, mesencephalon, and diencephalon. The number of neuronal cell bodies containing MCH-LI in the dorsal area adjoining the lateral recess of the third ventricle in the posterior and inferior lobes of the hypothalamus showed a significant decrease in fasted fish compared with that in normally fed fish, although other areas showed no evident differences. We also administered an antiserum against fish MCH (anti-MCH serum) by ICV injection and examined its immunoneutralizing effect on food intake by using an automatic monitoring system. Cumulative food intake was significantly increased by ICV injection of the anti-MCH serum. These results indicate that MCH potentially functions as an anorexigenic neuropeptide in the goldfish brain, and that the further study of the evolutionary background of the MCH system and its role in appetite is warranted. This work was supported by Grants-in-Aid from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (K.M. and A.T.) and by a research grant from the Toyama Marine Biotechnology Association (K.M.).  相似文献   

8.
Intracerebroventricular (ICV) injection of pituitary adenylate cyclase-activating polypeptide-38 (PACAP) or vasoactive intestinal peptide (VIP) inhibits feeding in chicks. However, the underlying anorexigenic mechanism(s) has not yet been investigated. The present study investigated whether these peptides influence the activity of corticotrophin-releasing factor (CRF) neural pathways in the brain of chicks. Firstly, we found that ICV injections of PACAP and VIP increased plasma corticosterone concentrations. The corticosterone-releasing effect of PACAP was completely attenuated by co-injection of astressin, a CRF receptor antagonist, but this effect was only partial for VIP. These results demonstrated that CRF neurons mediate the actions of PACAP and, to a lesser extent, VIP, and suggest that the signaling mechanisms differ between the two peptides. This difference may arise from the two peptides interacting with different receptors because the corticosterone-releasing effect of PACAP, but not VIP, was completely attenuated by co-injection of PACAP (6–38), a PACAP receptor antagonist. Finally, we examined the effect of ICV co-injection of astressin on the anorexigenic effects of PACAP and VIP and found that the effects of both peptides were attenuated by astressin. Overall, the present study suggests that the anorexigenic effects of PACAP and VIP are mediated by the activation of CRF neurons.  相似文献   

9.
Intracerebroventricular (ICV) administration of ghrelin, orexin and neuropeptide Y (NPY) stimulates food intake in goldfish. Orexin and NPY interact with each other in the regulation of feeding, while ghrelin-induced feeding has also shown to be mediated by NPY in the goldfish model. To investigate the interaction between ghrelin and orexin, we examined the effects of a selective orexin receptor-1 antagonist, SB334867, and a growth hormone secretagogue-receptor antagonist, [D-Lys(3)]-GHRP-6, on ghrelin- and orexin-A-induced feeding. Ghrelin-induced food intake was completely inhibited for 1h following ICV preinjection of SB334867, while [D-Lys(3)]-GHRP-6 attenuated orexin-A stimulated feeding. Furthermore, ICV administration of ghrelin or orexin-A at a dose sufficient to stimulate food intake increased the expression of each other's mRNA in the diencephalon. These results indicate that, in goldfish, ghrelin and orexin-A have interacting orexigenic effects in the central nervous system. This is the first report that orexin-A-induced feeding is mediated by the ghrelin signaling in any animal model.  相似文献   

10.
Gonadotropin-releasing hormone (GnRH) is an evolutionarily conserved neuropeptide with 10 amino acid residues, which possesses some structural variants. A molecular form known as chicken GnRH II ([His5 Trp7 Tyr8] GnRH, cGnRH II) is widely distributed in vertebrates, and has recently been implicated in the regulation of sexual behavior and food intake in an insectivore, the musk shrew. However, the influence of cGnRH II on feeding behavior has not yet been studied in model animals such as rodents and teleost fish. In this study, therefore, we investigated the role of cGnRH II in the regulation of feeding behavior in the goldfish, and examined its involvement in food intake after intracerebroventricular (ICV) administration. ICV-injected cGnRH II at graded doses, from 0.1 to 10 pmol/g body weight (BW), induced a decrease of food consumption in a dose-dependent manner during 60 min after treatment. Cumulative food intake was significantly decreased by ICV injection of cGnRH II at doses of 1 and 10 pmol/g BW during the 60-min post-treatment observation period. ICV injection of salmon GnRH ([Trp7 Leu8] GnRH, sGnRH) at doses of 0.1-10 pmol/g BW did not affect food intake. The anorexigenic action of cGnRH II was completely blocked by treatment with the GnRH type I receptor antagonist, Antide. However, the anorexigenic action of cGnRH II was not inhibited by treatment with the corticotropin-releasing hormone (CRH) 1/2 receptor antagonist, α-helical CRH(9−41), and the melanocortin 4 receptor antagonist, HS024. These results suggest that, in the goldfish, cGnRH II, but not sGnRH, acts as an anorexigenic factor, as is the case in the musk shrew, and that the anorexigenic action of cGnRH II is independent of CRH- and melanocortin-signaling pathways.  相似文献   

11.
The purpose of the present study was to determine whether central administration of substance P (SP), a tachykinin neuropeptide, influenced feeding behavior in layer chicks (Gallus gallus). Intracerebroventricular (ICV) injections of 5 nmol SP decreased food intake in 5- and 6-day-old chicks under both ad libitum and 3-h fasting conditions. There are 3 major subtypes of tachykinin receptors, namely, neurokinin 1, 2 and 3 receptors. Injection of neurokinin A and neurokinin B, which are respectively endogenous agonists for neurokinin 2 and 3 receptors, did not suppress feeding behavior in chicks, suggesting that the anorexigenic effect of SP might be mediated by the neurokinin 1 receptor rather than neurokinin 2 and 3 receptors. Chicks that received 5 nmol SP did not change their locomotion, standing, sitting or drinking time, suggesting that its anorexigenic action might not be due to SP-induced hyperactivity or sedation. ICV injection of SP increased water intake, also indicating that SP likely did not affect feeding behavior through malaise. In addition, the anorexigenic effect of SP might not be related to corticotrophin-releasing hormone (CRH) because plasma corticosterone concentration was not affected by ICV injection of SP and co-administration of the CRH receptor antagonist astressin did not affect the anorexigenic effect of SP. The present study suggests that central SP acts as an anorexigenic neuropeptide in chicks.  相似文献   

12.
Pituitary adenylate cyclase-activating polypeptide (PACAP) has a similar structure to that of vasoactive intestinal peptide (VIP) and both the polypeptides belong to the same molecular group, the secretin-glucagon superfamily. PACAP and VIP have possible potency as hypothalamic factors mediating the release of pituitary hormones in the fish pituitary. However, the roles of PACAP and VIP in the central nervous systems of fish have not yet been made clear. Recently, it was reported that PACAP and/or VIP are involved in the feeding behavior of the mouse and chick. Therefore, we investigated the effects of intracerebroventricular (ICV) and intraperitoneal (IP) administration of synthetic PACAP and VIP on food intake in the goldfish, Carassius auratus. Cumulative food intake was significantly decreased by ICV injection of PACAP (11 or 22 pmol/g body weight) or VIP (11 or 22 pmol/g) during a 60-min observation period after treatment. IP administration of PACAP (44 or 88 pmol/g) or VIP (22 or 44 pmol/g) induced a significant decrease in food intake during a 60-min observation period after treatment. These results suggest that PACAP and VIP may be involved as feeding regulators in goldfish.  相似文献   

13.
The present study evaluated the effects of both intraperitoneal (i.p. ) and intracerebroventricular administration of selective Y(1) [(Leu(31), Pro(34))-NPY] and Y(2) [(Pro(13), Tyr(36))-NPY (13-36)] receptor agonists on food intake in satiated goldfish. Food intake (FI) was significantly increased by central administration of the Y(1) agonist (1 microg), but not by the Y(2) agonist, at 2 h postinjection. The feeding increase induced by (Leu(31), Pro(34))-NPY was in a similar magnitude to that obtained after ICV injection of the neuropeptide Y, and both feeding stimulations were reversed by the NPY (27-36), a general NPY antagonist. The i.p. administration of the agonists either did not significantly modify (Y(2) agonist) or decreased (Y(1) agonist) food intake in goldfish. These data indicate that it is the Y(1)-like (similar to Y(1) and/or Y(5)) receptor, and not Y(2), that is involved in the central modulation of the feeding behavior in goldfish. We also investigated the possible involvement of opioid peptides as mediators of the NPY stimulatory action on food intake in goldfish. The ICV administration of naloxone (10 microg), a general opioid antagonist, blocked the NPY-induced feeding in goldfish, suggesting that the opioidergic system is involved in feeding regulation by NPY.  相似文献   

14.
Nociceptin/orphanin FQ (N/OFQ), an endogenous agonist of the opioid N/OFQ (NOP) receptor, increases food intake when administered centrally. As N/OFQ is part of a larger neural network that governs consummatory behavior, presumably its orexigenic properties stem from interplay with other neuropeptidergic components of the feeding-related circuitry. One such peptide may be the ligand of the melanocortin-3 and -4 receptors, alpha-melanocyte-stimulating hormone (alpha-MSH), which is known to inhibit food intake. The aim of the present study was to establish whether there is a functional "interaction" between N/OFQ and alpha-MSH in the regulation of feeding. By using double immunostaining for c-Fos and alpha-MSH, we found that intracerebroventricular (i.c.v.) injection of N/OFQ at a 10nmol dose that moderately prolongs deprivation-induced food intake in rats, decreases activation of alpha-MSH neurons involved in feeding termination. However, i.c.v. injections of alpha-MSH at doses previously established to reduce deprivation-induced feeding, do not decrease hyperphagia generated by N/OFQ in ad libitum-fed animals. Our results suggest that while alpha-MSH does not appear to modify the orexigenic response to N/OFQ in sated rats, the NOP receptor ligand promotes a decrease in activation of neurons synthesizing the anorexigenic peptide, alpha-MSH, at the time of re-feeding. Thus, to some degree, the stimulatory effect of N/OFQ on consumption may arise from this peptide's inhibitory influence on activity of anorexigenic pathways containing alpha-MSH.  相似文献   

15.
Alpha-melanocyte-stimulating hormone (alpha-MSH) is recognized as an anorexic peptide in the brain of vertebrates, but its mechanism of action has not been identified in birds. Therefore, we investigated whether the anorexic effect of alpha-MSH is mediated by corticotrophin-releasing factor (CRF) in the domestic chick. Firstly, we found that intracerebroventricular (i.c.v.) injection of alpha-MSH dose dependently increased plasma corticosterone (CORT) concentration. This effect was partly attenuated by co-injection of astressin, a CRF receptor antagonist, demonstrating that alpha-MSH stimulated CORT secretion by activating CRF neurons. The alpha-MSH-elicited CORT release was not attenuated by the injection of agouti-related protein, an endogenous melanocortin-4 (MC4) receptor antagonist, suggesting that alpha-MSH stimulated CRF neurons through MC4 receptor-independent pathways. Finally, we found that the anorexic effect of alpha-MSH was partly attenuated by astressin. The present results suggest that the anorexic effect of alpha-MSH in the chick brain is mediated in part by activation of CRF neurons.  相似文献   

16.
Regulation of food intake by melanin-concentrating hormone in goldfish   总被引:5,自引:4,他引:1  
Melanin-concentrating hormone (MCH), originally discovered in the teleost pituitary, is a hypothalamic neuropeptide involved in the regulation of body color in fish. Although MCH is also present in the mammalian brain, it has no evident function in providing pigmentation. Instead, this peptide is now recognized to be one of the key neuropeptides that act as appetite enhancers in mammals such as rodents and primates. Although there has been little information about the central action of MCH on appetite in fish, recent studies have indicated that, in goldfish, MCH acts as an anorexigenic neuropeptide, modulating the α-melanocyte-stimulating hormone signaling pathway through neuronal interaction. These observations indicate that there may be major differences in the mode of action of MCH between fish and mammals. This paper reviews what is currently known about the regulation of food intake by MCH in fish, especially the goldfish.  相似文献   

17.
Proopiomelanocortin (POMC, a precursor of melanocortin peptides) neurons in the hypothalamus play an important role in the central regulation of food intake in mammals. There is evidence that human melanocortin peptides alpha-, beta- and gamma2-melanocyte-stimulating hormone (α-, β- and γ2-MSH) significantly decreased food intake in chickens. However, the amino acid sequences of β- and γ2-MSH of chickens are different from those of humans whereas the amino acid sequence of α-MSH is conserved between these species. In the present study, we examined the effects of the central administration of α-, chicken β-, and chicken γ2-MSH on food intake in chicks. Central administration of α-MSH significantly suppressed food intake in chicks. In contrast, β- and γ2-MSH did not influence food intake in chicks. Central administration of HS014, a melanocortin 4 receptor antagonist, significantly reversed the anorexigenic action of α-MSH, suggesting that this action is mediated by the melanocortin 4 receptor in chicks as well as in mammals. These results suggest that α-MSH may play an important role in the regulation of food intake by the central melanocortin system in chicks.  相似文献   

18.
We examined orexin-like immunoreactivity in the pituitary of the red-bellied piranha (Pygocentrus nattereri). Orexin-B-immunoreactive (IR) cells corresponded to luteinizing hormone (LH)-containing cells in the pars distalis, and orexin-B-IR fibers corresponded to melanin-concentrating hormone (MCH)-containing fibers in the pars nervosa. In the pars distalis, orexin-B-IR puncta that were also immunoreactive for MCH were observed around the orexin-B-IR cells. In the ventral hypothalamus, orexin-B-IR and MCH-IR neurons were found in the nucleus lateralis tuberis. Immunoelectron-microscopic analysis revealed that the orexin-B-like substance co-localized with LH in secretory granules and with MCH in MCH-containing neurons. Some of the MCH secreted in the pituitary might participate in the modulation of LH secretion from the gonadotrophs, together with orexin-B, leading to food intake by the stimulation of growth hormone secretion from the somatotrophs.  相似文献   

19.
Vasoactive intestinal peptide (VIP) is a 28 amino acid peptide expressed throughout the peripheral and central nervous systems. VIP and the VIP receptor VPAC(2)R are expressed in hypothalamic nuclei involved in the regulation of energy homeostasis. VIP has been shown to be involved in the regulation of energy balance in a number of non-mammalian vertebrates. We therefore examined the effects of intracerebroventricular (ICV) administration of VIP on food intake, energy expenditure and activity in adult male Wistar rats. VIP administration caused a potent short lived decrease in food intake and an increase in activity and energy expenditure. The pathways potentially involved in the anorexigenic effects of VIP were investigated by measuring the release of neuropeptides involved in the regulation of food intake from hypothalamic explants treated with VIP. VIP significantly stimulated the release of the anorexigenic peptide alpha-melanocyte stimulating hormone (αMSH). These studies suggest that VIP may have an endogenous role in the hypothalamic control of energy homeostasis.  相似文献   

20.
Cholecystokinin (CCK), a hormone secreted from endocrine cells of the small intestine, participates in the control of motility and secretion in the gastrointestinal tract, and in the control of food intake. At least some of the effects of CCK on intestinal function appear to be mediated via activation of intrinsic neurons in the myenteric plexus. However, the distribution of CCK-responsive enteric neurons within the rat small intestine is not known. Neither has the role of CCK-A receptors in the activation of rat myenteric neurons been investigated. Therefore, to determine the distribution of CCK-responsive neurons in the small intestinal myenteric plexus we utilized immunohistochemical detection of Fos, the protein product of the immediate early gene c-fos, to identify neurons that were activated by exogenous CCK. We also monitored Fos expression in the dorsal hindbrain, and examined CCK-induced Fos expression in the presence or absence of a receptor antagonist for the type-A CCK receptor. We found that CCK significantly increased Fos expression in the hindbrain and in myenteric neurons of the duodenum and jejunum, but not the ileum. Neuronal Fos responsiveness in both brain and myenteric neurons was mediated by CCK-A receptors, as CCK-induced Fos expression was eliminated in rats pretreated with a CCK-A receptor antagonist. We conclude that CCK activates small intestinal myenteric neurons, via CCK-A receptors. Activation of these intrinsic intestinal neurons may participate in reflexes and behaviors that are mediated by CCK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号