首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The degree of negative influence of acid gases on plants is considered in dependence of their solubility in water. The linkage of water in the processes of hydration of gases forming acids can decrease the chemical potential of water in leaf apoplast. It causes the decrease in water inflow into leaf symplast. The more solubility of acid gases in water and the higher their concentration in the air, the lower water inflow from apoplast to symplast. At high concentration of toxicant water chemical potential in leaf apoplast is lower, than in symplast, and the water flows out into apoplast, i.e. plasmolis takes place. Plasmolis leads to the increase in toxicant concentration in leaf symplast and finally to the necrosis of cells. When air with acid gases are dissolving in apoplast water, "concentrating" of acid gases takes place because the acid components are more soluble in water than the main components of the air (nitrogen and oxygen). The lower acid dissociation in apoplast water, the higher speed of receipt from apoplast to symplast and even to inner cell compartments through cell membranes. It can explain why sulfur dioxide and fluoric hydrogen forming weak acids, are more toxic than nitric dioxide. Exogenous acids producing the hydrogen ions negatively influence on different metabolic processes of plants.  相似文献   

2.
Compartmentation of solutes and water in developing sugarcane stalk tissue   总被引:8,自引:2,他引:6  
Previous studies have suggested that the apoplast solution of sugarcane stalk tissue contains high concentrations of sucrose, but the accuracy of these reports has been questioned because sucrose leakage from damaged cells may have influenced the results. In this study, the solute potential of the apoplast and symplast of the second (immature), tenth, twentieth, thirtieth, and fortieth internodes of field-grown sugarcane (Saccharum spp. hybrid) stalk tissue was determined by two independent methods. Solute potential of the apoplast was measured either directly by osmometry from solution collected by centrifugation, or inferred from the initial water potential of fully hydrated tissue determined by thermocouple psychrometry before the tissue was progressively dehydrated for generation of water potential isotherms. Both methods produced nearly identical values ranging from −0.6 to −1.8 megapascals for immature and mature tissue, respectively. The solute potential of the symplast determined by either method ranged from −1.0 to approximately −2.2 megapascals for immature and mature internodes, respectively. Solute quantitation by HPLC agreed with concentrations inferred from osmometry. Washing thirtieth internode tissue in deionized water increased pressure potential from 0.29 to 1.96 megapascals. The apoplast of mature sugarcane stalk tissue is a significant storage compartment for sucrose containing as much as 25% of the total tissue water volume and as much as 21% of the stored sucrose.  相似文献   

3.
Petal growth associated with flower opening depends on cell expansion. To understand the role of soluble carbohydrates in petal cell expansion during flower opening, changes in soluble carbohydrate concentrations in vacuole, cytoplasm and apoplast of petal cells during flower opening in rose (Rosa hybrida L.) were investigated. We determined the subcellular distribution of soluble carbohydrates by combining nonaqueous fractionation method and infiltration–centrifugation method. During petal growth, fructose and glucose rapidly accumulated in the vacuole, reaching a maximum when petals almost reflected. Transmission electron microscopy showed that the volume of vacuole and air space drastically increased with petal growth. Carbohydrate concentration was calculated for each compartment of the petal cells and in petals that almost reflected, glucose and fructose concentrations increased to higher than 100 mM in the vacuole. Osmotic pressure increased in apoplast and symplast during flower opening, and this increase was mainly attributed to increases in fructose and glucose concentrations. No large difference in osmotic pressure due to soluble carbohydrates was observed between the apoplast and symplast before flower opening, but total osmotic pressure was much higher in the symplast than in the apoplast, a difference that was partially attributed to inorganic ions. An increase in osmotic pressure due to the continued accumulation of glucose and fructose in the symplast may facilitate water influx into cells, contributing to cell expansion associated with flower opening under conditions where osmotic pressure is higher in the symplast than in the apoplast.  相似文献   

4.
以盐敏感型山定子实生苗和耐盐型珠眉海棠组培苗为材料,采用灌注离心技术研究了叶片质外体和共质体中Na^+和Ca^2+浓度的变化。结果表明:随盐胁迫强度的加强,叶片水势下降;叶片Na^+含量、质外体和共质体中Na^+浓度升高,珠眉海棠明显低于山定子;叶片Ca^2+含量、共质体Ca^2+浓度随盐胁迫的增加而升高,但珠眉海棠高于山定子,50mmol/L NaCl胁迫对质外体Ca^2+没有明显影响,100mmol/LNaCl胁迫下增加,珠眉海棠低于山定子;叶片共质体与质外体中Na^+浓度的比值,珠眉海棠明显高于山定子,说明在盐胁迫下珠眉海棠具有较强的离子区域化能力,离子区域化是珠眉海棠的主要耐盐机制。  相似文献   

5.
The roles of plasmalemma electrogenic proton pumps in elongation growth of plant stems are discussed on the basis of growth-electrophysiological studies on hypocotyl segments ofVigna unguiculata. Plant stems usually have two spatially separated electrogenic proton pumps: the surface proton pump which is located on the surface membrane of the symplast and the xylem proton pump, on the cell membrane of the symplast/xylem apoplast boundary. The surface proton pump excretes protons into the surface cell wall layer and causes the loosening of the cell wall. The xylem proton pump excretes protons into the xylem apoplast and drives the uptake of solute and water into the symplastvia secondary and/or tertiary active mechanisms: the proton cotransport system and the apoplast canal system. Both the surface and the xylem proton pumps are active during elongation growth because both the yielding of cell wall loosening and the uptake of water are necessary for continued elongation growth.  相似文献   

6.
The diversity of tissue and cell organization in the leaves of dicots is explained as the mutual effect of light and water fluxes distribution. Equally with certain data about the role of light distribution, the same influence of water flux distribution on the leaf structure is recognized. Dorsiventral leaves of woody plants have an adequate to structure dorsiventral ring of water circulation. Rising flux from the xylem allocates via leaf apoplast with intermediate accumulation in upper epiderma. Descending flux starts and returns to bundle moving from cell to cell along the symplast (ER) of spongy parenchyma, bundle sheath and terminal complexes of the phloem. Isolateral leaves of herbs have a concentric pathway of solute circulation corresponding to the structure. Xylem flux allocates via symplast with water and nitrogen accumulation in paraveinal parenchyma. Water returns to phloem by transit via the apoplast in parallels with phloem exudate formation. Structural features correlated with the model of water circulation in the leaf are described. Numerous lines of leaf evolution well-known for dicots collect to two main topics which are typical for woody and herbaceous forms of dicots. The mechanisms of cell and tissue differentiation under the control of transport fluxes are discussed with special attention to ontogenetic and phylogenetic trends.  相似文献   

7.
The in vivo significance of turgor-dependent unloading was evaluated by examining assimilate transport to and within intact developing seeds of Phaseolus vulgaris (cv. Redland Pioneer) and Vicia faba (cv. Coles Prolific). The osmotic potentials of the seed apoplast were low. As a result, the osmotic gradients to the seed coat symplast were relatively small (i.e. 0.1 to 0.3 MPa). Sap concentrations of sucrose and potassium in the seed apoplast and coat symplast accounted for some 45 to 60% of the osmotic potentials of these compartments. Estimated turnover times of potassium and sucrose in the seed apoplast of < 1 h were some 5 to 13 times faster than the respective turnover times in the coat symplast pools. The small osmotic gradient between the seed apoplast and coat symplast combined with the relatively rapid turnover of solutes in the apoplast pool, confers the potential for a small change in assimilate uptake by the cotyledons to be rapidly translated into an amplified shift in the cell turgor of the seed coat. Observed adjustments in the osmotic potentials of solutions infused between the coat and cotyledons of intact seed were consistent with the in vivo operation of turgor-dependent unloading of solutes from the coat. Homeostatic regulation of turgor-dependent unloading was indicated by the maintenance of apoplast osmotic potentials of intact seeds when assimilate balance was manipulated by partial defoliation or elevating pod temperature. In contrast, osmotic potentials of the coat symplast adjusted upward to new steady values over a 2 to 4 h period. The resultant downward shift in coat cell turgor could serve to integrate phloem import into the seed coat with the new rates of efflux to the seed apoplast. Circumstantial evidence for this linkage was suggested by the approximate coincidence of the turgor changes with those in stem levels of 32P used to monitor phloem transport. The results obtained provide qualified support for the in vivo operation of a turgor homeostat mechanism. It is proposed that the homeostat functions to integrate assimilate demand by the cotyledons with efflux from and phloem import into the coats of developing legume seed.  相似文献   

8.
Watanabe  Toshihiro  Osaki  Mitsuru  Tadano  Toshiaki 《Plant and Soil》2001,231(2):283-291
The mechanism of Al uptake in melastoma (Melastoma malabathricum L.), which accumulates Al in excess of 10 000 mg kg–1 in its leaves and roots, was investigated. Al uptake kinetics in excised melastoma roots showed a biphasic pattern, with an initial rapid phase followed by a slow phase. It was indicated that Al uptake in the excised roots occurs mostly through passive accumulation in the apoplast. On the other hand, Al uptake rate in roots of whole melastoma plant was almost double that in excised roots. The difference of Al uptake rate between excised roots and whole plant seems to be due to transpiration-depended Al uptake. Results from a long-term experiment showed that different characteristics of Al accumulation between melastoma and barley was caused by the difference in capacity to retain Al in root symplast, rather than by the difference in uptake rate into symplast. Concentrations of oxalate in root symplastic and apoplastic fractions, and total oxalate in shoots and roots, did not change greatly with time of Al exposure compared to Al concentration, although oxalate is considered as a main Al ligand in tissue of melastoma. On the other hand, oxalate exudation to root apoplast was induced within 24 h of Al exposure; the role of such exudation was discussed.  相似文献   

9.
Synthesis and movement of abscisic acid (ABA) into the apoplast of water-stressed cotton (Gossypium hirsutum L.) leaves were examined using pressure dehydration techniques. The exudates of leaves dehydrated in a pressure chamber contained ABA. The level of ABA in the exudates was insensitive to the leaf water potential when dehydration occurred over a 3-hour period. When leaves were rapidly dehydrated in the pressure chamber and held at a balance pressure coincident with the point of zero turgor, ABA accumulated in the leaf tissue and then in the apoplast, but only after 2 to 3 hours of zero turgor. Slow dehydration of leaves by equilibration over varying mannitol concentrations resulted in some accumulation of ABA prior to the point of zero turgor, but ABA accumulated in the tissue and apoplast most rapidly after the onset of zero turgor.  相似文献   

10.
We developed a new method to measure the solute concentration in the apoplast of stem tissue involving pressurizing the roots of intact seedlings (Glycine max [L.] Merr. or Pisum sativum L.), collecting a small amount of exudate from the surface of the stem under saturating humidities, and determining the osmotic potential of the solution with a micro-osmometer capable of measuring small volumes (0.5 microliter). In the elongating region, the apoplast concentrations were very low (equivalent to osmotic potentials of −0.03 to −0.04 megapascal) and negligible compared to the water potential of the apoplast (−0.15 to −0.30 megapascal) measured directly by isopiestic psychrometry in intact plants. Most of the apoplast water potential consisted of a negative pressure that could be measured with a pressure chamber (−0.15 to −0.28 megapascal). Tests showed that earlier methods involving infiltration of intercellular spaces or pressurizing cut segments caused solute to be released to the apoplast and resulted in spuriously high concentrations. These results indicate that, although a small amount of solute is present in the apoplast, the major component is a tension that is part of a growth-induced gradient in water potential in the enlarging tissue. The gradient originates from the extension of the cell walls, which prevents turgor from reaching its maximum and creates a growth-induced water potential that causes water to move from the xylem at a rate that satisfies the rate of enlargement. The magnitude of the gradient implies that growing tissue contains a large resistance to water movement.  相似文献   

11.
Abstract: Transport of ascorbate (AA) and dehydroascorbate (DHA) through the petiole into detached leaves of Lepidium sativum and other plant species via the transpiration stream, and energized uptake into leaf tissue, were measured indirectly by recording changes in membrane potential and apoplastic pH simultaneously with substrate‐stimulated respiration and transpiratory water loss. When 25 mM AA or DHA was fed to the leaves, steady state respiration at 25 °C was transiently increased by more than 50 % with AA and 70 % with DHA. Stimulation of respiration was accompanied by a transient breakdown of membrane potential followed by alkalinization of the leaf apoplast suggesting energized uptake at the expense of the transmembrane proton motive force. The average CO2/AA ratio calculated from stimulated respiration during ascorbate uptake was 0.76 ± 0.26 (n = 17). The corresponding ratio for DHA was 1.38 ± 0.28 (n = 11). Far lower CO2/substrate ratios were observed when NaCl or KCl were fed to leaves. The differences indicate either partial metabolism of AA and DHA in addition to energized transport, or less likely, higher energy requirement for transport of AA and DHA than for the inorganic salts. Maximum rates of energized AA transport into leaf tissue (deduced from maxima of extra respiration and calculated on the basis of CO2/AA = 0.76) were close to 650 nmol m‐2 leaf area s‐1, i.e. far higher than most previously reported rates of transport. When the apoplastic concentration of AA was decreased below steady state levels during infiltration/centrifugation experiments, AA was released from leaf cells into the apoplast. This suggests that AA oxidation to DHA in the apoplast (as occurs during extracellular ozone detoxification) triggers energized transport of the DHA into the symplast and simultaneously AA release from the symplast into the apoplast, perhaps together with protons in a reversal of the energized uptake process.  相似文献   

12.
The potential cellular pathway of radial transfer of photosynthateand potassium delivered in the phloem to the elongation zone(apical 0.5–2.5 cm) of internode 2 ofPhaseolus vulgarisL. seedlings was elucidated. This was achieved using ultrastructuralobservations of the cell types that constitute the radial pathwayand estimates of potential sucrose and potassium fluxes throughthe cross-sectional area of interconnecting plasmodesmata andacross the plasma membrane surface areas of selected cell types.The investigation relied on predicting the relative roles ofthe mature and developing sieve elements as conduits for theaxial delivery of solutes to the elongation zone. In turn, thesepredictions led to formulation of two transport models whichwere subsequently evaluated. It was found that unloading ofsucrose and potassium from the protophloem sieve elements cannotbe through the symplast due to the absence of plasmodesmata.On the other hand, mature metaphloem sieve element-companioncell complexes have the potential capacity to unload eitherthrough the stem symplast or apoplast. The potential symplasticroute is proposed to be via the companion cells to the adjacentlarge phloem parenchyma cells. Continued radial transfer couldoccur either by exchange to the stem apoplast from the largephloem parenchyma cells or continue in the symplast to the groundtissues. It was further predicted that sucrose utilized forthe development of the procambial/small phloem parenchyma cellscould be delivered axially by them and not by the mature sieveelements. Phaseolus vulgaris ; apoplast; elongating stem; photosynthates; potassium; transport; symplast  相似文献   

13.
Methods used to estimate the (nonosmotic) bound water fraction (BWF) (i.e. apoplast water) of spinach (Spinacia oleracea L.) leaves were evaluated. Studies using three different methods of pressure/volume (P/V) curve construction all resulted in a similar calculation of BWF; approximately 40%. The theoretically derived BWF, and the water potential (Ψw)/relative water content relationship established from P/V curves were used to establish the relationship between protoplast (i.e. symplast) volume and Ψw. Another method of establishing the protoplast volume/Ψw relationship in spinach leaves was compared with the results from P/V curve experiments. This second technique involved the vacuum infiltration of solutions at a range of osmotic potentials into discs cut from spinach leaves. These solutions contained radioactively labeled H2O and sorbitol. This dual label infiltration technique allowed for simultaneous measurement of the total and apoplast volumes in leaf tissue; the difference yielded the protoplast volume. The dual label infiltration experiments and the P/V curve constructions both showed that below −1 megapascals, protoplast volume decreases sharply with decreasing water potential; with 50% reduction in protoplast volume occurring at −1.8 megapascals leaf water potential.  相似文献   

14.

Background and Aims

Floral development depends on photosynthetic products delivered by the phloem. Previous work suggested the path to the flower involved either the apoplast or the symplast. The objective of the present work was to determine the path and its mechanism of operation.

Methods

Maize (Zea mays) plants were grown until pollination. For simplicity, florets were harvested before fertilization to ensure that all tissues were of maternal origin. Because sucrose from phloem is hydrolysed to glucose on its way to the floret, the tissues were imaged and analysed for glucose using an enzyme-based assay. Also, carboxyfluorescein diacetate was fed to the stems and similarly imaged and analysed.

Key Results

The images of live sections revealed that phloem contents were released to the pedicel apoplast below the nucellus of the florets. Glucose or carboxyfluorescein were detected and could be washed out. For carboxyfluorescein, the plasma membranes of the phloem parenchyma appeared to control the release. After release, the nucellus absorbed apoplast glucose selectively, rejecting carboxyfluorescein.

Conclusions

Despite the absence of an embryo, the apoplast below the nucellus was a depot for phloem contents, and the strictly symplast path is rejected. Because glucose and carboxyfluorescein were released non-selectively, the path to the floret resembled the one later when an embryo is present. The non-selective release indicates that turgor at phloem termini cannot balance the full osmotic potential of the phloem contents and would create a downward pressure gradient driving bulk flow toward the sink. Such a gradient was previously measured by Fisher and Cash-Clark in wheat. At the same time, selective absorption from the apoplast by the nucellar membranes would support full turgor in this tissue, isolating the embryo sac from the maternal plant. The isolation should continue later when an embryo develops.  相似文献   

15.
This study investigates the structural aspects of cavity spot pathogenesis. Different Pythium spp. isolated from infected carrots, apples and melons were cultured on agar in Petri dishes and used for inoculation of uninfected carrots. Only slow-growing Pythium spp. (< 15 mm day-1), such as P. violae and P. sulcatum caused cavity spot lesions. It is suggested that slow-growing species are able to penetrate, albeit slowly, into the plant tissue for 3 to 4 days before a hypersensitive reaction develops. Fast-growing species, however, did not cause lesions. Based on ultrastructural observations, we suggest that the following sequence of events occurs between the plant and the pathogen: The fungus infects the walls and grows for several days, during which time small amounts of wall-degrading enzymes are secreted. Phenylalanine ammonia lyase (PAL) activity and phenols increase linearly immediately upon inoculation. There was a lag phase of about 5 days before lignin began to increase linearly for about a month. Dissolution of wall components decreases the solute potential and water potential in the apoplast. Thus, water moves from the symplast into the apoplast, the turgor pressure gradually dissipates, and the cells shrink and eventually die.  相似文献   

16.
A number of studies have shown a transition from a primarily xylem to a primarily phloem flow of water as fleshy fruits develop, and the current hypothesis to explain this transition, particularly in grape (Vitis vinifera L.) berries, is that the vascular tissue (tracheids) become non-functional as a result of post-veraison berry growth. In most studies, pedicels have been dipped in a vial containing an apoplastic dye, which was taken up into the entire peripheral and axial xylem vasculature of pre-veraison, but not post-veraison berries. The pressure plate/pressure membrane apparatus that is commonly used to study soil moisture characteristics was adapted and the pre- to post-veraison change in xylem functionality in grape berries was re-evaluated by establishing a hydrostatic (tension) gradient between the pedicel and a cut surface at the stylar end of the berry. Under the influence of this applied hydrostatic gradient, movement of the apoplastic tracer dye, basic fuchsin, was found in the pedicel and throughout the axial and peripheral xylem of the berry mesocarp. A similar movement of dye could be obtained by simply adjoining the stylar cut surface to a dry, hydrophilic wicking material. Since both pre- and post-veraison berries hydrate when the pedicel is dipped in water, it is hypothesized that the absence of dye movement into the vasculature of post-veraison berries indicates not a loss of xylem function, but rather the loss of an appropriate driving force (hydrostatic gradient) in the berry apoplast. Based on this hypothesis, and the substantial decrease in xylem flows that occur in intact grape berries at veraison, it is suggested that there may be significant changes in the pattern of solute partitioning between the fruit symplast and apoplast at veraison. It is further suggested that diurnal patterns in symplast/apoplast solute partitioning in grapes and other fleshy fruit, may explain the observed minimal xylem contribution to the water budgets of these fruits.  相似文献   

17.
The water associated with a bryophyte can be divided into (a) apoplast water held in cell-wall capillary spaces and by matric forces, (b) osmotic (symplast) water, and (c) external capillary water. In many bryophytes (c) is a large and variable component, preventing easy determination of full-turgor water content and of relative water content (RWC) values physiologically comparable with those for vascular-plant leaves. Pressure-volume (P-V) curves are presented and water-relations parameters estimated for bryophytes, including species with large thin-walled cells (Hookeria lucens and three marchantialian thalloid liverworts), species with notably thick cell walls (Neckera crispa), and species with wettable surfaces and well-developed external capillary water conduction (Tortula ruralis, Anomodon viticulosus), and for the lichen Cladonia convoluta. Full-turgor water content ranged from c. 110% DW. in T. ruralis and Andreaea alpina to 1400% DW or more in Dumortiera hirsuta and Conocephalum conicum. Osmotic potential () at full turgor was between -1.0 and -2.0 MPa in most species, but substantially less negative values were found in the thalloid liverworts (-0.35 to -0.64 MPa). The x-intercept of the P-V curve is not a reliable estimate of apoplast volume and may give negative values; better estimates of apoplast volume may be obtained by vapour equilibration at known low water potentials. Blotting external water from shoots usually gave full-turgor water content estimates in reasonable agreement with those obtained by analysis of P-V curves, but for different reasons they could be either higher or lower than the true value. The importance of knowing full-turgor water content for physiological work on water-stress responses in bryophytes is emphasized.Key words: Thermocouple psychrometry, apoplast fraction, relative water content, osmotic potential, poikilohydry.   相似文献   

18.
The extracellular electrical potential in Bidens pilosa has been compared with the transmembrane potential in hypocotyl cells. We found that variations in the extracellular electrical potential, induced by different KCI concentrations, were identical to the variations of the transmembrane potential. In order to explain the strong correlation between the extracellular potential and the transmembrane potential, an interpretative model based on the electrical diagram of the plant was tested. From our data, we found that: (1) the symplast behaves as a low resistance pathway compared with the apoplast; and (2) the cell wall contributes weakly (20% at the most) to the transmembrane potential. It is concluded that each hypocotyl cell is strongly coupled electrically with its neighbour. This property, together with the high apoplast resistance, accounts for the similarity in the extracellular and transmembrane potential measurements. These properties, which are characteristic of excitable organs, support the existence of action potentials in Bidens.  相似文献   

19.
Solute concentration in the apoplast of growing sugarcane (Saccharum spp. hybrid) leaves was measured using one direct and several indirect methods. The osmotic potential of apoplast solution collected directly by centrifugation of noninfiltrated tissue segments ranged from −0.25 megapascal in mature tissue to −0.35 megapascal in tissue just outside the elongation zone. The presence of these solutes in the apoplast manifested itself as a tissue water potential equal to the apoplast osmotic potential. Since the tissue was not elongating, the measurements were not influenced by growth-induced water uptake and no significant tension was detected with the pressure chamber. Further evidence for a significant apoplast solute concentration was obtained from pressure exudation experiments and comparison of methods for estimating tissue apoplast water fraction. For elongating leaf tissue the centrifugation method could not be used to obtain direct measurements of apoplast solute concentration. However, several other observations suggested that the apoplast water potential of −0.35 to −0.45 megapascal in elongating tissue had a significant osmotic component and small, but significant tension component. Results of experiments in which exudate was collected from pressurized tissue segments of different ages suggested that a tissue age-dependent dynamic equilibrium existed between intra- and extracellular solutes.  相似文献   

20.
Tubular evaginations of the plasmalemma of the scutellar epithelial cells of barley are described. The evaginations are similar to those present at other sites where solute flux occurs for a limited period only and wall development of the transfer-cell form has not occured. Differential uptake of the fluorescent dyes fluorescein, which moves into the symplast, and 8-anilino-1-naphthalene sulphonic acid, which remains in the apoplast only, indicates that the scutellar epithelial cells contain the boundary between the apoplast and symplast. We suggest that i) the plasmalemma evaginations, which have a specific form and localisation, may be referred to as plasmatubules rather than by the general term plasmalemmasome, and that ii) the plasmatubules may act in membrane amplification in a short-term structural modification which is an alternative to transfer cells.Abbreviation ANS 8-anilino-1-naphthalene sulphonic acid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号