首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lucero  D. W.  Grieu  P.  Guckert  A. 《Plant and Soil》2000,227(1-2):1-15
The combined effects of soil water deficit and above and below ground interspecific plant competition on the growth, water-use efficiency (WUE), and measured carbon isotopic composition (δ13C) values of white clover and ryegrass were studied. White clover and ryegrass were grown in specially designed crates 1) individually; 2) in shoot competition; or 3) in shoot + root competition and either well-watered or at a moderate or severe soil water deficit. The effects of shoot + root competition on shoot dry matter growth were substantial and benefited both white clover and ryegrass when well-watered or at a moderate soil water deficit, while severely reducing white clover shoot dry matter growth at severe soil water deficit. Plant competition did not affect the WUE of white clover or ryegrass. As soil water deficit increased, the WUE of white clover did not change whereas the WUE of ryegrass increased and was greater than that of white clover. This was attributed to the lower leaf water conductance of ryegrass which conserved water and maintained growth longer compared to white clover. A stronger correlation existed between soil water deficit and measured δ13C values for ryegrass at each plant competition level (P<0.001) than existed for white clover (individual: P<0.01; shoot + root: P<0.001; shoot: P<0.10). Unlike white clover, the relationship between measured δ13C values and shoot dry matter growth indicated that C assimilation for ryegrass was dependent on type of plant competition. That WUE remained constant for white clover while measured δ13C values increased as soil water deficit increased, suggests that the role below ground respiration rate played in determining δ13C values increased. The WUE of white clover appears to be independent of the nature of the competition between plants and the soil water deficit level at which it is grown, whereas for ryegrass, the addition of root competition to shoot competition should lead to increases in its WUE. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
Regrowth after cutting and the distribution of nitrogen (N),phosphorus (P) and potassium (K) in different plant organs ofwhite clover and perennial ryegrass growing in pure or mixedswards were investigated under field conditions in a soil witha low-to-moderate availability of P and K. In all treatments,white clover constituted more than 70% of the above-ground biomassin the mixed swards. The petioles were the dominant pool ofdry matter throughout regrowth and contained the greatest amountsof N, P and K. Increased supply of P and K increased the growthof ryegrass, but not that of white clover in the mixed swards.The increased competition from ryegrass led to a decline inthe yield of white clover laminae as well as in the N contentper unit of dry matter in laminae, petioles and stolons. TheP content of all white clover organs also declined followingP application to the mixed swards, whereas K application increasedtheir K contents. In the pure swards of ryegrass and white clover,yields and contents of N, P and K in the dry matter were eithernot affected or increased following P and K application. Itwas concluded that commonly-used defoliation heights may remove80% or more of the nutrient and dry matter pools located inthe petioles but the remaining quantities of dry matter andnutrients in the petioles will normally exceed the correspondingquantities in the stolons. Copyright 2001 Annals of Botany Company Coexistence, competition, phosphorus, potassium, regrowth, ryegrass, white clover  相似文献   

3.
For pastures, root turnover can have an important influence on nutrient and carbon cycling, and plant performance. Turnover was calculated from mini‐rhizotron observations for chicory (Cichorium intybus), lucerne (Medicago sativa), perennial ryegrass (Lolium perenne) and white clover (Trifolium repens) grown in the Manawatu, New Zealand. The species were combined factorially with four earthworm species treatments and a no‐earthworm control. Split plots compared the effects of not cutting and cutting the shoots at intervals. Observations were made c. 18 days apart for 2.5 years. This article concentrates on differences between plant species in root turnover in the whole soil profile to 40 cm depth. At this scale, earthworm effects were generally small and short lived. For ryegrass and white clover, root length and mass were linearly related (R2 = 0.82–0.99). For chicory and lucerne, the relationships were poorer (R2 = 0.38–0.77), so for those species length turnover may be a poor indicator of mass turnover. Standing root length, total growth and death generally decreased in the sequence ryegrass > lucerne > chicory = white clover. In length terms, scaled turnover (growth divided by average standing root length) generally followed the sequence lucerne > white clover > perennial ryegrass = chicory. Across species the scaled turnover rate averaged 3.4 per year or 0.9% per day. Cutting shoots reduced standing root length, growth and death, but increased scaled turnover. These results indicate fast and prolonged root turnover. For ryegrass and white clover, at least there is need to reappraise how to measure and model shoot : root ratios, dry matter production and carbon cycling.  相似文献   

4.
Persistence of forage grasses is enhanced through the deliberate and selective use of symbiotic fungal endophytes that confer benefits, particularly pest resistance. However, they have also been implicated in reduced plant community diversity as a result of directly or indirectly enhancing competitive ability. A relatively underexplored mechanism by which endophytes might influence pasture plant composition is by altering the biotic or abiotic soil conditions. To examine the soil conditioning effects of forage grass species and their fungal symbionts we tested the responses of three pasture plants, perennial ryegrass, prairie grass, and white clover in nine different soils that had been conditioned by monocultures of endophyte-containing (E+), or endophyte-free (E?), perennial ryegrass, tall fescue, or meadow fescue. Conditioning grass species had little effect on the responses of perennial ryegrass and prairie grass regardless of E+ or E? treatments. In contrast, conditioning species had a strong effect on the response of white clover, resulting in reduced biomass when grown in perennial ryegrass conditioned soils. The presence of endophyte also had significant growth consequences for white clover, but was either positive or negative depending on the conditioning grass species. In comparison to their respective E? treatments, E+ tall and meadow fescue conditioned soils resulted in reduced biomass of white clover, whereas E+ perennial ryegrass conditioned soils resulted in increased biomass of white clover. Among the conditioning strains (AR1, AR37, NEA2, WE) of E+ perennial ryegrass, white clover showed significantly different responses, but all responses were positive in comparison to the E? treatment. By examining the effects of several grass species and endophyte strains, we were able to determine the relative importance of grass species vs. fungal symbiont on soil conditioning. Overall, the conditioning effect of grass species was stronger than the effects associated with endophyte, particularly with regard to the response of white clover. We conclude that both grass species and their fungal endophytes can influence pasture plant community composition through plant–soil feedback.  相似文献   

5.
The effects of phosphorus (P) application and mycorrhizal inoculation on the root characteristics of subterranean clover and ryegrass were examined. Phosphorus application increased total root length, root surface area and root volume of both plant species. In contrast, mycorrhizal infection only affected the root characteristics of subterranean clover. Ryegrass took up more P than non-mycorrhizal subterranean clover at all levels of application. However, mycorrhizal infection only increased P uptake by subterranean clover and there was no difference in P uptake between ryegrass and mycorrhizal subterranean clover at low levels of P application. When the P uptake was expressed on the basis of any of the root characteristics, subterranean clover were superior to ryegrass suggesting that the greater uptake of P by ryegrass is not due to a higher efficiency in absorption of P from soil solution, but rather to a large root system.  相似文献   

6.
Two experiments were conducted with 30 dairy cows each, to study the preference for fresh (Experiment 1) and ensiled (Experiment 2) ryegrass, white and red clover. Both experiments consisted of three choice diets with white or red clover or both, offered with ryegrass, and two diets with ryegrass mixed with white or red clover (40% clover). Cows consumed diets with 37.7% fresh white and 45.9% red clover, and no preference was observed when the cows were offered all three forages. By contrast, cows preferred white and red clover silage (73.0 and 69.2%, respectively) over ryegrass silage (of lower nutritive quality). When offered three forages, cows preferred white (59.8%) over red clover (17.5%) and ryegrass (22.7%). Choice diets resulted in diets similar (fresh forages) or higher in nutrient content and digestibility (silages). Treatments did not affect feed intake and performance. Choices compared to mixed diets with red clover silage were preferable regarding the fatty acid composition of the milk fat. Obviously, only large differences in nutrient and energy concentration facilitate preferences for clovers over ryegrass, which could, depending on clover type, be beneficial in terms of the milk's fatty acid composition.  相似文献   

7.
Root exudates: a pathway for short-term N transfer from clover and ryegrass   总被引:16,自引:1,他引:15  
The short-term transfer of nitrogen (N) from legumes to grasses was investigated in two laboratory studies. One study was done in pots where the roots of white clover (Trifolium repens L.) and perennial ryegrass (Lolium perenne L.) were allowed to co-exist, and a second study was performed using a micro-lysimeter system designed to maintain nutrient flow from the clover to the grass, whilst removing direct contact between the root systems. The 15N-dilution technique was used to quantify the transfer of N between species. Levels of ammonia and amino acids were measured in root exudates. The amounts of N transferred were in the same order of magnitude in both the pot and micro-lysimeter experiments. In the micro-lysimeter experiment, 0.076 mg of N were transferred per plant from clover to ryegrass during the course of the experiment. Ammonium exudation was much higher than amino acid exudation. The most abundant amino acids in both clover and ryegrass root exudates were serine and glycine. However, there was no correlation between the free amino acid profile of root extracts and exudates for both plant species: Asparagine was the major amino acid in clover roots, while glutamine, glutamate and aspartate were the major amino acids in ryegrass roots. Comparison of exudates obtained from plants grown in non-sterile or axenic conditions provides evidence of plant origin of ammonium, serine and glycine.  相似文献   

8.
 The effect of arbuscular mycorrhiza (AM) on white clover and ryegrass grown together in a soil spiked with polycyclic aromatic hydrocarbons (PAH) was assessed in a pot experiment. The soil was spiked with 500 mg kg–1 anthracene, 500 mg kg–1 chrysene and 50 mg kg–1 dibenz(a,h)anthracene, representing common PAH compounds with three, four and five aromatic rings, respectively. Three treatments and two harvest times (8 and 16 weeks) were imposed on plants grown in spiked soil: no mycorrhizal inoculation, mycorrhizal inoculation (Glomus mosseae P2, BEG 69) and mycorrhizal inoculation and surfactant addition (Triton X-100). Pots without PAH were also included as a control of plant growth and mycorrhizal colonization as affected by PAH additions. The competitive ability of clover vis-à-vis ryegrass regarding shoot and root growth was enhanced by AM, but reduced by PAH and the added surfactant. This was reflected by mycorrhizal root colonization which was moderate for clover (20–40% of total root length) and very low for ryegrass (0.5–5% of total root length). Colonization of either plant was similar in spiked soil with and without the added surfactant, but the PAH reduced colonization of clover to half that in non-spiked soil. P uptake was maintained in mycorrhizal clover when PAH were added, but was reduced in non-mycorrhizal clover and in mycorrhizal clover that received surfactant. Similar effects were not observed on ryegrass. These results are discussed in the context of the natural attenuation of organic pollutants in soils. Accepted: 12 June 2000  相似文献   

9.
Perennial ryegrass and perennial ryegrass/white clover permanent dairy pastures are compared with respect to productivity, environmental impact and financial costs in nitrate vulnerable zones (NVZ) in the UK. With appropriate management, and utilisation of recommended perennial ryegrass and white clover cultivars, white clover is likely to stabilise at around 20% of total dry matter production in a mixed pasture. Plant dry matter production and milk production from a perennial ryegrass/white clover pasture are likely to be similar to that from a perennial ryegrass pasture receiving 200 kg N ha−1 annum−1 and around 70% of that obtained with perennial ryegrass supplied with 350–400 kg N ha−1 annum−1. Nitrate, phosphorus and methane losses from the system and decreases in biodiversity relative to a grazed indigenous sward are likely to be similar for a perennial ryegrass/white clover pasture and a perennial ryegrass pasture receiving 200 kg N ha−1 annum−1: nitrate leachate from both systems is likely to comply with European legislation. Greenhouse gas emissions resulting from nitrogen (N) fertiliser production would be avoided with the perennial ryegrass/white clover pasture. Within NVZ stocking rate restrictions, white clover can provide the N required by a pasture at a lower financial cost than that incurred by the application of N fertiliser.  相似文献   

10.
The effects of root feeding by larvae of Sitona hispidulus (F.) (a common weevil pest of white clover) on the rate of transfer of nitrogen between plants of white clover (Trifolium repens L.) and perennial ryegrass (Lolium perenne L.) were investigated using a nutrient slant board technique. Clover plants, labelled with 15N were grown adjacent to ryegrass plants and were either infested with Sitona larvae or not infested. Ryegrass plants associated with the infested clover plants had a significantly higher dry matter yield and nitrogen content (75% and 74% respectively) than the uninvested plants, after 33 days exposure to insect herbivory. It was concluded that root feeding insects could play an important role in the cycling of nitrogen in grass/clover swards.  相似文献   

11.
The development of an axillary bud of white clover to form abranch depends on (1) the bud being viable, vegetative and non-dormant,and (2) suitable conditions for outgrowth of the bud. Foragingtheory emphasises the second of these requirements. Glasshousestudies with white clover rarely result in a loss of bud viability.In contrast, in field populations over 50% of the buds reachingthe stage of maturity when branching can occur are not in aviable, vegetative, non-dormant condition. We examined whethernon-viability could be induced in a glasshouse experiment byapplying treatments in a factorial design. The factors were:defoliation, phosphorus supply, soil moisture status, simulatedtreading and grass competition. In addition, we measured theeffects of the treatments on the outgrowth of viable buds inorder to assess whether the same factors were determining viabilityand outgrowth. Defoliation significantly reduced bud viability(by 44%) but no other factors, either singly or in combination,had a significant effect. A greater variety of factors and combinationsof factors influenced bud outgrowth; these were defoliation,phosphorus status and interactions involving phosphorus andgrass; defoliation, phosphorus and soil moisture; and soil moisture,grass and treading. For white clover it is relevant to includethe state of the axillary meristem in any model of foraging. Trifolium repens ; white clover; axillary bud; viability; clonal growth; foraging; defoliation  相似文献   

12.
Single plants of white clover, grown in a controlled environmentand dependent for nitrogen on fixation in their root nodules,were defoliated once by removing approximately half their shoottissue. Their regrowth was compared with the growth of comparableundefoliated plants. Two similar experiments were carried out:in the first, plants were defoliated at 2.5 g, and in the secondat 1.2 g total plant d. wt. Defoliation reduced rate of N2 fixation by > 70 per cent,rate of photosynthesis by 83–96 per cent, and rate ofplant respiration by 30–40 per cent. Nodule weights initiallydeclined following defoliation as a result of loss of carbohydratesand other unidentified components. No immediate shedding ofnodules was observed but nodules on the most severely defoliatedplants exhibited accelerated senescence. The original rates of N2 fixation were re-attained after 5–6or 9 d regrowth, with increase in plant size at defoliation.In general, the rate of recovery of N2 fixation was relatedto the re-establishment and increase of the plant's photosyntheticcapacity. Throughout the growth of both defoliated and undefoliatedplants nodule respiration (metabolism) accounted for at least23 ± 2 per cent of gross photosynthesis. The unit ‘cost’of fixing N2 in root nodules, in terms of photosynthate, appearedto be unaffected by defoliation, except perhaps for plants veryrecently defoliated. Similarly, the percentage nitrogen contentsof shoot, root and nodules of defoliated plants became adaptedwithin a few days to those characteristic of undefoliated plants. Trifolium repens, white clover, N2 fixation, defoliation, photosynthesis, respiration  相似文献   

13.
混播草地不同种群再生性的研究   总被引:15,自引:0,他引:15  
在不同刈割频率和时间尺度下 ,对混播草地多年生黑麦草 (Lolium perenne)分蘖数和叶片生长、白三叶 (Trifoliumrepens)分枝数和匍匐茎生长及不同种群年产量和组分进行了连续 3年的监测研究 .结果表明 ,刈割能刺激黑麦草叶片、白三叶匍匐茎生长和分枝数发生 ,保持混播草地黑麦草和白三叶的适宜比和稳定共存 ,提高草地年生产力 ,但不同刈割频率和刈割时间对其影响差异不显著 (P >0 .0 5 ) .黑麦草叶片生长对 6月刈割效果比 8月明显 ,而白三叶匍匐茎生长则与之相反 ,黑麦草产量主要取决于叶片生长 ,白三叶产量主要取决于匍匐茎分枝数 .刈割的黑麦草、白三叶产量组分比分别为 5 0 %、15 % ,比试验前约低 10 %、5 % ,而CK为 39%、6 % .  相似文献   

14.
Nassiri  M.  Elgersma  A. 《Plant and Soil》2002,246(1):107-121
The effects of applied nitrogen (N) on dynamics of regrowth, dry matter (DM) allocation and leaf characteristics of grass and clover were investigated. Binary mixtures and monocultures of the diploid perennial ryegrass cultivars Barlet (erect) and Heraut (prostrate) and the white clovers cvs. Alice (large-leaved) and Gwenda (small-leaved) were established in a field experiment. Grass monocultures received three levels of N application (0, 140 or 280 kg N ha–1), and mixtures 150 kg N ha–1 (+N) or no N (–N). N was applied split over the season. Application of N reduced the average clover content in the DM of the mixtures from 43 to 12%. Due to defoliation, clover lost relatively more leaf area and less DM than grass, leading to a lower clover fraction in the leaf area index (LAI) of the stubble at the start of the next regrowth. In the –N mixtures, the clover fraction of the biomass and of the LAI increased within successive regrowth periods. In the +N mixtures, large-leaved Alice maintained its content during summer, mainly due to its greater petiole length which increased in response to N. The opposite was observed for Gwenda. At each harvest, the content of small-leaved Gwenda in the LAI and DM was lower than in the stubble at the start of regrowth. The allocation of DM to the petioles of Alice led to a decrease in the leaf weight ratio (LWR) in the +N mixtures, while Gwenda had a higher LWR and specific leaf area (SLA) in the +N mixtures than in the –N mixtures. There was little or no effect of ryegrass cultivar on competition with white clover.  相似文献   

15.
The grazing tolerance mechanism of ryegrass was investigated by examining the effects of roots on leaves under frequent defoliation. The study consisted of four treatments: (1) with root breaking and cytokinin spraying, (2) root breaking without cytokinin spraying, (3) cytokinin spraying with no root breaking, and (4) no root breaking and no cytokinin spraying. Results showed that root breaking or frequent defoliation inhibited the ryegrass regrowth, which resulted in low biomass of the newly grown leaves and roots, as well as low soluble carbohydrate content and xylem sap quantity in the roots. Spraying with exogenous cytokinin promoted the increase in newly grown leaf biomass, but decreased root biomass, root soluble carbohydrate content, and root xylem sap quantity. Determination of gibberellic acid, indole-3-acetic acid, abscisic acid, and zeatin riboside (ZR) in roots, newly grown leaves, and stubbles showed that cytokinin is a key factor in ryegrass regrowth under frequent defoliation. Root breaking and frequent defoliation both decreased the ZR content in roots and in newly grown leaves, whereas spraying with exogenous cytokinin increased the ZR content in roots and in newly grown leaves. Therefore, cytokinin enhances the above ground productivity at the cost of root growth under frequent defoliation.  相似文献   

16.
Summary White clover and perennial ryegrass were grown separately, in pots maintained under controlled environment conditions, for a period of 7 months on ten soils. The proportion of the total soil content of each element taken up by the ryegrass, including that in roots, ranged from 0.88 to 2.18% for Cu, from 0.82 to 2.80% for Zn and from 0.25 to 3.15% for Mn. Uptake by the clover was within these ranges for Cu and Zn, but ranged from 0.10 to 1.71% for Mn.After adjustment for the effects of soil contamination, the ratio of root concentration: shoot concentration was always greater than 1 for both Cu and Zn, and for Cu, though not for Zn, it was considerably greater with ryegrass than with clover. For Mn, the ratio of root:shoot concentration was often greater than 1, and differences between clover and grass were not consistent.Concentrations of Cu and Zn in the shoots were always greater in the clover than in the grass, but concentrations of Mn were generally greater in the grass than the clover.  相似文献   

17.
We established a greenhouse experiment based on replicated mini‐ecosystems to evaluate the effects of defoliation intensity on soil food‐web properties in grasslands. Plant communities, composed of white clover (Trifolium repens), perennial ryegrass (Lolium perenne) and plantain (Plantago lanceolata) with well‐established root and shoot systems, were subjected to five defoliation intensity treatments: no trimming (defoliation intensity 0, or DI 0), and trimming of all plant material to 35 cm (DI 1), 25 cm (DI 2), 15 cm (DI 3) and 10 cm (DI 4) above soil surface every second week for 14 weeks. Intensification of defoliation reduced shoot production and standing shoot and root mass of plant communities but increased their root to shoot ratio. Soil microbial activity and biomass decreased with intensification of defoliation. Concentrations of NO3–N in soil steadily increased with intensifying defoliation, whereas NH4–N concentrations did not vary between treatments. Numbers of microbi‐detritivorous enchytraeids, bacterial‐feeding rotifers and bacterial‐feeding nematodes steadily increased with intensifying defoliation, while the abundance of fungal‐feeding nematodes was significantly enhanced only in DI 3 and DI 4 relative to DI 0. The abundance of herbivorous nematodes per unit soil mass was lower in DI 3 and DI 4 than in DI 0, DI 1 and DI 2, but when calculated per unit root mass, their abundance tended to increase with defoliation intensity. The abundance of omnivorous and predatory nematodes appeared to be highest in the most intensely defoliated systems. The ratio of abundance of fungal‐feeding nematodes to that of bacterial‐feeding nematodes was not significantly affected by defoliation intensity. The results infer that defoliation intensity may significantly alter the structure of soil food webs in grasslands, and that defoliation per se is able to induce patterns observed in grazing studies in the field. The results did not support hypotheses that defoliation per se would cause a shift between the bacterial‐based and fungal‐based energy channels in the decomposer food web, or that herbivore and detritivore densities in soil would be highest under intermediate defoliation. Furthermore, our data for microbes and microbial feeders implies that the effects of defoliation intensity on soil food‐web structure may depend on the duration of defoliation and are therefore likely to be dynamic rather than constant in nature.  相似文献   

18.
The ability of white clover (Trifolium repens L.) to undergo cold acclimation is an important determinant of its persistence in mixed swards since growth rate at low temperatures sustains higher clover contents at the start of spring. During a re-growth period following defoliation, a gradual exposure of the root system (cv. Grasslands Huia) led to some physiological and morphological changes of cold-adaptive significance, similar to those developed by clover ecotypes originating in northern areas of Europe. Thus, cold exposure of the root system resulted in small-leaved prostrate forms of white clover after one month of re-growth. Similarly, cold exposure increased the ability of plants to store nitrogen since the application of low temperatures to the root system enhanced soluble protein accumulation in roots and in stolons. More specifically, cold exposure of the roots induced gene expression of a vegetative storage protein (17.3 kDa VSP) in both organs. These results demonstrate that the root system of clover plants should be a site of perception of the low-temperature stimulus, and gave rise to the question of the transduction of the cold signal from the roots to the aerial parts. On the basis of this study and taking into account molecular aspects concerning the clover VSP, it is suggested that this protein could participate in cold acclimation in addition to its role in nitrogen storage.  相似文献   

19.
A previous study found that increased phosphorus (P) supply to frequently defoliated white clover plants, growing in a low-P, dry soil, alleviated water stress symptoms and increased plant recovery on rewatering. In this study we determined how these stresses influence white clover growth. Measurements were made of the leaf canopy, stolon infrastructure and root system of the white clover plants growing in a low-P soil. Treatments included the factorial combination of four levels of P supply, two defoliation frequencies and two soil water treatments. White clover growth declined markedly when P-deficient plants were exposed to frequent defoliation and dry soil conditions. Leaf area was more affected than other parameters, in that the combination of stresses reduced leaf area to 2% of maximum observed for infrequently defoliated plants growing in high-P soil, with adequate water. Increased P supply generally increased the growth of all plant parts. Frequently defoliated plants growing in dry soil produced similar or greater leaf mass and leaf area as plants from similar treatments growing in wet soil, when the P supply increased to 50 mg P kg-1 soil. Higher P rates were able to negate the effect of dry soil on these frequently defoliated plants, as a result of larger water and P uptake. Also, the frequently defoliated plants with restricted root growth did not respond to a small increase in P supply (17 mg P kg-1 soil) for the leaf growth, irrespective of whether they were growing in wet or dry soil. Infrequently defoliated plants with greater root growth, compared to frequently defoliated plants, more than doubled their leaf mass with this P treatment.  相似文献   

20.
Three experiments are reported which examine the relative roles of host and Rhizobium genotypes as factors limiting clover (Trifolium repens L.) growth at low soil temperatures.In the first experiment un-nodulated clover and perennial ryegrass (Lolium perenne L.) were grown with non-limiting nitrate at root temperatures of 8, 10 and 12°C. The ryegrass had substantially better relative growth rates (RGR) than the clover with the biggest difference occurring at 8°C. Alterations in growth rate with temperature were more marked in clover than in ryegrass but the latter still produced several times more dry matter than clover at each temperature.In the subsequent experiments clover nodulated with different strains of rhizobia was grown with and without non-limiting additions of nitrate at root temperatures of 9, 12 and 15°C. Plants receiving nitrate generally produced more dry matter than those dependent upon Rhizobium for nitrogen but differences in yield between these treatments did not alter with temperature. This suggests that limitations imposed by nitrogen fixation are similar at both high and low temperatures. Indeed, there was some evidence that nitrogen limitations were rather more pronounced at the highest temperature. The first experiment clearly demonstrated that the clover genotype makes particularly poor use of nitrate at low root temperatures when compared to its common companion perennial ryegrass.It can be concluded that improvements in spring growth of clover will rest largely with alterations to the plant genotype and its ability to use combined nitrogen for growth at lower temperatures rather than with changes in rhizobia or any symbiotic characters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号