首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The biological properties of ailanthoidol, a neolignan from Zanthoxylum ailanthoides or Salvia miltiorrhiza Bunge, which is used in Chinese traditional herbal medicine, have not been evaluated. Here, we report that ailanthoidol inhibits inflammatory reactions in macrophages and protects mice from endotoxin shock. Our in vitro experiments showed that ailanthoidol suppressed the generation of nitric oxide (NO) and prostaglandin E(2) , as well as the expression of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 induced by lipopolysaccharide (LPS) in RAW264.7 cells. Similarly, ailanthoidol inhibited the production of inflammatory cytokines induced by LPS in RAW264.7 cells, including interleukin (IL)-1β and IL-6. In an animal model, ailanthoidol protected BALB/c mice from LPS-induced endotoxin shock, possibly through inhibition of the production of inflammatory cytokines and NO. Collectively, ailanthoidol inhibited the production of inflammatory mediators and may be a potential target for treatment of various inflammatory diseases.  相似文献   

2.
The effect of D-galactosamine (D-GalN) on nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells was examined. D-GalN augmented the production of NO, but not tumor necrosis factor (TNF)-alpha in LPS-stimulated RAW 264.7 cells. Pretreatment of D-GalN augmented the NO production whereas its post-treatment did not. D-GalN augmented the NO production in RAW 264.7 cells stimulated with either TNF-alpha and interferon-gamma. The augmentation of LPS-induced NO production by D-GalN was due to enhanced expressions of an inducible type of NO synthase mRNA and proteins. Intracellular reactive oxygen species (ROS) were exclusively generated in RAW 264.7 cells stimulated with D-GalN and LPS. Scavenging of intracellular ROS abrogated the augmentation of NO production. It was therefore suggested that D-GalN might augment LPS-induced NO production through the generation of intracellular ROS.  相似文献   

3.
Cherng SC  Cheng SN  Tarn A  Chou TC 《Life sciences》2007,81(19-20):1431-1435
C-phycocyanin (C-PC), found in blue green algae, is often used as a dietary nutritional supplement. C-PC has been found to have an anti-inflammatory activity and exert beneficial effect in various diseases. However, little is known about its mechanism of action. Overproduction of nitric oxide (NO) derived from inducible nitric oxide synthase (iNOS) plays an important role in the pathogenesis of inflammation. The aim of this study was to determine whether C-PC inhibits production of nitrite, an index of NO, and iNOS expression in lipopolysaccharide (LPS)-treated RAW 264.7 macrophages. Our results indicated that C-PC significantly inhibited the LPS-induced nitrite production and iNOS protein expression accompanied by an attenuation of tumor necrosis factor-alpha (TNF-alpha) formation but had no effect on interleukin-10 production in macrophages. Furthermore, C-PC also suppressed the activation of nuclear factor-kappaB (NF-kappaB) through preventing degradation of cytosolic IkappaB-alpha in LPS-stimulated RAW 264.7 macrophages. Thus, the inhibitory activity of C-PC on LPS-induced NO release and iNOS expression is probably associated with suppressing TNF-alpha formation and nuclear NF-kappaB activation, which may provide an additional explanation for its anti-inflammatory activity and therapeutic effect.  相似文献   

4.
5.
Mammalian myeloid and epithelial cells express several kinds of antibacterial peptides (alpha-/beta-defensins and cathelicidins) that contribute to the innate host defense by killing invading micro-organisms. In this study we evaluated the LPS-neutralizing activities of cathelicidin peptides human CAP18 (cationic antibacterial proteins of 18 kDa) and guinea pig CAP11 using the CD14(+) murine macrophage cell line RAW264.7 and the murine endotoxin shock model. Flow cytometric analysis revealed that CAP18 and CAP11 inhibited the binding of FITC-conjugated LPS to RAW264.7 cells. Likewise, Northern and Western blot analyses indicated that CAP18 and CAP11 suppressed LPS-induced TNF-alpha mRNA and protein expression by RAW264.7 cells. Interestingly, CAP18 and CAP11 possessed LPS-binding activities, and they strongly suppressed the interaction of LPS with LPS binding protein that mediates the transport of LPS to CD14 to facilitate the activation of CD14(+) cells by LPS. Moreover, when CAP18 and CAP11 were preincubated with RAW264.7 cells, they bound to the cell surface CD14 and inhibited the binding of FITC-LPS to the cells. Furthermore, in the murine endotoxin shock model, CAP18 or CAP11 administration inhibited the binding of LPS to CD14(+) cells (peritoneal macrophages) and suppressed LPS-induced TNF-alpha expression by these cells. Together these observations indicate that cathelicidin peptides CAP18 and CAP11 probably exert protective actions against endotoxin shock by blocking the binding of LPS to CD14(+) cells, thereby suppressing the production of cytokines by these cells via their potent binding activities for LPS and CD14.  相似文献   

6.
Ahn KS  Noh EJ  Zhao HL  Jung SH  Kang SS  Kim YS 《Life sciences》2005,76(20):2315-2328
Saponins are glycosidic compounds present in many edible and inedible plants. They exhibit potent biological activities in mammalian systems, including several beneficial effects such as anti-inflammation and immunomodulation. In this study, we investigated the effects of seven platycodin saponins on the activities of inducible nitric oxide synthase (iNOS) and cyclooxygenase II (COX-2) in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. We found that 2"-O-acetyl polygalacin D (S1), platycodin A (S2), platycodin D (S3), and polygalacin D (S6) inhibited LPS-induced NO production in a concentration-dependent manner. Furthermore, these compounds inhibited the expression of LPS-induced iNOS and COX-2 protein and mRNA without an appreciable cytotoxic effect on RAW 264.7 macrophages, and could suppress induction by LPS of pro-inflammatory cytokines such as prostaglandin E2 (PGE2). Treatment with these compounds of RAW 264.7 cells transfected with a reporter construct indicated a reduced level of LPS-induced nuclear factor-kappaB (NF-kappaB) activity and effectively lowered NF-kappaB binding as measured by electrophoretic mobility shift assay (EMSA). The suppression of NF-kappaB activation appears to occur through the prevention of inhibitor kappaB (IkappaB) degradation. In vivo, platycodin saponin mixture (PS) and S3 protected mice from the lethal effects of LPS. The 89% lethality induced by LPS/galactosamine was reduced to 60% and 50% when PS and S3, respectively, were administered simultaneously with LPS. These results suggest that the main inhibitory mechanism of the platycodin saponins may be the reduction of iNOS and COX-2 gene expression through blocking of NF-kappaB activation.  相似文献   

7.
Astaxanthin, a carotenoid without vitamin A activity, has shown anti-oxidant and anti-inflammatory activities; however, its molecular action and mechanism have not been elucidated. We examined in vitro and in vivo regulatory function of astaxanthin on production of nitric oxide (NO) and prostaglandin E2 (PGE2) as well as expression of inducible NO synthase (iNOS), cyclooxygenase-2, tumor necrosis factor-alpha (TNF-alpha), and interleukin-1beta (IL-1beta). Astaxanthin inhibited the expression or formation production of these proinflammatory mediators and cytokines in both lipopolysaccharide (LPS)-stimulated RAW264.7 cells and primary macrophages. Astaxanthin also suppressed the serum levels of NO, PGE2, TNF-alpha, and IL-1beta in LPS-administrated mice, and inhibited NF-kappaB activation as well as iNOS promoter activity in RAW264.7 cells stimulated with LPS. This compound directly inhibited the intracellular accumulation of reactive oxygen species in LPS-stimulated RAW264.7 cells as well as H2O2-induced NF-kappaB activation and iNOS expression. Moreover, astaxanthin blocked nuclear translocation of NF-kappaB p65 subunit and I(kappa)B(alpha) degradation, which correlated with its inhibitory effect on I(kappa)B kinase (IKK) activity. These results suggest that astaxanthin, probably due to its antioxidant activity, inhibits the production of inflammatory mediators by blocking NF-kappaB activation and as a consequent suppression of IKK activity and I(kappa)B-alpha degradation.  相似文献   

8.
An isoquinoline derivative, 5-methyl-7,8-dimethoxy-1-phenylpyrazolo[5,4-c]isoquinoline (compound 1), was identified as a novel inhibitor of LPS-induced TNF-alpha production by cell-based screening. Compound 1 suppressed LPS-induced TNF-alpha production in RAW264.7 cells and murine peritoneal macrophages in a dose-dependent manner similar to SB203580, known as a specific inhibitor of p38 MAPK. It also inhibited an LPS-induced increase in serum TNF-alpha in a mouse endotoxic shock model with an ED(50) of approximately 10 mg/kg. Compound 1 had little effect on the incorporation of [3H]-leucine into the cells, while it suppressed LPS-induced TNF-alpha mRNA levels in RAW264.7 cells. The results indicate that suppression of TNF-alpha production was not a result of nonspecific inhibition of de novo translation but was based on the decreased TNF-alpha mRNA levels. The in vitro kinase assay revealed that compound 1 did not strongly inhibit p38 MAPK activity, its potency being much lower than that of SB203580, suggesting that the TNF-alpha-suppressive action of compound 1 cannot be attributed to the inhibition of p38 MAPK. Furthermore, in contrast to SB203580, it significantly inhibited the growth of RAW264.7 and THP-1 cells in a cytostatic manner. Compound 1 is likely to have antiinflammatory and antiproliferative effects by acting on some molecule other than p38 MAPK that contributes to both LPS-induced TNF-alpha production and the cell growth of monocyte/macrophages.  相似文献   

9.
10.
A sugar cane extract (SCE) has been found to have an immunostimulating effect in several animals. Lipopolysaccharide (LPS) is known to induce endotoxin shock via the production of inflammatory modulators such as tumor necrosis factor (TNF)-alpha and nitric oxide (NO). We examined in the present study the effects of SCE on the TNF-alpha and NO production in LPS-stimulated mice peritoneal cells and the endotoxin shock in mice. The supplementation of SCE to peritoneal macrophages cultured with LPS resulted in a significant decrease in NO production. All the mice injected intraperitoneally with LPS and D-galactosamine (LPS+GalN) died within 24 h. However, a peritoneal injection, but no intravenous or oral administration, of SCE (500-1,000 mg/kg) at 3 to 48 h before the LPS+GalN-challenge resulted in a significantly improved survival rate. These results suggest that SCE had a protective effect on LPS-induced endotoxin shock via one of possible mechanisms involving the suppression of NO production in the mouse peritoneal cavity.  相似文献   

11.
Ahn KS  Noh EJ  Cha KH  Kim YS  Lim SS  Shin KH  Jung SH 《Life sciences》2006,78(20):2336-2342
In the present study, we investigated antiinflammatory effects of six flavonoids isolated from the rhizomes of Belamcanda chinensis (Iridaceae) in RAW 264.7 macrophages. The results indicated that irigenin concentration dependently inhibited lipopolysaccharide (LPS)-induced nitric oxide (NO) and prostaglandin (PG) E(2) production. Furthermore, this compound inhibited the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 proteins and mRNAs without an appreciable cytotoxic effect. Treatment of the transfectant RAW 264.7 cells with irigenin reduced the level of nuclear factor-kappaB (NF-kappaB) activity, also effectively lowered NF-kappaB binding measured by electrophoretic mobility shift assay (EMSA), which was associated with decreased p65 protein levels in the nucleus. On the basis of the above data, we suggest that the effect of irigenin in decreasing LPS-induced NO and PGE(2) synthesis is due to diminish the mRNA and protein expression of iNOS and COX-2, respectively, also may be due to under the suppression of NF-kappaB activation. Therefore, irigenin isolated from the rhizomes of Belamcanda chinensis could be offered as a leading compound for anti-inflammation.  相似文献   

12.
13.
Exposure of macrophages to bacterial lipopolysaccharide (LPS) induces release of proinflammatory cytokines that play crucial roles in chronic inflammation. Glucosamine has reported to possess anti-inflammatory properties and currently is the oral supplement of choice for the management of inflammation related complications including osteoarthritis. In this study, quaternized amino glucosamine (QAGlc), a newly synthesized cationic glucosamine (Glc) derivative was found to inhibit LPS-stimulated production of IL-1beta, IL-6, TNF-alpha, and PGE(2) in RAW264.7, mouse macrophages more potently than its starting material Glc. Since production of cytokines is regulated mainly via activation of NF-kappaB and regulation of mitogen-activated protein kinases (MAPKs), we examined if QAGlc could be responsible for the suppression of NF-kappaB pathway and MAPKs. We used reporter gene assay and Western blotting to examine the effects of QAGlc on activation and translocation of NF-kappaB. Further, QAGlc-mediated inhibition of NF-kappaB was accompanied with a suppression of its translocation. Apparently, QAGlc was shown to attenuate LPS-induced activation of p38 MAPK and JNK in RAW264.7 cells suggesting that inhibition of MAPK-mediated LPS signaling also contribute to suppression of cytokine production following stimulation of macrophages with LPS.  相似文献   

14.
Flavonoids including the aglycones, hesperetin (HT; 5,7,3'-trihydroxy-4'-methoxy-flavanone), and naringenin (NE; 5,7,4'-trihydroxy flavanone) and glycones, hesperidin (HD; 5,7,3'-trihydroxy-4'-methoxy-flavanone 7-rhamnoglucoside) and naringin (NI; 5,7,4'-trihydroxy flavanone 7-rhamno glucoside), were used to examine the importance of rutinose at C7 on the inhibitory effects of flavonoids on lipopolysaccharide (LPS)-induced nitric oxide production in macrophages. Both HT and NE, but not their respective glycosides HD and NI, induced heme oxygenase 1 (HO-1) protein expression in the presence or absence of LPS and showed time and dose-dependent inhibition of LPS-induced nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression in RAW264.7, J774A.1, and thioglycolate-elicited peritoneal macrophages. Additive inhibitory effect of an HO-1 inducer hemin and NE or NI on LPS-induced NO production and iNOS expression was identified, and HO enzyme inhibitor tin protoporphyrin (SnPP) attenuated the inhibitory effects of HT, NE, and hemin on LPS-induced NO production. Both NE and HT showed no effect on iNOS mRNA and protein stability in RAW264.7 cells. Removal of rutinose at C7 of HD and NI by enzymatic digestion using hesperidinase (HDase) and naringinase (NIase) produce inhibitory activity on LPS-induced NO production, according to the production of the aglycones, HT and NE, by high-performance liquid chromatography (HPLC) analysis. Furthermore, the amount of NO produced by LPS or lipoteichoic acid (LTA) was significantly reduced in HO-1-overexpressing cells (HO-1/RAW264.7) compared to that in parental cells (RAW264.7). Results of the present study provide scientific evidence to suggest that rutinose at C7 is a negative moiety in flavonoid inhibition of LPS-induced NO production, and that HO-1 is involved in the inhibitory mechanism of flavonoids on LPS-induced iNOS and NO production.  相似文献   

15.
We found that CKD712, an S enantiomer of YS49, strongly inhibited inducible nitric oxide synthase (iNOS) and NO induction but showed a weak inhibitory effect on cyclooxygenase-2 (COX-2) and PGE(2) induction in LPS-stimulated RAW 264.7 cells. We, therefore, investigated the molecular mechanism(s) responsible for this by using CKD712 in LPS-activated RAW264.7 cells. Treatment with either SP600125, a specific JNK inhibitor or TPCK, a NF-kappaB inhibitor, but neither ERK inhibitor PD98059 nor p38 inhibitor SB203580, significantly inhibited LPS-mediated iNOS and COX-2 induction. CKD712 inhibited NF-kappaB (p65) activity and translocation but failed to prevent JNK activation. However, AG490, a specific JAK-2/STAT-1 inhibitor, efficiently prevented LPS-mediated iNOS induction but not the induction of COX-2, and CKD712 completely blocked STAT-1 phosphorylation by LPS, suggesting that the NF-kappaB and JAK-2/STAT-1 pathways but not the JNK pathway are important for CKD712 action. Interestingly, CKD712 induced heme oxygenase 1 (HO-1) gene expression in LPS-treated cells. LPS-induced NF-kappaB and STAT-1 activation was partially prevented by HO-1 overexpression. Furthermore, HO-1 siRNA partly reversed not only the LPS-induced NF-kappaB activation and STAT-1 phosphorylation but also inhibition of these actions by CKD 712. Additionally, silencing HO-1 by siRNA prevented CKD712 from inhibiting iNOS expression but not COX-2. When examined plasma NO and PGE(2) levels and iNOS and COX-2 protein levels in lung tissues of mice injected with LPS (10 mg/kg), pretreatment with CKD712 greatly prevented NO and iNOS induction in a dose-dependent manner and slightly affected PGE(2) and COX-2 production as expected. Taken together, we conclude that inhibition of JAK-2/STAT-1 pathways by CKD 712 is critical for the differential inhibition of iNOS and COX-2 by LPS in vitro and in vivo where HO-1 induction also contributes to this by partially modulating JAK-2/STAT-1 pathways.  相似文献   

16.
Liu Z  Fan Y  Wang Y  Han C  Pan Y  Huang H  Ye Y  Luo L  Yin Z 《FEBS letters》2008,582(12):1643-1650
Dipyrithione (PTS2) possesses anti-bacterial and anti-fungal activity. In the present study, we found that PTS2 dose-dependently inhibited the LPS-induced up-regulation of nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein level in RAW264.7 cells. RT-PCR experiments showed that PTS2 suppressed LPS-induced iNOS but not COX-2 expression at the mRNA level. As expected, PTS2 prevented NO secretion in RAW264.7 cells. Furthermore, PTS2 administration significantly decreased LPS-induced mortality in mice. Mechanistically, PTS2 decreased expression and phosphorylation of STAT1, but did not interfere with the MAPK and NF-kappaB pathways. In conclusion, PTS2 protects mice against endotoxic shock and inhibits LPS-induced production of pro-inflammatory mediators, suggesting that PTS2 could play an anti-inflammatory role in response to LPS.  相似文献   

17.
Porphyran, extracted from an edible red alga (Porphyra yezoensis), is a sulphated polysaccharide with a wide variety of biological activities including anti-tumour, antioxidant and immuno-modulating activities. In this study, we examined the effect of porphyran on nitric oxide (NO) production in mouse macrophage cell line RAW264.7 cells. Although no significant activity of porphyran to induce NO or tumour necrosis factor-α (TNF-α) production in RAW264.7 cells was observed at the concentration range tested (10-500 μg/ml), it was found for the first time that porphyran inhibited NO production and expression of inducible nitric oxide synthase (iNOS) in RAW264.7 cells stimulated with lipopolysaccharide (LPS). In the presence of 500 μg/ml porphyran, NO production and expression of iNOS in LPS-treated RAW264.7 cells were completely suppressed. On the other hand, porphyran showed only a marginal effect on the secretion of TNF-α from LPS-stimulated RAW264.7 cells. Electrophoretic mobility shift assay (EMSA) using infrared dye labelled oligonucleotide with nuclear factor-κB (NF-κB) consensus sequence suggested that porphyran inhibited the LPS-induced NF-κB activation. The LPS-inducible nuclear translocation of p65, and the phosphorylation and degradation of IκB-α were also inhibited by the pre-treatment with porphyran. Our results obtained in in vitro analysis suggest that porphyran suppresses NO production in LPS-stimulated macrophages by the blocking of NF-κB activation.  相似文献   

18.
The goal of this study was to elucidate whether triggering the sphingomyelin pathway modulates LPS-initiated responses. For this purpose we investigated the effects of N-acetylsphingosine (C(2)-ceramide) on LPS-induced production of NO and PGE(2) in murine RAW 264.7 macrophages and explored the signaling pathways involved. We found that within a range of 10-50 microM, C(2)-ceramide inhibited LPS-elicited NO synthase and cyclooxygenase-2 induction accompanied by a reduction in NO and PGE(2) formation. By contrast, a structural analog of C(2)-ceramide that does not elicit functional activity, C(2)-dihydroceramide, did not affect the LPS response. The nuclear translocation and DNA binding study revealed that ceramide can inhibit LPS-induced NF-kappaB and AP-1 activation. The immunocomplex kinase assay indicated that IkappaB kinase activity stimulated by LPS was inhibited by ceramide, which concomitantly reduced the IkappaBalpha degradation caused by LPS within 1-6 h. In concert with the decreased cytosolic p65 protein level, LPS treatment resulted in rapid nuclear accumulation of NF-kappaB subunit p65 and its association with the cAMP-responsive element binding protein. Ceramide coaddition inhibited all the LPS responses. In addition, LPS-induced PKC and p38 mitogen-activated protein kinase activation were overcome by ceramide. In conclusion, we suggest that ceramide inhibition of LPS-mediated induction of inducible NO synthase and cyclooxygenase-2 is due to reduction of the activation of NF-kappaB and AP-1, which might result from ceramide's inhibition of LPS-stimulated IkappaB kinase, p38 mitogen-activated protein kinase, and protein kinase C.  相似文献   

19.
20.
The signaling pathway for lipopolysaccharide (LPS)-induced nitric oxide (NO) release in RAW 264.7 macrophages involves the protein kinase C and p38 activation pathways (Chen, C. C., Wang, J. K., and Lin, S. B. (1998) J. Immunol. 161, 6206-6214; Chen, C. C., and Wang, J. K. (1999) Mol. Pharmacol. 55, 481-488). In this study, the role of the cAMP-dependent protein kinase A (PKA) pathway was investigated. The PKA inhibitors, KT-5720 and H8, reduced LPS-induced NO release and inducible nitric oxide synthase (iNOS) expression. The direct PKA activator, Bt(2)cAMP, caused concentration-dependent NO release and iNOS expression, as confirmed by immunofluorescence studies. The intracellular cAMP concentration did not increase until after 6 h of LPS treatment. Two cAMP-elevating agents, forskolin and cholera toxin, potentiated the LPS-induced NO release and iNOS expression. Stimulation of cells with LPS or Bt(2)cAMP for periods of 10 min to 24 h caused nuclear factor-kappaB (NF-kappaB) activation in the nuclei, as shown by detection of NF-kappaB-specific DNA-protein binding. The PKA inhibitor, H8, inhibited the NF-kappaB activation induced by 6- or 12-h treatment with LPS but not that induced after 1, 3, or 24 h. The cyclooxygenase-2 (COX-2) inhibitors, NS-398 and indomethacin, attenuated LPS-induced NO release, iNOS expression, and NF-kappaB DNA-protein complex formation. LPS induced COX-2 expression in a time-dependent manner, and prostaglandin E(2) production was induced in parallel. These results suggest that 6 h of treatment with LPS increases intracellular cAMP levels via COX-2 induction and prostaglandin E(2) production, resulting in PKA activation, NF-kappaB activation, iNOS expression, and NO production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号