首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activated polymorphonuclear neutrophils (PMN) and macrophages generate oxidizing agents similar to or identical with N-chloroamines. Mimicking this oxidation in normal human plasma by usage of chloramine T (CT), we observed an oxidant concentration-dependent inactivating effect on plasma alpha 2-plasmin inhibitor (alpha 2-PI), antithrombin III (AT III), and alpha 1-proteinase inhibitor (alpha 1-PI). 20-50 mumol CT/ml plasma are necessary for almost complete inactivation of alpha 2-PI and AT III-activity, i.e. about 2-5 times the dose necessary for inactivation of alpha 1-PI which has already been classified as "oxidant sensitive". The inactivation of alpha 1-PI, alpha 2-PI and AT III in plasma by oxidants is the result of a specific oxidative damage since C1-inhibitor, serine proteinases and complexes of plasmin and alpha 2-PI were chloramine resistant under the conditions used. According to our results, the amount of chloramines released by 1 x 10(6) activated PMN, namely ca. 10 nmol (see Weiss et al. Science 222 625-628, 1983) would be sufficient to destroy alpha 1-PI and alpha 2-PI activity of 1.5 and 0.4 microliter of human plasma, respectively. Consequently, activated leukocytes may be able to create a microenvironment in which elastase as well as plasmin and thrombin can display their proteolytic activity unchecked by their regulator proteins. Oxidation may provide a general basis for altering enzyme/inhibitor balances.  相似文献   

2.
The antiproteinase activities against trypsin, chymotrypsin, elastase, papain and rat leucocyte proteinases were determined in plasma from control and Morris hepatoma-bearing rats. Bovine trypsin and chymotrypsin were similarly inhibited by the two types of plasma whereas porcine pancreatic elastase, papain and rat leucocyte neutral proteinases were more efficiently inhibited by plasma from tumour-bearing rats. The increased plasma concentrations of some proteinase inhibitors, as determined by rocket immunoelectrophoresis, are suggested to be responsible for the observed differences in inhibition. The highest increases in plasma of tumour-bearing rats were observed for alpha 2-macroglobulin and alpha 1-acute-phase globulin. The synthesis and secretion of six proteinase inhibitors: antithrombin III, alpha 1-proteinase inhibitor, alpha 1-macroglobulin, alpha 2-macroglobulin, alpha 1-acute-phase globulin and haptoglobin, as well as albumin, were measured in tissue slices from rat liver and Morris hepatoma after incubation with [14C]leucine. Local inflammation inflicted upon the tumour-bearing rats increased formation of acute-phase proteins in liver slices but not in hepatoma slices.  相似文献   

3.
J Hastka 《Blut》1988,57(2):69-75
PMN elastase is a useful additional parameter in the differential diagnosis of the leukaemias. In all patients with myelocytic leukaemias there were elevated levels of elastase-alpha 1-proteinase inhibitor (E-alpha 1PI), while in the lymphatic leukaemias complexed elastase levels were decreased. The highest values were found in the peripheral blood plasma and bone marrow plasma of patients with CML. Despite high E-alpha 1PI concentrations there were no signs of bleeding or consumption of plasmatic coagulation factors. In AML a wide range of E-alpha 1PI levels was observed, extending from slightly elevated to four hundred-fold increased. In myeloblastic leukaemias without maturation (FAB M 1) the concentrations of complexed elastase remained below 150 ng/ml. In myeloblastic leukaemias with maturation (FAB M2) the E-alpha 1PI values ranged between 214 ng/ml and 850 ng/ml (means = 402 +/- 69), and in myelo-monoblastic leukaemias (FAB M4) between 450 ng/ml and 720 ng/ml (means = 663 +/- 72). The only case of promyelocytic leukaemia (FAB M 3) exhibited an extremely high value of 4,550 ng/ml, while a monocytic leukaemia (FAB M5) showed an extremely low value of 5 ng/ml. During cytostatic therapy there was a rapid decrease in levels of complexed elastase, with E-alpha 1PI values returning to normal in remission. In recidivating cases there was an increase of E-alpha 1PI levels in AML and a decrease in ALL. There was a correlation between the E-alpha 1PI concentrations in peripheral plasma and leukaemic bone marrow infiltration, so providing a good basis for monitoring remission from leukaemia and indicating relapse. It was also interesting to observe an extremely low E-alpha 1PI level (5 ng/ml) in patients with myelodysplasia. Under Decortin/Plenastril therapy the concentration rose to 50 ng/ml. An E-alpha 1PI level of 10 ng per ml was observed in one case of Ranitidine agranulocytosis. Under corticoid therapy the value returned to normal within eight days.  相似文献   

4.
Inhibition of human factor Xa by various plasma protease inhibitors   总被引:7,自引:0,他引:7  
The inhibitory effects of the plasma protease inhibitors antithrombin III, alpha 2-macroglobulin and alpha 1-antitrypsin on the activity of human factor Xa have been studied using purified proteins. The rate of inhibition was determined by measuring the residual factor Xa activity at timed intervals utilizing the synthetic peptide susbtrate Bz-Ile-Glu(piperidyl)-Gly-Arg-pNA. Kinetic analysis with varying molar concentrations of inhibitors demonstrated that the inhibition of factor Xa by antithromin III, alpha 2-macroglobulin and alpha 1-antitrypsin followed second-order kinetics. Calculated values of the rate constants for the inhibition of factor Xa by antithrombin III, alpha 2-macroglobulin and alpha 1-antitrypsin were 5.8 . 10(4), 4.00 . 10(4) and 1.36 . 10(4) M -1 . min -1, respectively. The plasma concentrations of the inhibitors can be used to assess their potential relative effectiveness against factor Xa. In plasma this was found as alpha 1-antitrypsin greater than antithrombin III greater than alpha 2-macroglobulin in the ratio 4.64: 2.08: 1.0. Cephalin was shown to inhibit the rate of reaction between factor Xa and antithrombin III.  相似文献   

5.
M R Downing  J W Bloom  K G Mann 《Biochemistry》1978,17(13):2649-2653
Human alpha-thrombin is inhibited by the circulating protease inhibitors alpha1-antitrypsin, antithrombin III, and alpha2-macroglobulin. Kinetic analyses of the inhibitor thrombin interactions were carried out utilizing either fibrinogen or the synthetic substrate Bz-Phe-Val-Arg-p-nitroanilide as substrates to determine residual thrombin activity. These studies demonstrated that the inhibition of thrombin by alpha1-antitrypsin, antithrombin III, and alpha2-macroglobulin followed second-order kinetics. The rate constants for the inhibition of thrombin by alpha1-antitrypsin, antithrombin III, and alpha2-macroglobulin are 6.51 +/- 0.38 x 10(3), 3.36 +/- 0.34 x 10(5), and 2.93 +/- 0.02 x 10(4) M-1 min-1, respectively. Comparison of the second-order rate constants and the normal plasma levels of the three inhibitors demonstrates that, under the in vitro conditions utilized, antithrombin III is five times and alpha2-macroglobulin is one-third as effective as alpha1-antitrypsin in the inhibition of thrombin.  相似文献   

6.
Filion ML  Bhakta V  Nguyen LH  Liaw PS  Sheffield WP 《Biochemistry》2004,43(46):14864-14872
The abundant plasma protein alpha(1)-proteinase inhibitor (alpha(1)-PI) physiologically inhibits neutrophil elastase (NE) and factor XIa and belongs to the serine protease inhibitor (serpin) protein superfamily. Inhibitory serpins possess a surface peptide domain called the reactive center loop (RCL), which contains the P1-P1' scissile peptide bond. Conversion of this bond in alpha(1)-PI from Met-Ser to Arg-Ser in alpha(1)-PI Pittsburgh (M358R) redirects alpha(1)-PI from inhibiting NE to inhibiting thrombin (IIa), activated protein C (APC), and other proteases. In contrast to either the wild-type or M358R alpha(1)-PI, heparin cofactor II (HCII) is a IIa-specific inhibitor with an atypical Leu-Ser reactive center. We examined the effects of replacement of all or part of the RCL of alpha(1)-PI with the corresponding parts of the HCII RCL on the activity and specificity of the resulting chimeric inhibitors. A series of 12 N-terminally His-tagged alpha(1)-PI proteins differing only in their RCL residues were expressed as soluble proteins in Escherichia coli. Substitution of the P16-P3' loop of alpha(1)-PI with that of HCII increased the low intrinsic antithrombin activity of alpha(1)-PI to near that of heparin-free HCII, while analogous substitution of the P2'-P3' dipeptide surpassed this level. However, gel-based complexing and quantitative kinetic assays showed that all mutant proteins inhibited thrombin at less than 2% of the rate of alpha(1)-PI (M358R) unless the P1 residue was also mutated to Arg. An alpha(1)-PI (P16-P3' HCII/M358R) variant was only 3-fold less active than M358R against IIa but 70-fold less active against APC. The reduction in anti-APC activity is desired in an antithrombotic agent, but the improvement in inhibitory profile came at the cost of a 3.5-fold increase in the stoichiometry of inhibition. Our results suggest that, while P1 Arg is essential for maximal antithrombin activity in engineered alpha(1)-PI proteins, substitution of the corresponding HCII residues can enhance thrombin specificity.  相似文献   

7.
The release of granulocyte elastase and its interaction with plasma protease inhibitors was studied in dogs receiving a slow infusion of a lethal dose of Escherichia coli endotoxin. During endotoxin infusion a marked decline in leucocyte counts was parallelled by a rapid increase in plasma granulocyte elastase concentrations. Maximal values were reached after 3 h, when the infusion was ended. Crossed immunoelectrophoresis with antiserum against granulocyte elastase did not reveal the presence of elastase components with the electrophoretic mobility of free elastase, but elastase-alpha1-antitrypsin complexes were detected. A gradually decreasing plasma concentration of alpha2-macroglobulin was noted during the experiments. Crossed immunoelectrophoresis, however, did not reveal any electrophoretic heterogeneity. It is concluded that the release of granulocyte proteases might be of significance for several pathophysiological changes seen in endotoxin shock.  相似文献   

8.
The consumption of kininogen (measured as kinin-releasable material) was studied in an experimental model in vitro. Analyses were made following the addition of increasing amounts of human cationic trypsin to human serum and plasma. The consumption of kininogen was correlated with the degree of saturation of the plasma proteinase inhibitors alpha 2-macroglobulin (alpha 2-M) and alpha 1-proteinase inhibitor (alpha 1-PI) with trypsin in the presence and absence of aprotinin (Trasylol). The level of kininogen fell dramatically when alpha 2-M was saturated to 70% in spite of 90% free alpha 1-PI. Trypsin-alpha 2-M complexes had no effect on kininogen levels. 60 mumol/l of aprotinin, i.e. approximately 3 X 10(6) KIU/l, blocked only 60% of the trypsin-induced kininogen consumption in serum, while 15 mumol/l of aprotinin blocked 100% of this consumption in plasma. With increasing concentration of aprotinin in serum, a decreasing consumption of alpha 2-M and especially of alpha 1-PI was observed on the addition of trypsin. The high aprotinin concentration needed to block trypsin-induced kininogen cleavage in human serum or plasma may explain the poor clinical effect of aprotinin to date in human acute pancreatitis.  相似文献   

9.
Mouse plasma contains two major protease inhibitors, alpha 1-protease inhibitor (alpha 1-PI) and contrapsin, which have high affinity for bovine trypsin. Systemic injury, such as turpentine-induced inflammation, did not change the plasma concentration of alpha 1-PI, but increased that of contrapsin by 50%. The concentration of hepatic alpha 1-PI mRNA was determined by Northern blot hybridization and was not significantly affected by the acute phase reaction. J.M. Frazer, S.A. Nathoo, J. Katz, T.L. Genetta, and T.H. Finley [1985) Arch. Biochem. Biophys. 239, 112-119) have reported a threefold increase of mRNA for the elastase specific alpha 1-PI but this increase was not demonstrated by the present study. The mRNAs for known mouse acute phase plasma proteins were, however, stimulated severalfold by the same treatment. These results indicate that in the mouse, as opposed to human, alpha 1-PI is not an acute phase reactant.  相似文献   

10.
The elastase inhibitory capacity of alpha 1-proteinase inhibitor (alpha 1-PI) was measured, using a direct and reproducible method, with phagocytic cells maintained in the tissue culture plate through the assay. The oxidative inactivation of alpha 1-PI is known to be mediated by the action of myeloperoxidase (MPO). The fact that hyposialylated IgG (hs IgG) induce the release of MPO prompted us to investigate the effects of such hs IgG on the inhibitory capacity of alpha 1-PI. The results show that 1-PI inactivation was observed only when phagocytic cells were activated by aggregated hs IgG, and not by unaggregated hs IgG. These observations indicate that hyposialylation should be completed by aggregation to perpetuate the oxidative reactions characteristic of inflammatory diseases.  相似文献   

11.
Alpha(1)-proteinase inhibitor (alpha(1)-PI) is a natural serine protease inhibitor. Although mainly thought to protect the airways from neutrophil elastase, alpha(1)-PI may also regulate the development of airway hyperresponsiveness (AHR), as indicated by our previous findings of an inverse relationship between lung alpha(1)-PI activity and the severity of antigen-induced AHR. Because allergic stimulation of the airways causes release of elastase, tissue kallikrein, and reactive oxygen species (ROS), all of which can reduce alpha(1)-PI activity and contribute to AHR, we hypothesized that administration of exogenous alpha(1)-PI should protect against pathophysiological airway responses caused by these agents. In untreated allergic sheep, airway challenge with elastase, xanthine/xanthine oxidase (which generates ROS), high-molecular-weight kininogen, the substrate for tissue kallikrein, and antigen resulted in bronchoconstriction. ROS and antigen also induced AHR to inhaled carbachol. Treatment with 10 mg of recombinant alpha(1)-PI (ralpha(1)-PI) blocked the bronchoconstriction caused by elastase, high-molecular-weight kininogen, and ROS, and the AHR induced by ROS and antigen. One milligram of ralpha(1)-PI was ineffective. These are the first in vivo data demonstrating the effects of ralpha(1)-PI. Our results are consistent with and extend findings obtained with human plasma-derived alpha(1)-PI and suggest that alpha(1)-PI may be important in the regulation of airway responsiveness.  相似文献   

12.
Mouse macrophage elastase, a metalloproteinase, catalytically inactivates human alpha 1-proteinase inhibitor (alpha 1-PI) by attacking a single peptide bond between Pro357 and Met358, resulting in Mr = 4,200 and 47,800 fragments. We show here that this proteolytically inactivated alpha 1-PI is a potent chemotactic factor for human neutrophils at a concentration of 1 nM. The chemotactic response is equivalent to that elicited by formyl-methionyl-leucyl-phenylalanine. Native alpha 1-PI does not stimulate chemotaxis. Purification of the two fragments of alpha 1-PI that result from proteolysis by macrophage elastase indicated that the Mr = 4,200 fragment is responsible for the chemotactic activity. However, the two proteolysis fragments do not dissociate from each other under physiologic conditions. Therefore, the ability of proteolytically inactivated alpha 1-PI to act as a mediator of inflammation is due to rearrangement of the alpha 1-PI molecule rather than to release of a cleavage fragment.  相似文献   

13.
Structure of human alpha 2-plasmin inhibitor deduced from the cDNA sequence   总被引:6,自引:0,他引:6  
We have isolated three cDNA clones for human alpha 2-plasmin inhibitor (alpha 2-PI). Two clones are from human hepatoma cell line, Hep G2, and cover the entire protein coding region plus the 3'-flanking region up to the poly(A) sequence, and the other clone is from human liver and contains the carboxyl-terminal half. The total length of the cDNAs is 2.29 kb, corresponding to more than 95% of the full-length mRNA. alpha 2-PI seems to consist of 452 amino acid residues plus 39 amino acid residues for the signal peptide. The amino acid sequence shows 23 to 28% homology to those of five other protease inhibitors, plasminogen activator inhibitor (PAI), protein C inhibitor (PCI), alpha 1-antitrypsin (alpha 1-AT), antithrombin III (AT III), and alpha 1-antichymotrypsin (alpha 1-AC). alpha 2-PI seems to be the most distantly related among these inhibitors. Comparison of the phylogenetic trees of proteases and their inhibitors indicates that four proteases, namely elastase (or trypsin), chymotrypsin, plasminogen activator, and thrombin, may have evolved concurrently with the corresponding inhibitors. However, alpha 2-PI and PCI seem to have evolved asynchronously from their substrates. The data suggest that alpha 2-PI may originally have inhibited some protease other than plasmin, and protein C may have had an inhibitor different from the present one early in its evolutionary history.  相似文献   

14.
Kulig P  Cichy J 《Cytokine》2005,30(5):269-274
Quantitative changes in plasma protein concentrations during tissue injury or inflammation (acute phase response) are often accompanied by specific alterations in the carbohydrate moieties of these proteins. The glycosylation changes comprise alterations in the type of branching of the carbohydrate structures as revealed by modulated reactivity of acute phase glycoproteins with the lectin concanavalin A. Interestingly, inflammation-induced changes in the glycosylation of acute phase proteins have been shown to affect the functional properties of these proteins. In this study we demonstrate that synthesis of acute phase protein alpha(1)-PI, the controlling inhibitor of neutrophil elastase, is significantly up-regulated in hepatic and lung-derived epithelial cells by the inflammatory mediator oncostatin M. Although oncostatin M markedly altered the concanavalin A reactivity of hepatic alpha(1)-PI, lung-derived epithelial cells did not change the pattern of alpha(1)-PI glycan branching upon stimulation with oncostatin M. These results indicate that inflammation-induced changes in glycosylation of alpha(1)-PI may have different impacts on functional properties of liver and lung-synthesized alpha(1)-PI.  相似文献   

15.
The partition of labelled rat pancreatic elastase (EC 3.4.21.11) between the different protease inhibitors of rat plasma was studied at different levels of saturation of the inhibitors of rat plasma was studied at different levels of saturation of the inhibitor capacity of plasma with the enzyme. The reaction mixtures were analysed by immunoelectrophoretic methods utilizing specific antisera against the different inhibitors and by gel filtration on Sephadex G-200. Rat serum was shown to contain four elastase binding proteins. alpha 1-antitrypsin, alpha 1-macroglobulin and alpha 2-acute phase protein and alpha 1-inhibitor 3 which exhibits immunologic cross-reaction with human inter-alpha-trypsin inhibitor and is of similar molecular weight. With minute amounts of labelled elastase the partition among the binding protein was alpha 1-macroglobulin 60%, alpha 1-antitrypsin 24% and alpha 1-I3 16%. The 60% value of alpha 1-M bound radioactivity in normal serum corresponds to the sum of alpha 1-M and alpha 2-AP labelling in inflammatory serum.  相似文献   

16.
Plasma levels of alpha 1-PI(T) and alpha 1-PI(E), two closely related murine alpha 1-protease inhibitors, having affinities for trypsin and elastase, respectively, were compared to changes in specific liver mRNA levels after induction of the acute-phase reaction by subcutaneous injection of turpentine. In earlier, qualitative experiments an increase in plasma levels of alpha 1-PI(E), but not alpha 1-PI(T), during the acute-phase reaction had been shown. It is now shown that stimulation of plasma alpha 1-PI(E) levels reaches a maximum of 35-50% above baseline 12 h after induction of the acute-phase response using either a functional or immunological assay to measure protease inhibitor activity. Consistent with earlier observations, little or no change in plasma levels of alpha 1-PI(T) is seen. Determination of mRNA levels in the mouse liver specific for alpha 1-PI(E) and alpha 1-PI(T) was accomplished using a cell-free translation system followed by immunoprecipitation of the 35S-labeled protease inhibitors. The apparent Mr's of alpha 1-PI(E) and alpha 1-PI(T) synthesized in vitro are 42K and 46K, respectively. Apparent Mr's of the native proteins in plasma are 55K and 65K. Unexpectedly, mRNA levels for both alpha 1-PI(E) and alpha 1-PI(T) were found to increase after induction of the acute-phase reaction. Maximal stimulation for both mRNAs was approximately 300% and occurred 9 h after turpentine administration. Under these conditions, levels of translatable albumin mRNA in the mouse liver decreased to 40% of baseline in 6-9 h.  相似文献   

17.
Triggered polymorphonuclear leucocytes (PMNL) can decrease the elastase inhibitory capacity of serum by inactivating the main inhibitor of elastase alpha-1-proteinase inhibitor (alpha-1-PI). Maximal inactivation occurs with stimuli that release myeloperoxidase from PMNL along with hydrogen peroxide. Specific protection of alpha-1-PI function is obtained with antioxidants that interfere with this system. PMNL that are activated with phorbol myristate acetate release hydrogen peroxide but not myeloperoxidase, and only inactivate alpha-1-PI in the presence of exogenously-added PMNL-derived supernatants which contain this enzyme. Cell-free inactivation requires both active enzyme and hydrogen peroxide, and is greatest at pH 6.2, the pH optimum for myeloperoxidase-catalysed inactivation of alpha-1-PI. This data supports the notion that leucocyte myeloperoxidase may act to suppress the antiprotease screen afforded by alpha-1-PI by generating hypochlorous acid in the presence of chloride and respiratory burst-derived hydrogen peroxide, and in the microenvironment of lowered pH associated with degranulation. Pulmonary emphysema seems to be associated with an imbalance between elastase and its inhibitors at the lung surface. PMNL are likely to play an important role in the pathogenesis of emphysema since they contain both elastase, which can solubilize connective tissue elastin, and the constituents of an oxidative system which can inactivate the most important antielastase, alpha-1-PI.  相似文献   

18.
A plasma kallikrein inhibitor in guinea pig plasma (KIP) was purified to homogeneity. KIP is a single chain protein and the apparent molecular weight is estimated to be 59,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In amino acid composition, KIP is similar to human and mouse alpha 1-proteinase inhibitors and mouse contrapsin. KIP forms an equimolar complex with plasma kallikrein in a dose- and time-dependent fashion. The association rate constants for the inhibition of guinea pig plasma kallikrein by KIP, alpha 2-macroglobulin, C1-inactivator and antithrombin III were 2.5 +/- 0.3.10(4), 2.4 +/- 0.4.10(4), 6.6 +/- 0.5.10(4) and 9.1 +/- 0.6.10(2), respectively. Comparison of the association rate constants and the normal plasma concentrations of the four inhibitors demonstrates that KIP is ten-times as effective as alpha 2-MG and other two inhibitors are marginally effective in the inhibition of kallikrein. KIP inhibits trypsin and elastase rapidly, and thrombin and plasmin slowly, but is inactive for chymotrypsin and gland kallikrein. These results suggest that KIP is the major kallikrein inhibitor in guinea pig plasma and the proteinase inhibitory spectrum is unique to KIP in spite of the molecular similarity to alpha 1-proteinase inhibitor.  相似文献   

19.
The serine proteinase elastase is located in the azurophil granules of mature circulating polymorphonuclear neutrophils. This neutrophil elastase or NE is a potent non specific serine protease which plays a role as bactericidal agent and in the degradation of immune complexes by intraphagosomal processes. It promotes inflammation when the granule contents are secreted in the extracellular environment. In certain pathological circumstances, an imbalance between NE and its major plasmatic inhibitor alpha 1-PI (formerly, alpha 1-antitrypsin) leads to abnormal tissue destruction and disease development. Genetic or acquired alpha 1-PI deficiency is thought to be involved in the pathogenesis of pulmonary emphysema. A variety of degenerative and degradative disorders are also associated to uncontrolled proteolysis by NE (rheumatoid arthritis, glomerulonephritis, adult respiratory distress symptom, psoriasis, cancer). Numerous inhibitors of NE have been reported. Various molecules are currently undergoing clinical trials for emphysema and other pulmonary diseases.  相似文献   

20.
Association rates have been determined for the interaction of human alpha 2-macroglobulin with human neutrophil elastase, cathepsin G, and human plasma kallikrein. Both of the neutrophil enzymes are rapidly inactivated by this inhibitor; however, the inactivation of plasma kallikrein is much slower. Comparison of the rates of inactivation with those already established for other inhibitors clearly indicate that alpha 1-proteinase inhibitor is the controlling inhibitor for neutrophil elastase and alpha 1-antichymotrypsin for cathepsin G, alpha 2-macroglobulin acting only as a secondary inhibitor. The control of plasma kallikrein would appear to be rather poor since neither alpha 2-macroglobulin nor C1-inhibitor appears to react very rapidly with this proteinase. Thus, a primary role for alpha 2-macroglobulin in directly inactivating proteinases in blood, under normal physiological conditions, remains to be established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号