首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Chronic pulmonary infection with Pseudomonas aeruginosa is a common and serious problem in patients with cystic fibrosis (CF). The P. aeruginosa isolates from these patients typically have a mucoid colony morphology due to overproduction of the exopolysaccharide alginate, which contributes to the persistence of the organisms in the CF lung. Most of the alginate biosynthetic genes are clustered in the algD operon, located at 34 min on the chromosome. Alginate biosynthesis begins with the formation of an activated monomer, GDP-mannuronate, which is known to occur via the products of the algA, algC, and algD genes. Polymannuronate forms in the periplasm, but the gene products involved in mannuronate translocation across the inner membrane and its polymerization are not known. One locus of the operon which remained uncharacterized was a new gene called algK between alg44 and algE. We sequenced algK from the mucoid CF isolate FRD1 and expressed it in Escherichia coli, which revealed a polypeptide of the predicted size (52 kDa). The sequence of AlgK showed an apparent signal peptide characteristic of a lipoprotein. AlgK-PhoA fusion proteins were constructed and shown to be active, indicating that AlgK has a periplasmic subcellular localization. To test the phenotype of an AlgK mutant, the algK coding sequence was replaced with a nonpolar gentamicin resistance cassette to avoid polar effects on genes downstream of algK that are essential for polymer formation. The algKΔ mutant was nonmucoid, demonstrating that AlgK was required for alginate production. Also, AlgK mutants demonstrated a small-colony phenotype on L agar, suggesting that the loss of AlgK also caused a growth defect. The mutant phenotypes were complemented by a plasmid expressing algK in trans. When the algKΔ mutation was placed in an algJ::Tn501 background, where algA was not expressed due to polar transposon effects, the growth defect was not observed. AlgK mutants appeared to accumulate a toxic extracellular product, and we hypothesized that this could be an unpolymerized alginate precursor. High levels of low-molecular-weight uronic acid were produced by the AlgK mutant. When AlgK culture supernatants were subjected to dialysis, high levels of uronic acids diffused out of the dialysis sac, and no uronic acids were detectable after extensive dialysis. In contrast, the mucoid wild-type strain produced only polymerized uronic acids (i.e., alginate), whereas the algKΔ algJ::Tn501 mutant produced no uronic acids. Thus, the alginate pathway in an AlgK mutant was blocked after transport but at a step before polymerization, suggesting that AlgK plays an important role in the polymerization of mannuronate to alginate.  相似文献   

3.
The study of alginate biosynthesis, the exopolysac charide produced by Azotobacter vinelandii and Pseudomonas aeruginosa, might lead to different bio-technological applications. Here we report the cloning of A. vinelandii algA, the gene coding for the bifunctional enzyme phosphomannose isomerase-guano-sine diphospho-D-mannose pyrophosphorylase (PMI-GMP). This gene was selected by the complementation for xanthan gum production of Xanthomonas campestris pv. campestris xanB mutants, which lack this enzymatic activity. The complementing cosmid clones selected, besides containing algA, presented a gene coding for an alginate lyase activity (algL), and some of them also contained algD which codes for GDP-mannose dehydrogenase. We present here the characterization of the A. vinelandii chromosomal region comprising algD and its promoter region, algA and algL, showing that, as previously reported for P. aeruginosa, A. vinelandii has a cluster of the biosynthetic alginate genes. We provide evidence for the presence of an algD-independent promoter in this region which transcribes at least algL and algA, and which is regulated in a manner that differs from that of the algD promoter.  相似文献   

4.
The gene for the catalytic subunit of cellulose synthase from Acetobacter xylinum has been cloned by using an oligonucleotide probe designed from the N-terminal amino acid sequence of the catalytic subunit (an 83 kDa polypeptide) of the cellulose synthase purified from trypsin-treated membranes of A. xylinum. The gene was located on a 9.5 kb HindIII fragment of A. xylinum DNA that was cloned in the plasmid pUC18. DNA sequencing of approximately 3 kb of the HindIII fragment led to the identification of an open reading frame of 2169 base pairs coding for a polypeptide of 80 kDa. Fifteen amino acids in the N-terminal region (positions 6 to 20) of the amino acid sequence, deduced from the DNA sequence, match with the N-terminal amino acid sequence obtained for the 83 kDa polypeptide, confirming that the DNA sequence cloned codes for the catalytic subunit of cellulose synthase which transfers glucose from UDP-glucose to the growing glucan chain. Trypsin treatment of membranes during purification of the 83 kDa polypeptide cleaved the first 5 amino acids at the N-terminal end of this polypeptide as observed from the deduced amino acid sequence, and also from sequencing of the 83 kDa polypeptide purified from membranes that were not treated with trypsin. Sequence analysis suggests that the cellulose synthase catalytic subunit is an integral membrane protein with 6 transmembrane segments. There is no signal sequence and it is postulated that the protein is anchored in the membrane at the N-terminal end by a single hydrophobic helix. Two potential N-glycosylation sites are predicted from the sequence analysis, and this is in agreement with the earlier observations that the 83 kDa polypeptide is a glycoprotein [13]. The cloned gene is conserved among a number of A. xylinum strains, as determined by Southern hybridization.  相似文献   

5.
Azotobacter vinelandii produces two polymers of industrial importance, i.e. alginate and poly--hydroxybutyrate (PHB). Alginate synthesis constitutes a waste of substrate when seeking to optimize PHB production and, conversely, synthesis of PHB is undesirable when optimizing alginate production. In this study we evaluated the effect of a mutation in algA, the gene encoding the enzyme that catalyzes the first step of the alginate biosynthetic pathway in the production of PHB. We also evaluated production of alginate in strain AT6 carrying a phbB mutation that impairs PHB synthesis. The algA mutation prevented alginate production and increased PHB accumulation up to 5-fold, determined in milligrams per milligram of protein. Similarly, the phbB mutation increased alginate production up to 4-fold.  相似文献   

6.
A single gene (plcA) was cloned from a cosmid library of Erwinia chrysanthemi EC16 DNA that encoded an extracellular phospholipase. The gene was subcloned and DNA sequence data showed the presence of a single open reading frame encoding a protein with a predicted size of 39kDa. The coding region was G+C-rich and the protein had a predicted basic isoelectric point. The protein showed no significant homology with others in the PIR library, including other phospholipases. When overexpressed in Escherichia coli cells, the plcA gene directed production of a c. 39kDa protein that was largely localized in the periplasm, but its N-terminal amino acid sequence was that of the native protein predicted from DNA sequence data. Unlike the wild-type bacterium, an E. chrysanthemi EC16 marker exchange mutant of the plcA gene did not secrete extracellular phospholipase activity into the medium. However, no detectable change was observed in terms of the virulence of the mutant strain on potato tubers or chrysanthemum stems.  相似文献   

7.
Two cosmid clones containing distinct types of self-defense gene of a 6-demethylchlortetracycline producer, Streptomyces aureofaciens NRRL3203, were isolated. The gene responsible for chlorination of tetracycline (chl gene) was subcloned from one of the cosmid clones by complementation of a chlorination-deficient mutant, using a gene cloning system for strain NRRL3203 developed in this study. The nucleotide sequence analysis of a 4.4-kb SacI-BamHI fragment containing the chl gene showed that the predicted product of the chl gene is a polypeptide of 452 amino acids, and that the chl gene was preceded by two open reading frames, which could endode polypeptides of 50 kDa and 32 kDa, respectively. A search for sequences homologous to these ORFs found that the former product strongly resembles that of the 6-hydroxylation enzyme for oxytetracycline biosynthesis, and that the latter product has a weak but significant similarity to the hydroxy indole O-methyltransferase of bovine pineal gland. By Northern blot analysis, these three genes were suggested to be polycistronically transcribed.  相似文献   

8.
We have analyzed the nucleotide sequence and accumulation of an mRNA which is prevalent in seeds of Brassica napus L. During normal development, the mRNA begins to accumulate during late embryogeny, is stored in dry seeds, and becomes undetectable in seedlings within 24 hours after imbibition. Moreover, abscisic acid treatment of embryos precociously induces or enhances accumulation of the mRNA. Nucleotide sequencing studies show that the deduced 30 kDa polypeptide has an unusual primary structure; the polypeptide possesses direct amino acid sequence repeats and is virtually entirely hydrophilic with the exception of a hydrophobic carboxyl-terminal region. Based upon the expression pattern and predicted polypeptide sequence, we conclude that the mRNA is encoded by a late embryogenesis-abundant (Lea) gene in B. napus.Abbreviations ABA abscisic acid - bp base pairs - DAF days after flowering - HAI hours after the start of imbibition - kb kilobase (pairs)  相似文献   

9.
DNA sequencing of the region downstream of the cellulose synthase catalytic subunit gene of Acetobacter xylinum led to the identification of an open reading frame coding for a polypeptide of 86 kDa. The deduced amino acid sequence of this polypeptide matches from position 27 to 40 with the N-terminal amino acid sequence determined for a 93 kDa polypeptide that copurifies with the cellulose synthase catalytic subunit during purification of cellulose synthase. The cellulose synthase catalytic subunit gene and the gene encoding the 93 kDa polypeptide, along with other genes probably, are organized as an operon for cellulose biosynthesis in which the first gene is the catalytic subunit gene and the second gene codes for the 93 kDa polypeptide. The function of the 93 kDa polypeptide is not clear at present, however it appears to be tightly associated with the cellulose synthase catalytic subunit. Sequence analysis of the polypeptide shows that it is a membrane protein with a signal sequence at the N-terminal end and a transmembrane helix in the C-terminal region for anchoring it into the membrane.  相似文献   

10.
11.
12.
A cDNA clone encoding the photosystem I subunit, PSI-G was isolated from barley using an oligonucleotide specifying a partial amino acid sequence from a 9 kDa polypeptide of barley photosystem I. The 724 bp sequence contains an open reading frame encoding a precursor polypeptide of 15 107 kDa. Import studies using the in vitro expressed barley PsaG cDNA clone demonstrate that PSI-G migrates with an apparent molecular mass of 9 kDa on SDS-polyacrylamide gels together with PSI-C (subunit-VII). The previous assignment of the gene product of PsaG from spinach as subunit V (Steppuhn J, Hermans J, Nechushtai R, Ljungberg U, Thümmler F, Lottspeich F, Herrmann RG, FEBS Lett 237: 218–224, 1988) needs to be re-examined. The expression of the psaG gene is light-induced similar to other barley photosystem I genes. A significant sequence similarity to PSI-K from Chlamydomonas reinhardtii was discovered when a gene database was searched with the barley PSI-G amino acid sequence. Extensive sequence similarity between the nuclear-encoded photosystem I subunits has not previously been found. The observed sequence similarity between PSI-G and PSI-K suggests a symmetric location of these subunits in the photosystem I complex. The hydropathy plot of the barley PSI-G polypeptide indicates two membrane-spanning regions which are also found at the corresponding locations in the PSI-K polypeptide. PSI-G and PSI-K probably have evolved from a gene duplication of an ancestral gene.  相似文献   

13.
In heterothallic ascomycetes one mating partner serves as the source of female tissue and is fertilized with spermatia from a partner of the opposite mating type. The role of pheromone signaling in mating is thought to involve recognition of cells of the opposite mating type. We have isolated two putative pheromone precursor genes of Magnaporthe grisea. The genes are present in both mating types of the fungus but they are expressed in a mating type-specific manner. The MF1-1 gene, expressed in Mat1-1 strains, is predicted to encode a 26-amino-acid polypeptide that is processed to produce a lipopeptide pheromone. The MF2-1 gene, expressed in Mat1-2 strains, is predicted to encode a precursor polypeptide that is processed by a Kex2-like protease to yield a pheromone with striking similarity to the predicted pheromone sequence of a close relative, Cryphonectria parasitica. Expression of the M. grisea putative pheromone precursor genes was observed under defined nutritional conditions and in field isolates. This suggests that the requirement for complex media for mating and the poor fertility of field isolates may not be due to limitation of pheromone precursor gene expression. Detection of putative pheromone precursor gene mRNA in conidia suggests that pheromones may be important for the fertility of conidia acting as spermatia.  相似文献   

14.
The p55 gene, which codes for a 55-kDa erythrocyte membrane protein, has been cloned and sequenced from the genome of the Japanese puffer fish Fugu rubripes (Fugu). This organism has the smallest recorded vertebrate genome and therefore provides an efficient way to sequence genes at the genomic level. The gene encoding p55 covers 5.5 kb from the beginning to the end of the coding sequence, four to six times smaller than the estimated size of the human gene, and is encoded by 12 exons. The structure of this gene has not been previously elucidated, but from this and other data we would predict a similar or identical structure in mammals. The predicted amino acid sequence of this gene in Fugu, coding for a polypeptide of 467 amino acids, is very similar to that of the human gene with the exception of the first two exons, which differ considerably. The predicted Fugu protein has a molecular weight (52.6 kDa compared with 52.3 kDa) and an isoelectric point very similar to those of human p55. In human, the p55 gene lies in the gene-dense Xq28 region, just 30 kb 3′ to the Factor VIII gene, and is estimated to cover 20-30 kb. Its 5′ end is associated with a CpG island, although there is no evidence that this is the case in Fugu. The small size of genes in Fugu and the high coding homology that they share with their mammalian equivalents, both in structure and sequence, make this compact vertebrate genome an ideal model for genomic studies.  相似文献   

15.
Abstract

A novel cry59-type gene, cry59Ba1, was obtained from isolate Bm59-2 and identified from an assembled plasmid genome sequence. This gene was found to encode a polypeptide of 674 amino acid residues with a predicted molecular mass of 75.2 kDa. This polypeptide was 62.1% identical to cry59Aa1. The Cry59Ba1 protein was expressed in the acrystalliferous mutant strain HD73? and tested against Culex quinquefasciatus (Diptera), Spodoptera exigua (Lepidoptera) and Helicoverpa armigera (Lepidoptera). The bioassay showed Cry59Ba1 protein to be highly toxic to S. exigua (Lepidoptera) (LC50 =26.2 µg/ml, 95% confidence limit, 16.2-75.3 µg/ml). The cloning of cry59Ba1 gene may provide a novel type insecticidal resource for resolving the problem of lepidopteran insects developing resistance to the Cry1 proteins.  相似文献   

16.
The thyA gene which codes for thymidylate synthase has been cloned and sequenced from the wild-type Shigella flexneri Y strain SH4 and a thyA mutant TSF21 after amplifying the gene by polymerase chain reaction (PCR). The nucleotide sequence revealed 98% homology to the E. coli K-12 thyA gene. The sequence of the wild-type thyA gene of Shigella flexneri Y was identical with that of the thyA mutant except that the residue T at position 345 was replaced by residue A in the thyA mutant. This change would cause a predicted amino acid substitution of leucine at position 44 in the polypeptide product of the wild type by glutamine in the mutant. Thus, Leu44 may be critical in enzymatic activity of the thyA gene product thymidylate synthase.  相似文献   

17.
A cDNA encoding farnesyl diphosphate synthase, an enzyme that synthesizes C15 isoprenoid diphosphate from isopentenyl diphosphate and dimethylallyl diphosphate, was cloned from an Arabidopsis thaliana cDNA library by complementation of a mutant of Saccharomyces cerevisiae deficient in this enzyme. The A. thaliana cDNA was also able to complement the lethal phenotype of the erg20 deletion yeast mutant. As deduced from the full-length 1.22 kb cDNA nucleotide sequence, the polypeptide contains 343 amino acids and has a relative molecular mass of 39689. The predicted amino acid sequence presents about 50% identity with the yeast, rat and human FPP synthases. Southern blot analyses indicate that A. thaliana probably contains a single gene for farnesyl diphosphate synthase.  相似文献   

18.
Summary The female-sterile mutants fs(1) 1163 of Drosophila melanogaster described by Gans et al. (1975) has been characterised as a yolk protein 1 (YP1) secretion mutant (Bownes and Hames 1978b; Bownes and Hodson 1980). We have cloned and sequenced the YP1 gene from this strain, and the strain in which the mutant was induced. One amino acid substitution was found in the predicted polypeptide sequence, an isoleucine to asparagine change at position 92. The sequence of the leader peptide was identical to previously published YP1 sequences. The possible effects of the amino acid change were investigated by computer analysis, which suggests there is no major alteration of secondary structure, but that a hydrophobic region in YP1 is lost in the mutant. This may affect higher order structure.  相似文献   

19.
An environmental isolate of V. mimicus, strain E-33, has been reported to produce and secrete a hemolysin of 63 kDa. The hemolysin is enterotoxic in test animals. The nucleotide sequence of the structural gene of the hemolysin was determined. We found a 2,232 bp open reading frame, which codes a peptide of 744 amino acids, with a calculated molecular weight of 83,903 Da. The sequence for the structural gene was closely related to the V. cholerae el tor hlyA gene, coding an exocellular hemolysin. The amino terminal amino-acid sequence of the 63 kDa hemolysin, purified from V. mimicus, was determined by the Edman degradation method and found to be NH2-S-V-S-A-N-N-V-T-N-N-N-E-T. This sequence is identical from S-152 to T-164 predicted from the nucleotide sequence. So, it seems that the mature hemolysin in V. mimicus is processed upon deleting the first 151 amino acids, and the molecular mass is 65,972 Da. Analyzing the deduced amino-acid sequence, we also found a potential signal sequence of 24 amino acids at the amino terminal. Our results suggest that, like V. cholerae hemolysin, two-step processing also exists in V. mimicus hemolysin.  相似文献   

20.
Cui Y  Tu R  Guan Y  Ma L  Chen S 《Current microbiology》2006,52(3):169-177
The fhuE gene of Escherichia coli encodes the FhuE protein, which is a receptor protein in the coprogen-mediated siderophore iron-transport system. A fhuE gene homologue from Azospirillum brasilense, a nitrogen-fixing soil bacterium that lives in association with the roots of cereal grasses, was cloned, sequenced, and characterized. The A. brasilense fhuE encodes a protein of 802 amino acids with a predicted molecular weight of approximately 87 kDa. The deduced amino-acid sequence showed a high level of homology to the sequences of all the known fhuE gene products. The fhuE mutant was sensitive to iron starvation and defective in coprogen-mediated iron uptake. The mutant failed to express one membrane protein of approximately 78 kDa that was induced by iron starvation in the wild type. Complementation studies showed that the A. brasilense fhuE gene, when present on a low-copy number plasmid, could restore the functions of the mutant. Mutation in fhuE gene did not affect nitrogen fixation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号